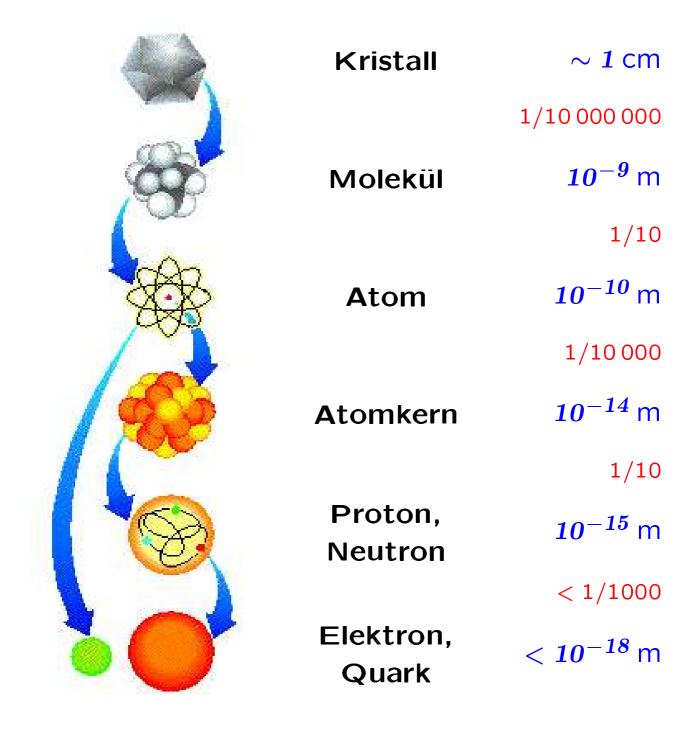
Aussichten für die Beschleunigung instabiler Teilchen auf höchste Energien

Ulrich F. Katz Rheinische Friedrich–Wilhelms–Universität zu Bonn



Antrittsvorlesung 2. Dezember 1998

- Experimentelle Teilchenphysik
- Teilchenbeschleuniger
- Gestatten, das Myon
- Myon–Kollider
- Einsatz in der Teilchenphysik
- Zusammenfassung und Ausblick

Experimentelle Teilchenphysik heute

Vom Makrokosmos zum Teilchen:

Der Teilchenzoo

Elementare, punktförmige Teilchen im "Standardmodell der Teilchenphysik"

Leptonen:

$$\begin{pmatrix} e \\ \nu_e \end{pmatrix}$$

$$\begin{pmatrix} \mu \\ \nu_{\mu} \end{pmatrix}$$

$$\begin{pmatrix} au \\
u_{ au} \end{pmatrix}$$

Quarks:

$$\begin{pmatrix} d \\ u \end{pmatrix}$$

$$\begin{pmatrix} s \\ c \end{pmatrix}$$

$$\begin{pmatrix} b \\ t \end{pmatrix}$$

Fermionen

(Spin 1/2)

Materie

(Zu jedem Fermion gibt es ein Antifermion)

Austauschteilchen:

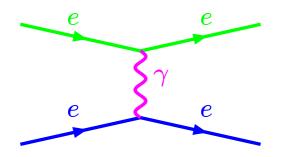
Photon

Weakonen

Gluon

 γ $1 \times \pm 7$

 W^{\pm}, Z


Bosonen

(Spin 1)

"Kraft– Überträger"

Fundamentale Wechselwirkungen

Kraft = Austausch von Bosonen

→ Wechselwirkung

Elektromagnetische Wechselwirkung:

Wirkt auf:

Austausch von: Rel. Stärke:

geladene Teilchen Photon

1

→ Atomare Kräfte, Magnetismus, ...

