Physics with THERA (TESLA on HERA)

Ulrich F. Katz, ZEUS University of Bonn

ECFA/DESY LC Workshop Padova, 05. May 2000

• Conclusions and plans

The following report is based on work of the THERA study group and on discussions with the DESY accelerator experts.

The THERA study group

Meetings:

Previous: 08–09.02 and 14–15.04.2000 Future: 18–20.10.2000 (tentative date) Please join if you are interested!

	Working Groups	Convenors
•	Low x	P Newman (U Birmingham) E Levin (Tel Aviv) A Levy (Tel Aviv)
•	Heavy Flavours	K Daum (Wuppertal) L Gladilin (U Hamburg,Moscow)
•	Photon structure	J Butterworth (UC London) S Söldner-Rembold (CERN/U Freiburg) M Krawczyk (Warsawa)
•	High Q ²	E Perez (Saclay) K Long (IC London) M Kuze (KEK Tanashi)
•	QCD and MC simulation	L Lönnblad (U Lund) H Spiesberger (U Mainz) H Jung(U Lund)
•	Detector and Infrastructure	L Bauerdick (DESY HH) J Crittenden (U Bonn) U Katz (U Bonn) M Klein (DESY Z) D Pitzl (DESY HH)
•	Machine	S Schlenstedt(DESY Z) U Schneekloth(DESY)
•	Polarization	E Rondio (Warsawa) A Deshpande (Yale U)
۲	Nuclei	M Strikman (Penn State)
•	Gamma	S Sultansoy (Ankara)

More information in http://www.ifh.de/thera

Questions and objectives

U. Katz ECFA/DESY LC Workshop, Padova, 05.05.00

Kinematics of ep scattering

The THERA outreach

The THERA complex

THERA running modes

THERA parameters

bunch structure	TESLA: trains of 2800 bunches, $\Delta t=337 \text{ ns}, 950 \mu \text{s/train},$ repetition rate 5 Hz; HERA: time structure enforced by DESY3: $\Delta t=96 \text{ ns} \times (11/n)$ ($\Delta t=352 \text{ ns}$ for $n=3$); HERA and TESLA can be matched	
e beam energy	Symbiotic: limited to $\sim 400 \text{ GeV}$ Dedicated: TESLA allows $\sim 800 \text{ GeV}$ But: $E_e \lesssim 500 \text{ GeV}$ required for beam separation	
	Standard: $10^{30} \text{ cm}^{-2} \text{ s}^{-1} (10 \text{ pb}^{-1}/\text{y})$ Possible: enhancement by factor 2 – 4 by reducing <i>n</i> emittance:	
luminosity	substantial effort (RF,	
	R&D beyond current concepts (proton cooling) Warning: $\mathcal{L} \times E_e \sim \text{const.}$	
	Floctrons, no obvious problems	
	to transfer polarization from TESLA to THERA	
polarization	Protons: studied as future HERA option; active R&D	
	program at DESY; slightly easier for THERA since no vertical bends?	

THERA interaction region

beam elements:	protons: ~ 10 m from IP preferred: symmetric setup, superconducting lenses	
interaction zone:	longitudinal: proton-dominated, like in HERA ($\sim 10 \text{ cm}$) transverse: circular, diamotor $\approx 20 \text{ um}$	
	$\alpha a meter \sim 20 \mu m$	
sync. radiation:	a fan of ca. 10 cm × 1 cm at 10 m distance from I.P.	
crossing angle:	head-on collisions preferred	
$\begin{array}{l} \checkmark & \text{measurements at } \theta \sim 0.5^{\circ} \text{ possible with} \\ (\text{almost}) \ 2\pi \text{ coverage} \\ \checkmark & e, \ \gamma \text{ and } p \text{ taggers possible} \\ \checkmark & \text{vertex constraint useful for heavy-flavor} \\ \text{measurements} \end{array}$		

Kinematics at low x and Q^2

THERA: 250 GeV (e) × 920 GeV (p)

10

Kinematics at high Q^2

THERA: 250 GeV (e) × 920 GeV (p)

A high- Q^2 event at THERA

THERA NC DIS event simulated in H1 detector $(250 \text{ GeV} (e) \times 920 \text{ GeV} (p))$

Such events are contained in central detector Can ZEUS/H1 detectors cover central region?

