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Abstract

The observation of high-energy extraterrestrial neutrinos is one of the most promising future options to
increase our knowledge on non-thermal processes in the universe. Neutrinos are e.g. unavoidably produced
in environments where high-energy hadrons collide; in particular this almost certainly must be true in the
astrophysical accelerators of cosmic rays, which thus could be identified unambiguously by sky observa-
tions in “neutrino light”. On the one hand, neutrinos are ideal messengers for astrophysical observations
since they are not deflected by electromagnetic fields and interact so weakly that they are able to escape
even from very dense production regions and traverse large distances in the universe without attenuation.
On the other hand, their weak interaction poses a significant problem for detecting neutrinos. Huge target
masses up to gigatons must be employed, requiring to instrument natural abundances of media such as sea
water or antarctic ice. The first generation of such neutrino telescopes is taking data or will do so in the
near future, while the second-generation projects with cubic-kilometre size is under construction or being
prepared. This report focuses on status and prospects of current (ANTARES, NEMO, NESTOR) and future
(KM3NeT) neutrino telescope projects in the Mediterranean Sea.

1 Current neutrino telescope projects in the Mediterranean Sea

World-wide, two neutrino telescopes (AMANDA at the South Pole [1, 2] and one in Lake Baikal [3]) are taking
data, two are under construction in the Mediterranean Sea (ANTARES [4, 5], NESTOR [6, 7]), and the cubic-
kilometre telescope IceCube [8] is being installed at the South Pole. Preparatory work for a corresponding
installation in the Mediterranean Sea is being performed in the R&D project NEMO [9]; from early 2006
on, all groups involved in the current Mediterranean projects will join into a 3-year EU-funded Design Study
towards the future km>-scale neutrino telescope in the Northern hemisphere (KM3NeT) [10].

1.1 Detection principle

Interactions of neutrinos with target material in the neutrino detector or its vicinity produce charged secondary
particles with velocities exceeding the speed of light in water or ice, which therefore radiate Cerenkov light.
This light is detected by an array of photomultipliers placed deep below the surface. The range of neutrino
energies for which neutrino telescopes are sensitive is limited by this detection method to some 10GeV at
its lower end, while at energies beyond roughly 10'7 eV the neutrino flux is expected to fade below detection
thresholds even for future giant detectors.

From the photomultiplier positions, the arrival time of the light (measured to nanosecond precision) and
the signal amplitudes, the direction and energy of the incoming neutrino are reconstructed. The achievable



resolutions depend on the reaction type: Charged-current reactions of muon neutrinos!, vuN — uX, produce
high-energy muons with a range of up to several kilometres in water or ice; the detection of these muons
allows for a precise reconstruction of the neutrino direction? (resolution in water better than 0.3° for neutrino
energies E, 2 10TeV) and an estimate of the neutrino energy accurate to within a factor of 2 for E, = 1 TeV.
Due to the good angular resolution and the increased sensitivity resulting from the large muon range, neutrino
telescopes are predominantly optimised for this reaction type. On the other hand, charged-current reactions
of electron or tau neutrinos, v, :N — (e, 7)X, and neutral-current reactions, V,N — V,X, produce hadronic
and/or electromagnetic particle cascades (showers) which act as localised sources of intense Cerenkov light.
Such reactions occurring inside the instrumented volume allow for a rather precise measurement of the shower
energy, with an angular resolution degraded to several degrees in water, and even worse in ice.

In order to shield the experiments against background daylight and muons originating from cosmic ray
interactions in the upward-hemisphere atmosphere (atmospheric muons), they are located in a depth of several
kilometres. Yet, for most of the abovementioned energy range the atmospheric muon background is prohibitive
for observing neutrinos arriving from above. Therefore, the field of view of neutrino telescopes is the down-
ward hemisphere; observing the Southern sky including the Galactic Centre hence requires an experiment in
the Earth’s Northern hemisphere. A comparison of the fields of view from the South Pole and the Mediter-
ranean Sea is shown in Fig. 1. At highest energies beyond roughly 10! eV the atmospheric muon flux fades
away and the view opens to the upper hemisphere; at the same time, the downward view becomes obscured by
the fact that, due to the increase of the neutrino cross section with energy, the Earth becomes opaque even for
neutrinos.