Schwache Wechselwirkung:

Leptonen, Quarks

 W^{\pm}, Z

0.001

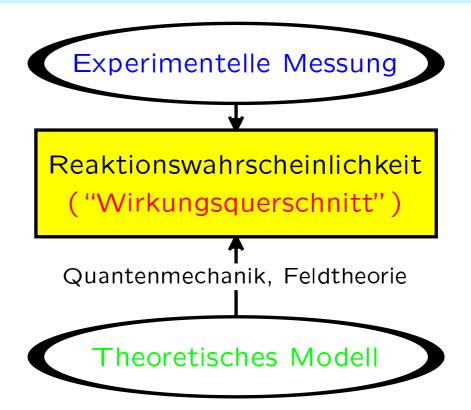
ightarrow Radioaktivität, u-Wechselwirkungen, ...

Starke Wechselwirkung:

Quarks, Gluonen

Gluon

100


→ Quark-Bindung im Proton, ..., Kernkräfte

Gravitation:

→ Erdanziehung, Kraft Erde-Sonne, ... In Teilchen-Experimenten vernachlässigbar

Erforschung von Teilchen-Reaktionen

Teilchen-Reaktionen geben Aufschluß über Teilchen-Eigenschaften und Wechselwirkungs-Dynamik:

Ziele der Teilchenphysik:

- Überprüfung des Standardmodells und Messung seiner Parameter
- Studium von Teilcheneigenschaften und Zerfällen
- Suche nach "neuer Physik":
 Supersymmetrie? andere Modelle?

Warum hohe Teilchen-Energien?

Einsteins Energie-Masse-Äquivalenz:

$$E = Mc^2$$

(c = Lichtgeschwindigkeit)

Energie und Masse sind ineinander umwandelbar

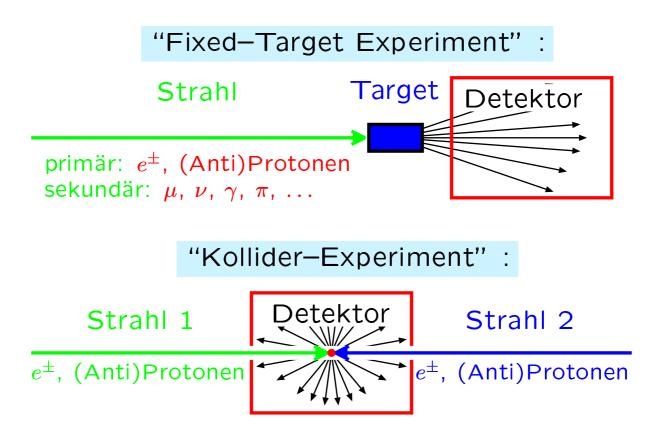
⇒ Erzeugung (unbekannter) Teilchen

Teilchen-Welle-Dualismus:

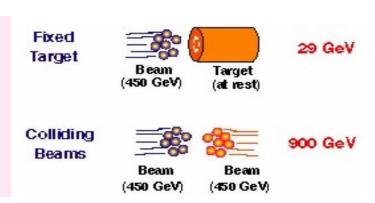
$$\lambda = \frac{\hbar}{E}$$

Räumliches Auflösungsvermögen steigt mit der Energie

⇒ Untersuchung kleinster Strukturen


Teilchen-Energien:

1Elektronvolt = 1eV


ist die Energie, die ein Teilchen mit Elektron-Ladung beim Durchlaufen einer Spannung von 1 Volt gewinnt.

Typische Einheit: 1 GeV = 1000000000 eV

Experimente mit Teilchenstrahlen

Bei gleichen
Strahlenergien liefern
Kollider die ungleich
höhere
Schwerpunktsenergie:

Wichtige Beschleuniger-Parameter:

- $E_{cms} = Schwerpunktsenergie$
- Reaktionsrate pro Wirkungsquerschnitt
- Teilchensorten

