Towards a Cubic Kilometer Neutrino Telescope in the Mediterranean

Physics Motivation

 ν Telescopes in Sea Water

Current Activities and Plans

km³ Detector: Objectives and R&D

Conclusions

Particle and Astrophysics with Neutrino Telescopes

Taylorda a luca 3

Neutrino Fluxes and Event Numbers

A Northern-Hemisphere km 3 ν Telescope

The physics case:

- Complement sky coverage of IceCube.
- Observe galactic center.
- Increased point source sensitivity.

Some links between physics requirements and design considerations:

The requirements:

- Sufficient volume to measure cosmic neutrino fluxes: 1 km³ or 10 km³? Extendable!
- Sensitivity to ν_e , ν_τ and to ν from upper hemisphere.
- R&D and construction within 8-10 years.

Important for point sources.
Threshold and sensitivity depend on detector design (e.g. photo sensor spacing).

The Neutrino Telescope World Map

Past, Presence and Future of ν Telescopes

Lake Baikal

demonstrated feasibility of water Čerenkov ν telescope.

- + no potassium;
 - + surface ice: access, calibration;
 - water transparency, bioluminescence;
 - depth $\lesssim 1400$ m.

• DUMAND:

pioneering work, stopped 1995.

• ANTARES, NESTOR:

first data from prototype installations.

• NEMO:

R&D towards a km³ ν telescope.

- + optical water properties;
 - + sufficient depth (\rightarrow site choice);
 - potassium, bioluminescence;
 - chemically aggressive;
 - no "surface".

 AMANDA: data taking.

IceCube:

km³ project, in preparation.

– suitable ice only in Antarctica.

The Mediterranean Sea offers optimal conditions

. . .

- due to its properties
 (water quality, depth, temperature, . . .);
- due to the existing infrastructure;
- since the world **expertise** for sea water ν T's is concentrated in the European countries;
- since it is a perfect stage for a large European science project.

Common European effort needed to realize a future $\rm km^3~\nu$ telescope in the Mediterranean Sea.

Towards a km² \Alatar Tologoon

The Neutrino Telescope in Lake Baikal

- Pioneers in under-water technology for ν telescopes.
- Atmospheric ν 's observed, limits on diffuse ν fluxes.
- Further extension planned, but km³ hardly reachable.

The BAIKAL NT-200 Neutrino Telescope

ANTARES

First Data from ANTARES Prototype Installation

- Prototype string PSL (5 storeys) and mini instrumentation line (MIL) deployed.
- Connected to JB on 16/17 March.
- PSL still taking data.
- MIL operational until 11 April.

Sea currents (mm/s) over 30 min:

Compass headings over 30 days:

NESTOR

First Data from NESTOR Prototype Floor

- January 2002: Deployment of LAERTIS at 4200 meters depth, successful taking of environmental data.
- March 2003: Deployment of first prototye floor (reduced size).
- PM signals read out, wave forms available, background rates as expected.
- Muon tracks reconstructed.

How to Increase ν Telescopes to a km³?

$\frac{\text{km3 volume with } \sim \text{same number}}{\text{of PMs as in existing } \nu \text{T's ?}}$

- PM distance: determined by light attenuation in water (+PM properties).
- Efficiency loss: Effective volume $\ll 1 \text{ km}^3$ except maybe at highest E_{ν} .

Existing ν T's times 100–1000 ?

- Too expensive: ANTARES \times 100= $\mathcal{O}(2 \times 10^9)$ Euros.
- Too complicated: production/deployment take forever, maintenance impossible.
- Not scalable: e.g. readout bandwidth, online filter, power distribution,

Research and Development needed:

- Cost-effective solutions: Reduce price/volume by factor ≥ 10.
- Increased stability:
 Goal: maintenance-free detector.
- "Fast" installation:
 Time for construction & deployment
 less than detector life time.
- Photo sensors:
 High quantum efficiency,
 large area, low noise,
 directional sensitivity.
- ...

The NEMO project

A Common European Effort

End of 2002:

ANTARES, NEMO and NESTOR decide to cooperate in preparing a future km 3 ν T in the Mediterranean Sea

Design Study:

- Instrument of the EU FP6
 programme to fund preparation
 of laboratory installations
 for multi-disciplinary,
 multi-national access.
- Application by \sim March 2004.

2000

proceed, TDR in 2007

proceed with national funding ?!