Figure 1. Field of view of a neutrino
telescope at the South Pole (left) and in
the Mediterranean (right), given in
galactic coordinates. A 2r-downward
sensitivity is assumed; the gray regions
are then invisible. Indicated are the

Galactic positions of some candidate neutrino
Center -

sources.

1.2 General conditions in sea water

The major challenges in constructing deep-sea neutrino telescopes are the high pressure of several 100bar; the

uncontrollable environment with currents, sedimentation and background light from “k decays and biolumi-
nescent organisms; the chemically aggressive environment reducing the selection of suited materials basically
to titanium, glass and certain plastics. A further aspect of this difficult environment is that the deployment and
maintenance operations, employing surface vessels and manned or remotely-operated deep-see submersibles,
are expensive and weather-dependent, thus maximising the need for high operation stability.

In addition to requirements implied by pressure and material choices, the parameters that affect the detector
design most strongly are the water transparency and the background light. In the Mediterranean deep-sea envi-
ronment, the absorption length of blue light is close to 60 m, implying distances of detection units of this order
or less. The light scattering length exceeds 200m, resulting in a very good angular resolution, by far superior

to the one achievable in polar ice where scattering is much stronger. The presence of YK causes a steady
background of single-photon signals, amounting to about 30—40kHz per 10-inch photomultiplier; biolumi-
nescence light causes additional steady and burst-like background components. This situation requires a high
data transmission bandwidth as well as stringent coincidence triggers exploiting the good timing resolution.

'In the following, the term neutrino is generically used to denote both neutrinos and antineutrinos
ZWhen referring to angular resolution in the following, this event type is assumed.

2



1.3 ANTARES

The ANTARES neutrino telescope [4] is currently under construction off the French Mediterranean coast near
Toulon. It will be situated in 2500m depth and will consist of 12 lines (“strings”) that are anchored to the sea
bed at distances of about 70 m from each other and kept vertical by buoys (see Fig. 2). Each string is equipped
with 75 optical modules (OMs) [11] arranged in triplets (storeys) sustained by titanium frames that also support
water-tight titanium containers for the electronic components. The OMs are glass spheres housing one 10-inch
photomultiplier each, directed at an angle of 45° towards the sea bed. The storeys are spaced at a vertical
distance of 14.5m and are interconnected with an electro-optical-mechanical cable supplying the electrical
power and the control signals and transferring the data to the string bottom. Submersible-deployed electro-
optical link cables connect the strings to the junction box (JB), which acts as a fan-out between the main electro-
optical cable to shore and the strings. Each string carries optical beacons for timing calibration and acoustic
transponders used for position measurements. The detector will be complemented by an instrumentation line
supporting devices for measurements of environmental parameters as well as tools used by other scientific
communities, such as e.g. a seismometer.

Figure 2. An artist’s view of the ANTARES
detector (left, not to scale) and a schematic
view of a storey (right) with the three glass
spheres for the photomultipliers, an optical
beacon for time calibration (blue) and a
hydrophone for position measurement
(below front sphere).

The main electro-optical cable and the junction box are installed and operational since 2002. Two prototype
strings, one with 5 optical storeys and one with auxiliary instrumentation, were deployed, connected and
operated in 2003. Based on the results of these prototypes, the design was finalised and scrutinised using
two further test strings deployed in 2005. The full functionality of the detector has been verified to design
specifications. Currently, the first full detector line is awaiting deployment; the detector installation is expected
to be completed by 2007.

For a detailed summary of the results of the ANTARES test deployments see [12].