Einige wegweisende Entdeckungen

Jahr	Entdeckung	Reaktion/Energie
1911	Atomkern	He ⁴ auf Gold (F) $E_{\rm He^4} \sim 0.01 \rm GeV$
1969	Proton– Substruktur	e auf Protonen (F) $E_e = 7 - 17 \mathrm{GeV}$
1974	Charm—Quark $(M_cpprox 1.5~{ m GeV}/c^2)$	e^+e^- -Kollisionen (K) $E_{\rm cms}=3.1~{\rm GeV}$ Protonen auf Kerne (F) $E_p=30~{\rm GeV}$
1977	Bottom-Quark $(M_b pprox 5{ m GeV}/c^2)$	Protonen auf Kerne (F) $E_p = 400 \text{GeV}$
1983	W, Z -Bosonen $(M_W = 80 \mathrm{GeV}/c^2 $ $M_Z = 91 \mathrm{GeV}/c^2)$	Proton-Antiproton-Kollisionen (K) $E_{\rm cms} = 540 {\rm GeV}$
	Tara Orranda	Proton-Antiproton-
1994	Top-Quark $(M_tpprox 175{ m GeV}/c^2)$	Kollisionen (K) $E_{\text{cms}} = 1800 \text{GeV}$

Einige offene Fragestellungen

Ursprung der Massen?

- Im Standardmodell: Higgs—Mechanismus
 - → elementares Higgs-Boson, das an alle Teilchen proportional zu ihren Massen koppelt
 - → liefert keine Erklärung für Massenwerte und für Massenhierarchie

Warum drei Generationen?

- Im Standardmodell: keine Erklärung
- Weitergehende Modelle: z.B. Compositeness
 - → haben "elementare" Teilchen Substruktur?

Gibt es Supersymmetrie (SUSY)?

- Starke theoretische Argumente f
 ür Symmetrie zwischen Fermionen und Bosonen
 - → zu jedem Standardmodell-Teilchen gibt es einen SUSY-Partner
 - \rightarrow neue Teilchen mit Masse = einige 100 GeV/ c^2

Teilchenbeschleuniger

Teilchenquelle

Für e^+ , Antiproton, μ :

Initiale Teilchenreaktionen erforderlich

"Kühlung"

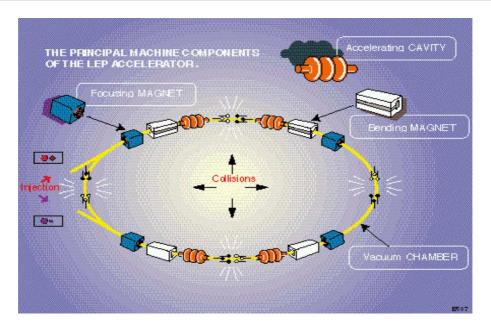
Teilchen müssen kollimiert und auf etwa gleiche Impulse gebracht werden

Vorbeschleunigung

Oft mehrstufiger Prozeß

Speicherring

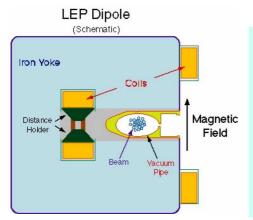
 $\downarrow \downarrow$


- Geschlossene Bahn durch
 Ablenkung in Magneten
- Beschleunigung in starken elektrischen
 Wechselfeldern
- Strahl kann über Stunden gespeichert werden.
- Gegenläufige Strahlen
 - → Kollider

Linearbeschleuniger

 $\downarrow \downarrow$

- Geradlinige Bahn
- Elektr. Wechselfelder
 (bis über 10⁷V/m)
- Jedes Teilchen durchläuft Beschleuniger nur einmal
- nur eine "Chance" zur Reaktion
- Zwei Linearbeschleuniger
 - → Kollider


Beispiel: der LEP-Speicherring

Kavitäten

- Resonante Wechselfelder
- Teilchen "reitet" auf
 Welle des elektrischen Feldes
- oft supraleitend

Dipol-Magnete

- Magnetfeld senkrecht zu Flugbahn
- oft supraleitend
- ullet Bahnradius: $R \propto rac{ ext{Impuls}}{ ext{Magnetfeld}}$

Quadrupol— und Sextupol—Magnete: Fokussierung

Grenzen heutiger Beschleuniger

Beschränkungen aufgrund von Kosten, Platz, Physik, Nutzen

e^{\pm} -Speicherringe:

Synchrotronstrahlung

Beschleunigte geladene Teilchen strahlen:

Abgestrahlte Leistung:
$$P_{\gamma} \propto \frac{1}{R^2} \left(\frac{E}{M_e}\right)^4$$

ightarrow begrenzt erreichbare Strahlenergie auf $\sim 100\,\mathrm{GeV}$

Linearbeschleuniger:

Maximale Feldstärken:

- ullet Supraleitende Kavitäten: Feld $\lesssim 5 \cdot 10^7 {
 m V/m}$
 - \rightarrow Grenze ~ 1000 GeV (entspricht ~ 30 km Länge)

Proton-Proton-Kollider:

Protonen sind keine elementaren Teilchen:

- $E_{\rm cms}$ der "elementaren Wechselwirkung" viel kleiner als pp-Schwerpunktsenergie (und unbekannt)
- Starke Wechselwirkung → hohe Rate an "uninteressanten" Untergrundprozessen

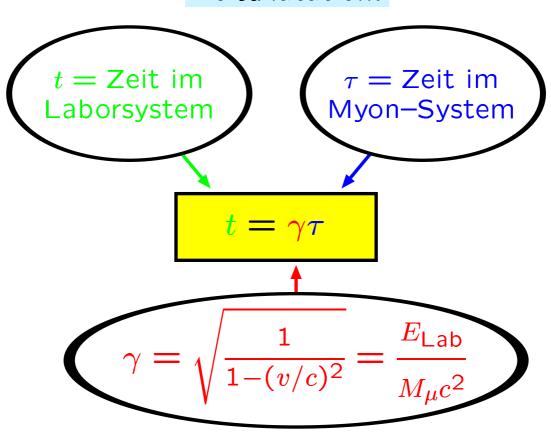
Gestatten, das Myon

Eigenschaften:

Masse =
$$M_{\mu}$$
 = 0.1057 GeV/ $c^2 \approx$ 207 M_e
Wechselwirkungen: (fast) genau wie e^{\pm}
Zerfall: $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$
Halbwertszeit = 1.5 · 10⁻⁶ s

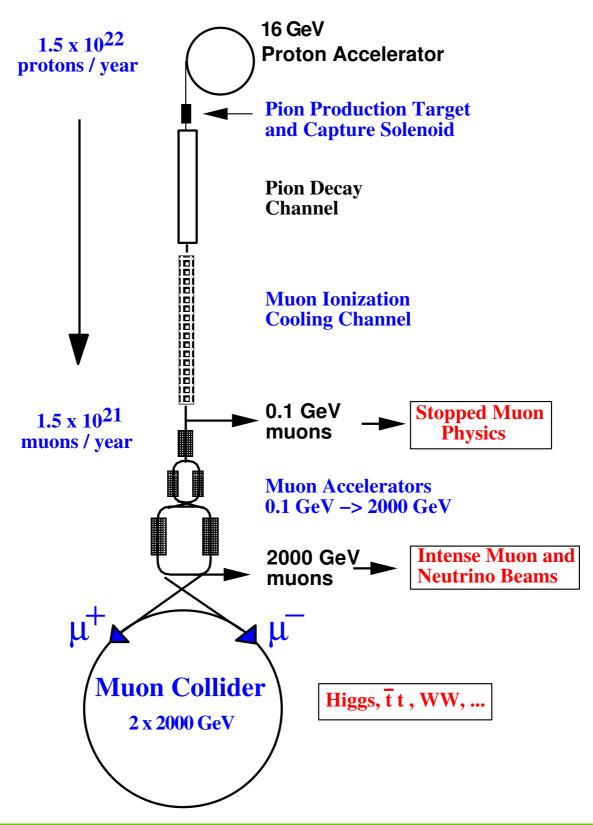
Erzeugung der Myonen:

Meson-Zerfälle (schwache Wechselwirkung):


$$\pi^{-}(\bar{u}d) \to \mu^{-}\bar{\nu}_{\mu}$$
 $\pi^{+}(u\bar{d}) \to \mu^{+}\nu_{\mu}$
 $K^{-}(\bar{u}s) \to \mu^{-}\bar{\nu}_{\mu}$ $K^{+}(u\bar{s}) \to \mu^{+}\nu_{\mu}$

