Physikalisches Kolloquium, ISKP Bonn

Acoustic Neutrino Detection – Status and Perspectives

Introduction

Uli Katz Univ. Erlangen 30.11.2006

- Current experimental activities
- Acoustic R&D in Erlangen and ANTARES
- Conclusions and Outlook

The Mysterious Cosmic Rays

Particles impinging on Earth from outer space carry energies up to 10²¹ eV (the kinetic energy of a

tennis ball at ~200km/h.)

 The acceleration mechanisms are unknown.

Cosmic rays carry a significant fraction of the energy of the universe – cosmologically relevant!

Neutrinos play a key role in studying the origin of cosmic rays.

2

Neutrino Production Mechanism

 Neutrinos are expected to be produced in the interaction of high energy nucleons with matter or radiation:

$$N + X \to \pi^{\pm}(K^{\pm}...) + Y \to \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + Y$$

Cosmic rays

$$e^{\pm} + \overline{V}_e(V_e) + \overline{V}_{\mu}(V_{\mu})$$

Simultaneously, gamma production takes place:

$$N + X \to \pi^0 + Y \to \gamma \gamma \to Y$$

Neutrinos and gammas are the messengers of cosmic ray acceleration ... but only neutrinos are unanimous

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

р p, γ, ... $\mu \nu_{\mu}$ $e v_e v_l$

3

Particle propagation in the Universe

Photons: absorbed on dust and radiation; Protons/nuclei: deviated by magnetic fields, reactions with radiation (CMB)

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

Astro- and Particle Physics with v Telescopes Neutrino Oscilistions: High-energy limit: **Direction, Energy, Flavor** Acoustic detection: Dark matter search (WIMPs): might be a viable Low-energy limit: **Direction, Energy** option to study short muon range neutrino fluxes at Astrophysical point sources: small number of $E > 10^{18} eV$ Direction, (Energy), Time photons detected background light Diffuse coamic neutrino flux: from K40 decays (Direction), Energy GeV TeV Pev Eav E, ... and also: GZK neutrinos Z burete magnetic monopoles topological defecta top-down acenarice **aupernova detection** 21.11.2006 U. Katz: Neutrino Astronomy in the Deep Sea 6

Diffuse v Flux: Models, Limits and Sensitivities

The thermo-acoustic model

- Particle reaction in medium (water, ice, ...) causes energy deposition by electromagnetic/hadronic showers.
- Energy deposition is fast compared to (shower size)/c_s and dissipative processes \rightarrow instantaneous heating
- Thermal expansion and subsequent rarefaction causes bipolar pressure wave with pressure

Piezo-Based Acoustic Sensors

Piezo elements

Commercial hydrophones (for water):

- Principle: electro-mechanical coupling in Piezo materials;
- Can be used for receiving and for transmitting signals
- Custom-designed sensors (Piezo + amplifier): cheap and sensitive

piezos

Experimental Activities in Different Media

Sea water

- Homogeneous;
- Rather well-understood environment;
- Substantial acoustic background;
- Signal amplitude expected to be smaller than in ice or salt.

Current activities:

- SAUND (Caribbean Sea)
- ACORvE/RONA (Scotland)
- Mediterranean Sea:
 - NEMO/OvDE
 - ANTARES: Erlangen, ...
 - Kamchatka, Lake Baikal, ..

Antarctic Ice

- ☺ Low acoustic background (?);
- Signal amplitude expected to be larger than in water;
- Inhomogeneous;
- 🙁 Not well studied.

Current activities:

IceCube/SPATS

Salt domes

"Easily" accessible;
 Not well (not at all?) studied.

Current activities:

R&D and site exploration

Acoustic Plans in the IceCube Framework

SPATS = South Pole Acoustic Test Setup

SPATS Acoustic Stages

SPATS Acoustic Sensors

Taken from S. Böser, ARENA06

Sensor module

Piezo ceramics

individually calibrated

Three-stage amplifier board

- low noise
- differential output

Mechanical contact

- Preload screw
 - ➔ signals get larger
 - at low temperature
 - at higher pressure

Sensor module

- three channels
- voltage conversion board 36-13VDC → ±5VDC

SAUND-I: Using a Military Array

Taken from J. Vandenbroucke, **ARENA05**

SAUND-1: A First Neutrino Flux Limit

RONA Hydrophone Array / ACoRvE

- Currently 8 wide-band hydrophones available (read out @ 140kHz);
- Collected 2.8TByte of unfiltered data
- ACoRvE: Acoustic Cosmic Ray Neutrino Experiment
 - Data analysis
 - Simulation
 - Reconstruction
 - Sensitivity predictions

NEMO (Phase 1): Current Status

The OvDE Setup

Installed on NEMO TSS (Test Site South) frame.