1.4 NESTOR

The site selected for the NESTOR neutrino telescope is off Pylos at the West coast of the Peloponnese, at a
depth of 3800m. The NESTOR design is based on rigid, hexagonal star-like structures (floors) with a diameter
of 32m, carrying 6 pairs of upward- and downward-looking photomultipliers each as well as a titanium sphere
for the readout electronics in the centre (see Fig. 3). 12 floors will be connected vertically at a distance of
30m to form a fower. The deployment operations are performed by lifting the existing structure to the surface,
connecting the new module(s) and redeploying the extended set-up, thus avoiding the use of submersibles.

In 2003, a single floor of reduced size has been deployed, connected to the cable to shore and operated for
more than a month [13]. In this time, more than 2 million 4- or higher-fold coincidence triggers have been
collected [14]. These data allowed the NESTOR collaboration to reconstruct the angular distribution of the
atmospheric muons and to compare the result to simulations and previous measurements. The good agreement
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Figure 4. Zenith angle distribution of atmospheric
muons measured by NESTOR during the test
deployment (triangles), compared to the result of

S a simulation (filled circles). The insert shows the
Figure 3. Reduced-size NESTOR floor during preparation for same data with a linear vertical scale. The figure
deployment. has been taken from [13].

found (cf. Fig. 4) confirms that the functionality of the detector complies with the specifications and that a
detailed level of detector understanding has been reached.

1.5 NEMO

In the framework of the Italian R&D project NEMO, a candidate site for a future
km?>-scale detector has been identified at a depth of 3340m off the East coast of
Sicily near Capo Passero, and new solutions for various detector components have
been developed. Amongst these is a new design of a mechanical structure, consisting
of 20 m-long rigid arms connected to each other by ropes and kept vertical by a buoy.
The ropes form a tetrahedral structure, sustaining successive arms orthogonally to
each other at a distance of 40m (see Fig. 5). Each arm carries 2 pairs of upward- and
downward-looking photomultipliers. One advantage of this flexible tower structure
is that a tower can be deployed folded into a compact structure which unfurls when
released after reaching the sea bottom. A further NEMO development is a composite
junction box, consisting of an inner, pressure-resistant steel vessel embedded in an
oil-filled plastic tank, thus separating the resistance against pressure and salt water.

For assessing the newly developed components, a test site at a depth of 2000m il ]
has been identified and connected to the shore station by an electro-optical cable. Figure 5. Schematic view
Within the forthcoming year, it is foreseen to deploy and connect to this cable a ©f a flexible NEMO
junction box and a prototype of a flexible tower. tower.

2 Towards a km? neutrino telescope in the Mediterranean Sea

Already in 2002 the High Energy Neutrino Astronomy Panel (HENAP) of the PANAGIC? Committee of
TUPAP* has concluded that “a km3-scale detector in the Northern hemisphere should be built to complement

3Particle and Nuclear Astrophysics and Gravitation International Committee
“International Union of Pure and Applied Physics



the IceCube detector being constructed at the South Pole” [15]; one major argument in favour of this effort is
the coverage of the Southern sky including the central part of the Galactic plane (cf. Fig. 1 and Sect. 3). This has
triggered a joint activity of the groups involved in the Mediterranean neutrino telescopes towards establishing
a common future project. The EU-funded KM3NeT Design Study (see below) has been approved to prepare
this project. Concurrently, the European Strategy Forum for Research Infrastructures (ESFRI) has included
the KM3NeT neutrino telescope in its List of Opportunities [16], thus assigning high priority to this project.

2.1 The KM3NeT Design Study

Even though making use of the experience and expertise gained in the current projects, a major R&D program
has to be executed to arrive at a cost-effective design for a km3-scale deep-sea neutrino telescope, optimised
for scientific sensitivity, fast and secure production and installation, stable operation and maintainability. The
KM3NeT Design Study [10] will address these issues in a 3-year program, with a 20 M€ budget, of which
9 M€ are provided by the EU. Participants are 29 particle/astroparticle and 7 sea science/technology institutes
from altogether 8 European countries, coordinated by the University of Erlangen.