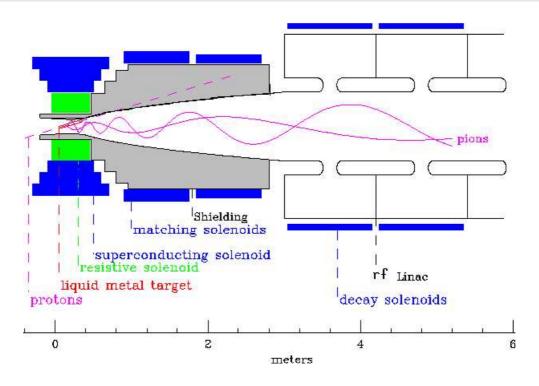
Myon-Beschleunigung:

- + Masse groß im Vergleich zu Elektron
 - → Energie-Abstrahlung vernachlässigbar
- + Nur elektroschwache Wechselwirkung
 - → hoher Anteil "interessanter" Reaktionen
- + Polarisierte Myon-Strahlen möglich
- Zerfall während Beschleunigung/Speicherung
 - → Begrenzung der Reaktionsraten
 - → Untergrund von Neutrinos und Elektronen
- Erzeugung nur in Teilchenreaktionen möglich


Relativität und Lebensdauer

Zeitdilatation:

- Beispiel: Myonen mit Energie 1 000 GeV
 - → haben im Laborsystem 0.014s Halbwertszeit
 - → legen in dieser Zeit ca. 4300 km zurück
- Ca. 80% aller Myonen "überleben" Beschleunigung von 0.1 GeV auf 1 000 GeV in Feld von 10⁷ V/m


Myon-Kollider

Von den Anfängen bis heute

Wann?	Wo? / Wer?	Was?
1969/70	G.I.Budker (Novosibirsk)	Erstes Konzept
1981–83	A.N.Skrinski, V.V.Parkhomchuk (Novosibirsk), D.Neuffer (Fermilab)	Technische Konzepte für Erzeugung, Kühlung, Beschleunigung
1983	D.Neuffer	Erste Überlegungen zu Nutzung der Neutrinos vom Myon–Zerfall
ab 1992	USA	Detaillierte Untersuchungen
1996	Snowmass Workshop	Machbarkeitsstudie
1997	USA	Gründung der Muon Collider Collaboration
ab 1998	CERN	Myon–Kollider als Zukunftsoption, regelmäßige Treffen

Myon-Erzeugung und -Einfang

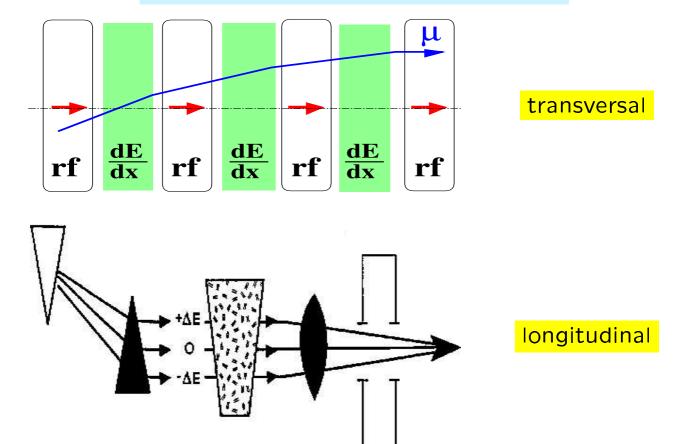
Primärer Proton-Strahl:

- $E_p = 16 \, \text{GeV}, \, 2.5 \cdot 10^{13} \, p/\text{Bunch}, \, 15 \, \text{Bunche}/s$
- Abwechselnd für μ^+ und μ^- Erzeugung

Target:

Muß ca. 400 kW Heizleistung abführen

Meson-Einfang:

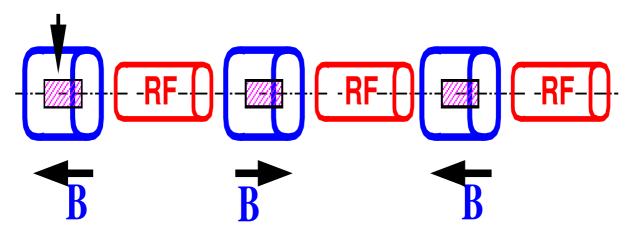

- In starkem Solenoid–Magnetfeld
- Linearbeschleuniger zur Impuls-Angleichung

$\Rightarrow \sim 0.3$ eingefangene Pionen/Myonen pro Proton

Strahl-Kühlung (I)

Aufgabe: Fokussierung der Myonen bei gleichzeitiger Reduktion der Impulsunterschiede (\Rightarrow Reduzierung des Phasenraumvolumens um Faktoren 10^5-10^6)

Prinzip der Ionisationskühlung:


Funktionsweise:

- Impulsverlust durch Ionisation
- Beschleunigung "erneuert" Longitudinalimpuls

Strahl-Kühlung (II)

Gesamtaufbau der Kühlstrecke:

Absorber

Ca. 20–30 Abschnitte mit Absorber + Beschleunigung

Lithium-Linsen:

- Zylinder flüssigen Lithiums
- von Starkstrom durchflossen (mehrere 100 000 Ampere)
- Fokussierung durch resultierende Magnetfelder
- finale Ionisationskühlung

Entwicklungsstand:

- Testaufbauten und Prototypen geplant
- Simulation bestätigt Funktionsprinzip

25 – 50% der Myonen überleben Kühlung

Beschleunigung

Beschleunigung in mehreren Schritten:

1. Schritt (nach Kühlung):

Linearbeschleuniger I, bis etwa 1 GeV

Nächste(r) Schritt(e):

Geschlossene Bahn, mehrfache

Wiedereinspeisung in Linearbeschleuniger II

- → verschiedene Ablenkradien für verschiedene Strahlenergien
- → vermeidet Zeitverlust in Synchrotron aufgrund von Magnetfeldanpassung
- → Beschleunigung auf etwa 50 GeV

Endbeschleunigung:

- "Schnelle" Synchrotrons
 - → Myon-Energie und Lebensdauer im Labor ausreichend für gepulste Magneten
 - → mehrere Beschleuniger-Ringe in einem Tunnel
 - \rightarrow Endenergien bis $\sim 2000 \text{ GeV}$

Myon-Speicherung

Speicherring:

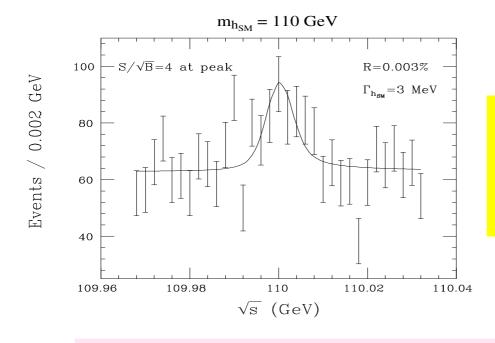
- Kaum Energieverlust durch Synchrotronstrahlung
- Hohe Magnetfelder (13 Tesla) \rightarrow 400 800 Umläufe

Energiekalibration:

- Myonen sind (schwach) longitudinal polarisiert
 - → Präzession im Magnetfeld
 - → Präzessionsfrequenz kann über Energiemessung der Zerfalls-Elektronen bestimmt werden
 - \rightarrow Energiekalibration mit Genauigkeit $\sim 10^{-6}$

Untergrundquellen und Probleme:

- Elektronen von Myon–Zerfall
 - → Induzieren direkten und sekundären Untergrund
- "Fehlgeleitete" Myonen
 - → Problem: Große Reichweite in Gestein
- Neutrinos von Myon–Zerfall
 - → Problem im Falle feldfreier Strecken im Myon-Ring
 - → gebündelter Neutrino-Strahl


