Physikalisches Kolloquium, Universität Bayreuth

Neutrino Astronomy in the Deep Sea

Uli Katz Univ. Erlangen 21.11.2006

Introduction

- ANTARES and Other Current Projects
- Aiming at a km³ Detector in the Mediterranean Sea: The KM3NeT Design Study
- Conclusions and Outlook

The Mysterious Cosmic Rays

Particles impinging on Earth from outer space carry energies up to 10²¹ eV (the kinetic energy of a tennis ball at ~200km/h.)

 The acceleration mechanisms are unknown.

Cosmic rays carry a significant fraction of the energy of the universe – cosmologically relevant!

Neutrinos play a key role in studying the origin of cosmic rays.

2

Neutrino Production Mechanism

 Neutrinos are expected to be produced in the interaction of high energy nucleons with matter or radiation:

$$N + X \to \pi^{\pm}(K^{\pm}...) + Y \to \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + Y$$

Cosmic rays

$$e^{\pm} + \overline{V}_e(V_e) + \overline{V}_{\mu}(V_{\mu})$$

Simultaneously, gamma production takes place:

$$N + X \to \pi^0 + Y \to \gamma \gamma + Y$$

Cosmic ray acceleration yields neutrinos and gammas!

U. Katz: Neutrino Astronomy in the Deep Sea

Particle propagation in the Universe

Photons: absorbed on dust and radiation; Protons/nuclei: deviated by magnetic fields, reactions with radiation (CMB)

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

5

Why Neutrino Telescopes?

- Neutrinos traverse space without deflection or attenuation
 - they point back to their sources;
 - they allow for a view into dense environments;
 - they allow us to investigate the universe over cosmological distances.
- Neutrinos are produced in high-energy hadronic processes
 → distinction between electron and proton acceleration.
- Neutrinos could be produced in Dark Matter annihilation.
- Neutrino detection requires huge target masses \rightarrow use naturally abundant materials (water, ice).

Astro- and Particle Physics with ν Telescopes

Neutrino Oscillations: Direction, Energy, Flavor

μ Reconstruction

- The Cherenkov light is registered by the photomultipliers with nanosecond precision.
- From time and position of the hits the direction of the muon can be reconstructed to ~0.1°.
- Minimum requirement: 5 hits ... in reality rather 10 hits.
- Position calibration to ~10cm required (acoustic methods).

1.2 TeV muon traversing the detector.

Neutrino Interaction Signatures

- Neutrinos mainly from π-μ-e decays, roughly v_e: v_μ: v_τ = 1 : 2 : 0;
- Arrival at Earth after oscillations:
 ν_e : ν_μ : ν_τ ≈ 1 : 1 : 1;
- Key signature: muon tracks from ν_µ charged current reactions (few 100m to several km long);
- Electromagnetic/hadronic showers: "point sources" of Cherenkov light.

Muons: The Background from Above

Muons can penetrate several km of water if $E_{\mu} > 1 \text{TeV}$; Identification of cosmic v's from above: needs showers or very high energies. 10 sr¹) \mathbf{s}^{-1} atmospheric muons BAIKAL NT-36, prelim. $d\Phi/d\Omega \ (cm^{-2})$ BAIKAL Prototype 10 сm • DUMAND Prototype -10 10 ♦ NESTOR Prototype * Higashi -11

The Neutrino Telescope World Map

Sky Coverage of Neutrino Telescopes

Neutrinos from Astrophysical Point Sources

- Association of neutrinos to specific astrophysical objects.
- Energy spectrum, time structure, multi-messenger observations provide insight into physical processes inside source.
- Measurements profit from very good angular resolution of water Čerenkov telescopes.
 - km³ detectors needed to exploit the potential of neutrino astronomy.

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

High-energy γ sources in the Galactic Disk

Update June 2006:

- 6 γ sources could be/are associated with SNR, e.g. RX J1713.7-3946;
- 9 are pulsar windnebulae, typicallydisplaced from the pulsar;
- 2 binary systems (1 H.E.S.S. / 1 MAGIC);
- 6 have no known counterparts.