Amongst the major issues to be studied and decided upon are the mechanical structures, the choice of
the photo-sensors, the readout, data acquisition and online filter methods, the deep-sea infrastructure and
deployment techniques; for all of these, detailed simulation work will be necessary.

The main deliverable of the Design Study is a Technical Design Report (TDR), laying the foundation for
funding negotiations and concrete project preparation. The vision of the proponents is that KM3NeT will be
a pan-European research infrastructure, giving open access to the neutrino telescope data, allowing to assign
“observation time” to external users by adapting the online filter algorithms to be particularly sensitive in
predefined directions, and also providing access to long-term deep-sea measurements for the marine science
communities.

2.2 Timelines towards realisation

The KM3NeT Design Study will last until January 2009. Thereafter, a phase of funding negotiations and
construction preparation has to be foreseen, lasting 1-2 years. This phase might be supported within the
European FP7 program. If the decision to realise the KM3NeT infrastructure is taken in this phase, installation
could start as early as 2010 and be concluded in 2012. First data would thus become available in 2011,
concurrently with data from the IceCube telescope which will be ready by then.

3 Physics with neutrino telescopes

After the above summary of the status and developments of the Mediterranean neutrino telescopes, we will
now highlight some of the physics issues related to the interpretation of their data.

The lower part of the energy range defined in Sect. 1.1 is dominated by the flux of atmospheric neutrinos
(cf. Fig. 7), produced in reactions of cosmic rays with the Earth’s atmosphere. The atmospheric neutrinos es-
tablish a highly useful calibration source for the detectors, but at the same time form an irreducible background
in searching for extraterrestrial neutrinos.

There are three basic search strategies to fight this background:

1. Neutrinos from specific astrophysical objects (called point sources) produce excess signals associated to
particular celestial coordinates and can thus be identified on a statistical basis.

2. Cosmic neutrinos are in general expected to have a much harder energy spectrum than the atmospheric
neutrinos. Neutrinos not associated to specific point sources (diffuse flux) can thus be identified, again
on a statistical basis, by analysing the energy distribution of registered neutrino events.
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3. Exploiting coincidences in time and/or direction of neutrino events with observations by telescopes (e.g.
in the radio, visible, X-ray or gamma regimes) and possibly also by cosmic ray detectors can be used to
optimise search strategies and to increase drastically the significance of observations of transient sources
(multimessenger method).

The various astro- and particle physics questions to be addressed with the resulting data have been sum-
marised e.g. in [17] and references therein. Here, we will focus on a few central topics and a recent develop-
ment:

1. Neutrinos from galactic shell-type supernova remnants:

The shock waves developing when supernovae ejecta hit the interstellar medium are prime candidates for
hadron acceleration through the Fermi mechanism. Recent observations of gamma rays up to energies
of about 40TeV from two shell-type supernova remnants in the Galactic plane (RX J1713.7-3946 and
RX J0852.0-4622) [18, 19] with the H.E.S.S. Cerenkov telescope support this hypothesis and disfavour
explanations of the gamma flux by purely electromagnetic processes. The detection of neutrinos from
these sources would, for the first time, identify unambiguously specific cosmic accelerators. Note that
this is only possible with Northern-hemisphere neutrino telescopes which, in contrast to the South Pole
detectors, cover the relevant part of the Galactic plane in their field of view (cf. Sect. 1.1).

The expected event rates can be estimated using the rough assumption that the muon neutrino and gamma
fluxes are in relation @y, /¢y = 1/2, taking into account the relative production probabilities of charged
and neutral pions, their decay chains and neutrino oscillations. Preliminary calculations indicate that the
first-generation Mediterranean neutrino telescopes may have a chance to observe a few events, whereas
a significantly larger signal is expected in a future cubic-kilometre set-up; a tentative estimate of the
neutrino sky map of RX J0852.0-4622 after 5 years of data taking with KM3NeT is shown in Fig. 6.