Detector requirements

high x and Q^2 :	 Requires central detector ZEUS or H1 detector usable? Problems: age, calorimeter linearity, the skip is resolution ((D, U))
	"Simple" solution (J B al)
low x and Q^2 :	Electron and hadronic system are very backward: acceptance at least to 179.5° 2π azimuthal coverage for background rejection & trigger e/h separation (also in jets) good e energy resolution crucial for kinematic reconstruction good angular resolution (tracking) jet measurements at $E_h \approx E_e$ Highly demanding requirements for backward detector
forward:	 Jets, heavy quarks: require maximal rapidity coverage Forward detector design?
	We want more than DIS:
taggers:	 Iuminosity, ISR: backward γ tagger diffraction: forward p tagger No prohibiting constraints

QCD at low x and Q^2

goals:	 Assess proton structure at low x Understand QCD vacuum in perturbative non-DGLAP domain (large ln(1/x) and Q² ≥ O(1 GeV²)) What happens as cross sections
	 approach unitarity limit? When does saturation set in?
	• : mentioned in the following
answers expected from THERA:	 scaling violations, F_L and g(x) vector meson cross sections diffraction at large mass M_X ⇒ jet production, parton dynamics forward jet production at x ≤ 10⁻⁴ ⇒ BFKL,
additional options:	 Polarized protons in HERA ⇒ spin structure functions Light/heavy nuclei in HERA ⇒ σ(A)/σ(d) γp collisions by using back-scattered laser light ⇒ photon structure,

Saturation

Virtual photon-proton interactions at low \boldsymbol{x}

- are characterized by two transverse scales: 1/Q =transverse size of virtual $q\bar{q}$ pair $R_{\circ} \sim (x/x_{\circ})^{\lambda/2} =$ color dipole size (typical distance between quarks)
- Saturation expected for $R_0 \gg 1/Q$ at HERA: at $Q^2 \sim 1 \text{ GeV}^2$, non-perturbative at THERA: at $Q^2 \sim 2 - 3 \text{ GeV}^2$, perturbative
- THERA reaches lower x at higher Q^2 \Rightarrow new insights expected.

The gluon density at low x

Heavy flavor physics

Heavy quark production and what we learn from it					
	process	information			
DIS	$\gamma^*c/b ightarrow c/b$	heavy flavor QCD, PDFs			
	$\gamma^*g ightarrow car{c}, bar{b}$	QCD, $g(x)$ in proton			
	$W^- ar{s} \ ightarrow ar{c}$,	s(r) and $a(r)$ in proton			
	$W^-g ightarrow s \bar{c}$				
PHP	$\gamma g ightarrow car{c}, bar{b}$	gluon distribution in proton			
	$\gamma g \rightarrow c/\bar{c} + \text{Rest},$	heavy quark content of γ			
	$\gamma g ightarrow b/b$ + Rest	(resolved processes)			
 Cross sections 3-20 times larger than at HERA 					

backward coverage essential

17

DIS at high Q^2

Precision measurement of α_s

Exploiting the *e* polarization

The e polarization can help:

- in electroweak analyses of DIS cross sections
- in searches for new phenomena
- for spin-dependent PDF and QCD studies if polarized protons and/or nuclei are available

U. Katz ECFA/DESY LC Workshop, Padova, 05.05.00

Leptoquarks and squarks

Competing with LHC

The discovery potential of LHC is larger, but complementary data from THERA if LQ is in reach!

Excited fermions

- e^* , ν^* and q^* can be directly produced at THERA
- competition: $e^+e^- \rightarrow ff^*$ at TESLA, $q\bar{q} \rightarrow f^*\bar{f^*}$ (Drell-Yan) at LHC
- But: cross section at LHC is suppressed by factor $\mathcal{O}(\alpha/\alpha_s)$ w.r.t. LQ channel

THERA 250GeV e x 920 GeV p, 30 pb -1

A ν^* event at **THERA**

 ν^* production at THERA simulated in ZEUS detector (250 GeV (e) × 920 GeV (p))

$$ep \rightarrow \nu^* + j + X \rightarrow e + 3j + X$$

 $(\nu^* \rightarrow eW \rightarrow eq\bar{q})$
 $M_{\nu^*} = 400 \text{ GeV}$

Event is almost completely contained $(E - p_z = 482 \text{ GeV})$

Conclusions and Plans

The TESLA×HERA (THERA) *ep* mode is being studied. The goal is to assess and document the physics potential and technical feasibility and to contribute a chapter to the TESLA TDR.

No obvious show-stoppers so far. It seems possible that THERA could run in parallel with TESLA.

THERA seems to offer many attractive possibilities, in particular for investigating the dynamics of strong interactions. The success of THERA depends critically on the detector design.

Let's establish a list of fundamental questions to a future ep machine at $\sqrt{s} = 1$ TeV!

You are invited to join the effort! Thanks to all who have contributed or will contribute.