Equipped with 4 hydrophones, acoustic signal digitization (24bit@96 kHz) at 2000m depth. On-line monitoring and data recording on shore.

Continuous data taking since Jan 23, 2005.

OvDE Hydrophones and Electronics

Acoustic Activities in Erlangen Since 2002: Tests of the thermo-acoustic model; Studies of Piezo-based acoustic sensors; Design/production of deep-sea hydrophones; First in-situ measurement at the ANTARES site;

- Preparation of the integration of acoustic sensors into the ANTARES detector;
- Simulation and sensitivity studies.

A Beam Test with Protons ...

- Feb. 2004 at Theodor Svedberg Laboratory, Uppsala;
- 177 MeV protons, pulse duration 30ms, energy 10 – 400 PeV;
- Penetration depth in water: 22cm;

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

... and a Beam Test with an Infrared Laser

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

Simulation of expected results

Procedure:

Geometry of energy deposition (GEANT, laser beam parameters);

- Assume instantaneous energy deposit and corresponding water expansion;
- Calculate sonic field by numeric solution of wave equation.

Comparison of data and simulation

Going into Details of Piezo Elements

- Equation of motion of Piezo element is complicated (coupled partial differential equations (PDE) of an anisotropic material):
 - Hooks law + electrical coupling
 - Gauss law + mechanical coupling
 - Finite Element Method chosen to solve these PDE.

Checking with Measurements

U. Katz: Neutrino Astronomy in the Deep Sea

31

Aim: Acoustic Sensors

- Basic Design of Sensors for the ANTARES acoustics
 - Sensor = Piezo element (disc and/or tube) + pre-amplifier
 - either encapsulated in polyurethane \rightarrow "hydrophone"
 - or coupled to ANTARES glass sphere \rightarrow "acoustic module" (AM)

Electro-Mechanical Equivalent Circuit

- Analogy between enforced mechanical and electrical oscillation
 - ⇒ mechanical properties of Piezo can be expressed by equivalent electrical properties:

Lab Equipment for Acoustic R&D Work

Water tank: 3m x 2m x 2m

Smaller tanks, DAQ, electronics lab

21.11.2006

U. Katz: Neutrino Astronomy in the Deep Sea

Piezo Calibration – Examples

Using exact prediction of acoustic pulses from Piezo transducers

AMADEUS-0: 1st Acoustic Measurements in situ

21.11.2006

acoustic sensors

AMADEUS-0 = Autonomous Module for Acoustic Detection Under the Sea

- Deployed with ANTARES test line (Line-0);
- Data taking March/May 2005, 12 GByte of data;
- Strategy: Write data to CF card (silent), if card full, stop data taking and dump to hard disk;
- Battery power sufficient for ~75 hours;
- Goals: Test sensors and DAQ chain, assess deep-sea acoustic background.

AMADEUS-0: A Spectrogram

AMADEUS-0: Acoustic Power Spectrum

Next Step: Correlated backgrounds

General background contributions:

- inherent noise of sensor/electronics
- thermal noise of water
- noise from sea surface, anthropogenic sources, etc.
- point sources....

•From individual hydrophones: single bipolar pulse (BIP) rate

•Most important for a future acoustic detector: Point sources of bipolar signals!

•Can only be determined from measurements with several hydrophones main objective: determine correlated BIP rate

 $d^{3}N$

dPdVdt

Acoustic ADC Board and More

AMADEUS: Performance

- 3 (+3) storeys with 18 (36) sensors at 3 length scales (1m, 10m, 100m)
- dynamic range
 ¹/₄ 3mPa 10Pa (RMS)
- read-out sensors continuously and synchronously at ~ 200 kSPS
- data rate 10 (20) MBPS
- flexible design (sensors, gain, filter)

Sensitivity of a Future Acoustic Detector

- Full simulation chain, simplified reconstruction assumptions;
- Assumed:
 - 30 x 50 x 1 km³ instrumented volume;
 - 200 sensor modules / km³
 - threshold 5 mPa;
 - 3x10⁵ channels @ 100 kHz

Conclusions and Outlook

- Acoustic detection of ultra-high energy neutrinos is a promising option; many experimental feasibility and R&D activities are under way.
- Various media are studied: Water, ice, salt, …
- Extensive R&D program in Erlangen directed towards deep-sea acoustic detection.
- First data available, extensive long-term studies in the context of the ANTARES experiment in preparation.
- Next steps to be taken when the results of these studies are available.