W. Hofmann, ICRC 2005

Galactic Longitude (°)

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

Neutrinos from Supernova Remnants

21.11.2006

Indirect Search for Dark Matter

- WIMPs can be gravitationally trapped in Earth, Sun or Galactic Center;
- Neutrino production by

 $\chi\chi \to \nu + X$

- Detection requires low energy threshold (O(100GeV) or less).
- Flux from Galactic Center may be enhanced due to supermassive Black Hole [see e.g. P. Gondolo and J. Silk, PRL 83(1999)1719].
- But: model uncertainties on v flux are orders of magnitude!

Diffuse v Flux: Models, Limits and Sensitivities

ANTARES Construction Milestones

ANTARES: Data from 2500m Depth (MILOM)

ANTARES: Coincidence rates from ⁴⁰K decays

ANTARES: First Detector line installed ...

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

... and connected by ROV Victor!

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

ANTARES: Time Calibration with LED Beacons

ANTARES: First Atmospheric Muons

ANTARES: The first muon with Line 1

NESTOR: Rigid Structures Forming Towers Plan: Tower(s) with12 floors Tower based detector \rightarrow 32 m diameter (titanium structures). \rightarrow 30 m between floors Dry connections (recover - connect - redeploy). \rightarrow 144 PMs per tower Up- and downward looking PMs (15"). 4000 m deep. Test floor (reduced size) deployed & operated in 2003. Deployment of 4 floors planned in 2007 MUUTU Ocean Bosnia & lerzegovina Monacc Bla Yugoslavia Italy Albania Spain Greece Tyrrhenian Turkey Cyprus NESTOR Algeria Leban 21.11.2006 U. Katz: Neutrino Astronomy in the Deep Sea 32

The NEMO Project

- Extensive site exploration (Capo Passero near Catania, depth 3500 m);
- R&D towards km³: architecture, mechanical structures, readout, electronics, cables ...;
- Simulation.

Example: Flexible tower

Ocean

Spain

Monaco

Algeria

- 16 arms per tower, 20 m arm length, arms 40 m apart;
- 64 PMs per tower;
- Underwater connections;
- Up- and downward-looking PMs.

Bosnia & lerzegovina

Albania

Yugoslavia

Greece

Mediterranean Sea

NEMO

Italy

Blo

Turkey

Cyprus

Leban

NEMO Phase I: Current Status

Aiming at a km³-Detector in the Mediterranean

HENAP Report to PaNAGIC, July 2002:

- "The observation of cosmic neutrinos above 100 GeV is of great scientific importance. ..."
- "... a km³-scale detector in the Northern hemisphere should be built to complement the IceCube detector being constructed at the South Pole."
- "The detector should be of km³-scale, the construction of which is considered technically feasible."

How to Design a km³ Deep-Sea v Telescope

Large volume with same number of PMs?

- PM distance:
- given by absorption length in water (~60 m) and PM properties
- Efficiency loss for larger spacing

Existing telescopes "times 30" ?

- Too expensive
- Too complicated (production, maintenance)
- Not scalable (readout bandwidth, power, ...)

R&D needed:

- Cost-effective solutions to reduce price/volume by factor ~2
- Stability
 goal: maintenance-free detector
- Fast installation time for construction & deployment less than detector life time
- Improved components

KM3NeT Design Study (FP6): The last years

Design Study for a Deep-Sea Facility in the Mediterranean for Neutrino Astronomy and Associated Sciences

- Initial initiative Sept. 2002.
- VLVvT Workshop, Amsterdam, Oct. 2003.
- ApPEC review, Nov. 2003.
- Inclusion of marine science/technology institutes (Jan. 2004).
- Proposal submitted to EU 04.03.2004.
- Confirmation that Design Study will be funded (Sept. 2004).
- KM3NeT on ESFRI list of Opportunities, March 2005.
- Ind VLVvT Workshop, Catania, 08-11.11.2005.
- ESFRI presentation, Brussels, Nov. 2005.
- Design Study contract signed, Jan. 2006 (9 M€ from EU, ~20 M€ overall).
- Start of Design Study project, 01.02.2006.
- Kick-off meeting, Erlangen, April 2006.