Work Packages:

- Site characteristics;
- KM3 architecture;
- Material considerations, deployment strategies and technologies;
- Power distribution, cables & connectors;
- Photo sensors;
- Electronics;
- Data transmission;
- Readout;
- Calibration methods;
- Beyond km³;
- Software tools;
- Physics.

Site Characterization and Selection

3 suitable sites explored in detail:

Measurements and assessments:

- Optical properties of water (absorption, scattering);
- Current velocity and direction;
- Bathymetric surveys;
- Bioluminescent activity;
- Biofouling;
- Sedimentation;
- Geological stability;

• . . .

Site selection:

- Delicate decision
 Strong national interests
 and political arguments involved.
- Major scientific criteria:
 - \rightarrow water quality;
 - \rightarrow depth;
 - → geological environment;
 - → distance to shore;
 - \rightarrow infrastructure.
- Decision path:
 - Arguments reviewed by ApPEC.
 - Further input provided by running of prototypes.
 - ApPEC Recommendation expected by 2003/2004.
 - Not clear who decides . . .
- Meanwhile:

continue to organize common effort and start up activities.

The Architecture

Some questions:

- Strings or rigid towers or flexible towers or ...?
 Determines mechanical stability, significant impact on overall cost,
- Wet or dry connections?
 Cost and long-term availability of deep-sea submarines?
 Effort for underwater connections depends on detector depth.
- Distance of photo sensors?
 Depends on water transparency and on active area and efficiency of photo sensors.

Note: Factor 2 in average distance gives factor 8 in detector size with same number of sensors.

Homogeneous detector or dense core?

 E_{ν} dependence of effective volume.

Photo Sensors

Development goals:

- Increase area and efficiency.
- Retain or improve time resolution.
- Obtain directional sensitivity.
- Reduce costs.
- Ensure long-term stability in deep-sea environment.

Approaches:

- Hybrid photomultipliers (see below).
- Hybrid photo diodes (HPDs).
- Avalanche photo diodes (APDs).
- Photocathode improvements (spectral quantum efficiency).
- Gas electron multiplication (GEM)?

The Baikal HPM:

Hybrid PM + scintillator photo sensor.

Large sensitive area with

low-diameter PMs.

Developments at INFN Genova:

- Optimize geometry:
 - transfer-time spread improved to $\mathcal{O}(1 \text{ ns})$;
 - correlation of γ and e impact positions.
- Use light guides to determine light direction.

Readout and Data Acquisition

Problems:

- Enormous data stream to shore: ANTARES \times 100: $\mathcal{O}(750 \text{ GByte/s})$.
- Large Power consumption of the off-shore electronic components poses problems to power distribution and to cooling.

(ANTARES power \times 100: $\mathcal{O}(3 \text{ MWatt})$)

Operation stability:

Is rate of failures that stop the system proportional to the number of components?

Is system operatable?

Maintenance:

How many deep-sea operations per year are needed to keep 90%, 80%, ... of the functionality?

Ideas:

- Fast optical data transmission:
 - Profit from developments in industry.
 - DWDM technology: one color per photo sensor?
- Realize readout with passive/optical elements:
 - reduces power consumption;
 - avoids failures;
 - "maintenance-free".
- Trigger and filter on shore:

May be installed later to use latest technology.

Allows for modifications to match the needs of data taking.

Material Considerations

Material must ...

- withstand high pressure
 - steel;
 - titanium.
- withstand corrosion
 - titanium;
 - certain synthetics;
 - GRP (glass reinforced plastic).

Current installations almost exclusively use titanium (material and machining expensive).

Solutions:

Composite structures

Use separate material layers: outer layer against corrosion, inner layer against pressure.

E.g. NEMO JB design.

Mechanical structures
 (struttings, towers, etc.):
 Use of GRP seems possible.

NEMO design for a composite-structure Junction Box:

Conclusions

- A km³-scale neutrino telescope in the Northern hemisphere has to complement IceCube to assess the physics potential of cosmic neutrinos.
- Natural choice: A deep-sea detector in the Mediterranean Sea.
- Successful operation of prototype installations by the ANTARES and NESTOR Collaborations demonstrates technical feasibility and provides valuable experience.
- Significant R&D efforts are necessary to develop cost-effective solutions with sufficient long-term stability.
- A common effort of the European groups to solve the major technical questions has begun in the framework of an EU FP6 Design Study proposal.
- Let's try our best to proceed and produce a Technical Design Report by 2007!