RX J0852.0-4622, KM3NeT 5 years
2

correlated skymap 5

s ' Figure 6. A skymap of the simulated neutrino signal from
' RX J0852.0-4622 as seen by a km?3-scale neutrino
telescope in the Mediterranean Sea after 5 years of data
-0.5

taking. The assumption ¢y, /¢y = 1/2 has been used for the
simulation. The background of atmospheric neutrinos, not
included in the plot, amounts to a few events and can be

vert. extention [deg.]

1.5 { 23 events efficiently eliminated by adjusting the lower energy cut
? " v, flux =y flux/2 without affecting significantly the signal. The circle in the
05 1 15 2 lower left corner indicates the average angular resolution

horiz. extention [deg.] (point spread function).

2. The diffuse neutrino flux
The sensitivity of current and future experiments is compared to various predictions of diffuse neutrino
fluxes in Fig. 7 (following [20, 21]). Whereas some of the models are already now severely constrained
by the data, others require km3-size neutrino telescopes for experimental assessment and potential dis-
coveries. The measurement of the diffuse neutrino flux would allow for important clues on the properties
of the sources, on their cosmic distribution, and on more exotic scenarios such as neutrinos from decays
of topological defects or superheavy particles (top-down scenarios).
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Figure 7. Experimental sensitivity to the diffuse neutrino flux for various current and future experiments (red
lines), compared to different models for contributions to the diffuse flux (numbered lines). See [21] for detailed
explanations. The flux of atmospheric neutrinos is indicated as blue band. Plot provided by courtesy of C. Spiering.

3. Search for dark matter annihilation:

The major part of the matter content of the universe is nowadays thought to be formed by dark mat-
ter, i.e. non-baryonic, weakly interacting massive particles (WIMPs); an attractive WIMP candidate
is the lightest supersymmetric particle, the neutralino. Complementary to direct searches for WIMPs
in cryogenic underground detectors, indirect WIMP observations could also be possible by measuring
neutrinos produced in WIMP annihilation reactions in regions where the WIMP density is enhanced.
Such accumulations may in particular occur due to gravitational trapping, e.g. in the Sun or the Galactic
Centre.

The WIMP signal would be an enhanced neutrino flux from these directions, with a characteristic upper
cut-off in the energy spectrum below the WIMP mass, Mwnvp. Although there is no generic upper
constraint on the Mwwvp, supersymmetric theories prefer values below 1 TeV. It is therefore essential for
indirect WIMP searches through neutrinos to extend the detection threshold down to order 100GeV. The
expected sensitivity depends strongly on assumptions on the WIMP density profile, on Mwnvp and on
the energy spectrum of neutrinos from WIMP annihilations. At least for some supersymmetric scenarios
this sensitivity is compatible or even better than for direct searches [17].

4 Conclusions

Neutrino astronomy is an emerging field in astroparticle physics offering exciting prospects for gaining new
insights into the high-energy, non-thermal processes in our universe. The current neutrino telescope projects
in the Mediterranean Sea are approaching installation and promise exciting first data. They have reached
a level of technical maturity allowing for the preparation of the next-generation cubic-kilometre detector to
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complement the IceCube telescope currently being installed at the South Pole. The interest in this project
has been further enhanced by the recent H.E.S.S. observations of high-energy gamma rays from shell-type
supernova remnants in the Galactic plane, indicating that these objects could well be intense neutrino sources,
which would, however, be invisible to IceCube.

The technical design of the future Mediterranean km? neutrino telescope will be worked out in the 3-year
EU-funded KM3NeT Design Study starting in February 2006. The construction of the KM3NeT neutrino
telescope during the first years of the next decade thus appears to be possible.
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