And: Essential progress of ANTARES, NEMO and NESTOR in this period!

KM3NeT Design Study: Participants

Cyprus:	Univ. Cyprus
France:	CEA/Saclay, CNRS/IN2P3 (CPP Marseille, IreS Strasbourg, APC Paris-7), Univ. Mulhouse/GRPHE, IFREMER
Germany:	Univ. Erlangen, Univ. Kiel
Greece:	HCMR, Hellenic Open Univ., NCSR Demokritos, NOA/Nestor, Univ. Athens
Ireland:	Dublin Institute of Advanced Studies (since 1.Nov.2006)
Italy:	CNR/ISMAR, INFN (Univs. Bari, Bologna, Catania, Genova, Napoli, Pisa, Roma-1, LNS Catania, LNF Frascati), INGV, Tecnomare SpA
Netherlands:	NIKHEF/FOM (incl. Univ. Amsterdam, Univ. Utrecht, KVI Groningen)
Spain:	IFIC/CSIC Valencia, Univ. Valencia, UP Valencia
• <u>UK</u> :	Univ. Aberdeen, Univ. Leeds, Univ. Liverpool, Univ. Sheffield
Particle/Astroparticle institutes (29+1) – Sea science/technology institutes (7) – Coordinator	
21.11.2006	U. Katz: Neutrino Astronomy in the Deep Sea 41

The KM3NeT Vision

KM3NeT will be a multidisciplinary research infrastructure:

- Data will be publicly available;
- Implementation of specific online filter algorithms will yield particular sensitivity in predefined directions
 → non-KM3NeT members can apply for observation time;
- Data will be buffered to respond to GRB alerts etc.
- Deep-sea access for marine sciences.
- KM3NeT will be a pan-European project
 - 8+1 European countries involved in Design Study;
 - Substantial funding already now from national agencies.
- KM3NeT will be constructed in time to take data concurrently with IceCube.
- KM3NeT will be extendable.

Target price tag: 200 M€/km³ or less

Some Key Questions

Which architecture to use? (strings vs. towers vs. new design) All these questions are highly interconnected !

- How to get the data to shore? (optical vs. electric, electronics off-shore or on-shore)
- How to calibrate the detector? (separate calibration and detection units?)
- Design of photo-detection units? (large vs. several small PMs, directionality, ...)
- Deployment technology? (dry vs. wet by ROV/AUV vs. wet from surface)
- And finally: The site question

Sea Operations

150 m

3 900 m

21.11.2006

- Rigid towers or flexible strings?
- Connection in air (no ROVs) or wet mateable connectors?
- Deployment from platform or boat?

Photo Detection: Requirements

21.11.2006

Photo Detection: Options

- Large photocathode area with arrays of small PMs packed into pressure housings - low cost!
- Determination of photon direction, e.g. via multi-anodic PMs plus a matrix of Winston cones.
- But: phase space for developments from scratch is too tight.

U. Katz: Neutrino Astronomy in the Deep Sea

KM3NeT: Path to Completion

Time schedule (partly speculative & optimistic):

01.02.2006 Mid-2007 February 2009 2009-2010 2010-2012 2011-20xx

Start of Design Study

Conceptual Design Report

Technical Design Report

Preparation Phase (possibly in FP7)

Construction

Data taking

Call for Preparatory Studies will be restricted to ESFRI projects, expected January 2007

- Compelling scientific arguments for neutrino astronomy and the construction of large neutrino telescopes.
- The Mediterranean-Sea neutrino telescope projects ANTARES, NESTOR and NEMO are under construction / taking data and promise exciting results.
- It is essential to complement IceCube with a km³-scale detector in the Northern Hemisphere.
 - An EU-funded Design Study (KM3NeT) provides substantial resources for an intense 3-year R&D phase (2006-09).
 - Major objective: Technical Design Report by early 2009.