Einsatz in der Teilchenphysik

"First Muon Collider" (FMC) $E_{\text{cms}} = 100 - 200 \, \text{GeV}$

Untersuchung des Higgs-Bosons (H)

$$\frac{\sigma(\mu^+\mu^-\to H)}{\sigma(e^+e^-\to H)} = \left(\frac{M_\mu}{M_e}\right)^2 \approx 43\,000$$

- Higgs-Boson ist als schmale Resonanz im $\mu^+\mu^-$ -Wirkungsquerschnitt sichtbar
- Annahme: Higgs-Masse von LEP/LHC/LC mit Genauigkeit $\Delta M_H pprox 0.1~{
 m GeV}/c^2$ bekannt

Abtasten von $E_{\sf cms}$ in Schritten von 0.02 GeV in etwa einem Jahr

Ziele:

- Genaues Vermessen der Higgs–Eigenschaften
- SUSY oder nicht?

Weitere Zukunftsoptionen

Hochintensive Myon-Quelle:

- Suche nach seltenen Myon–Zerfällen
- Suche nach Reaktionen $\mu + N \rightarrow e + N$

μ -Proton-Kollisionen:

- Denkbar: Kombination von Myon-Speicherring mit existierendem Proton-Beschleuniger
- ullet Tiefinelastische Streuung bei höchsten $E_{
 m cms}$

"Next Muon Collider" (NMC) $E_{\rm cms} = 2000 - 4000 \, {\rm GeV}$

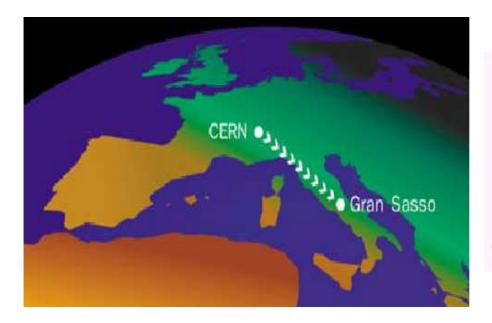
$\mu^+\mu^-$ -Kollisionen:

- Erforschung des vollen Spektrums von SUSY-Teilchen
- Suche nach dem Unerwarteten

"The discoveries for which future colliders ... will be remembered are probably not those which are anticipated"

(J.Ellis, E.Keil, G.Rolandi:

Options for Future Colliders at CERN)


Physik mit Neutrino-Strahlen

Neutrinos sind nicht nur störender Untergrund Myon-Kollider kann Neutrino-Strahl bisher unerreichter Intensität liefern.

Zusammensetzung und Energiespektrum sind genau bekannt.

Neutrino-Oszillationen:

• Kürzlich entdeckt: ν_e , ν_μ , $\nu_ au$ verwandeln sich ineinander \rightarrow Wahrscheinlichkeit \propto Weglänge

CERN: $(\overline{\nu})_e, (\overline{\nu})_\mu$

nach 730 km im Gran Sasso Laboratorium

Nachweis von $\overline{\nu}_{\tau}$ $\overline{\nu}_{\tau} + X \rightarrow \tau^{\pm} + X'$

- Eventuell Niederenergie-Myon-Speicherring speziell für ν -Strahlen
- ν -Strahlen von Myon-Kollider intensiv genug zur "Beleuchtung" von $10\,000\,\mathrm{km}$ entfernten Experimenten

Zusammenfassung und Ausblick

Teilchen-Reaktionen bei höchsten Energien erlauben neue Einsichten und Entdeckungen in der Teilchenphysik

Konventionelle Beschleuniger stoßen an technologische und physikalische Grenzen.
Beschleunigung instabiler Teilchen könnte diese Grenzen überwinden.

Erste Forschungs- und Entwicklungsarbeiten für einen Myon-Kollider sind im Gange.
Vorarbeiten über viele Jahre sind notwendig, um die technologische Machbarkeit zu testen.

Es ist denkbar, daß — nach den jetzt in Planung befindlichen Beschleunigern — ab etwa dem Jahr 2010 Myon–Kollider und deren sekundäre Neutrino–Strahlen zu wichtigen Instrumenten der Teilchenphysik werden.