The ANTARES Status Report

The ANTARES Project

Preparatory Phase

Lessons from Prototypes

The Future

Summary

The ANTARES Project

The ANTARES Collaboration

- European Collaboration:
 France, Germany, Italy, NL, Spain, Russia, UK
- Particle physics, astronomy and sea science institutes.

The mission

Design, construct and operate a neutrino telescope in the Mediterranean Sea.

The objectives

• Physics:

Detect neutrinos, astrophysical sources, WIMP annihilation, neutrino oscillations,

. . .

Technology:
 Prove feasibility and long-term stability of a deep-sea neutrino telescope.

The challenge

Build a high-tech particle detector in a hostile, poorly known and uncontrollable deep-sea environment.

Optical Modules

- Photo multiplier tubes: Hamamatsu 10" (550 cm² cathode area); transfer time spread (TTS) \sim 2.7 ns; quantum efficiency > 20% @ 1760 V for 330 nm $\lesssim \lambda \lesssim$ 460 nm.
- Glass spheres:
 outer diameter 43 cm;
 qualified for 600 bar;
 light transmission ≥ 95%.

Physics Perspectives: WIMPs ...

Indirect WIMP detection

- Gravitational trapping:
 WIMPs may be trapped in
 the gravitational field of
 Earth, Sun or Galactic Center.
- Candidate particle: SUSY Neutralino (χ) .
- WIMP annihilation

$$\chi + \chi \rightarrow \text{hadrons} \rightarrow \nu + X$$

 $\chi + \chi \rightarrow Z^0 Z^0 \rightarrow \nu \bar{\nu} + X$

ν energy spectrum depends
 on neutralino mass and on
 annihilation products
 → estimated sensitivity
 extremely model-dependent.

• The ANTARES sensitivity covers part of the SUSY parameter phase space. High sensitivity for low Ω_{χ} (high annihilation cross section)

Neutralinos from the sun

mSugra models with 5 GeV threshold vs Antares sensitivity

...and Neutrinos from Astrophysical Point Sources

Sky coverage:

Complementary to AMANDA/IceCube,
Galactic Center seen
~ 70% of the time.

- High sensitivity due to good angular resolution $(0.2-0.3^{\circ})$ at high ν energy).
- Expectation after 1 year: Improve existing limits for Southern hemisphere or discover something!

Preparatory Phase

Environment assessment

- **Development of tools** for measuring environmental parameters.
- Numerous measurement campaigns:
 - optical parameters of water;
 - salinity, temperature,...;
 - current velocity and direction;
 - sedimentation and biofouling;
 - bioluminescence;
 - bathymetric profile.
- Sea floor survey with deep-sea submarine.

Prototype string

Design:

16 storeys à 2 PMs, 350 m long, equipped with full readout electronics and slow control devices.

Operation:

Several battery-operated immersions (1998/99), connected to shore (1999). Successful data taking.

Determination of $\Lambda_{\text{attenuation}}$

D: Distance between LED and PMT

 $\Phi_{\rm LED}\!\!:$ LED luminosity to obtain a constant current on PMT

Detector Status

Sea Operations

Positioning accuracy

- **Surface position** monitored and stabilized by differential GPS.
- **Underwater** position monitored by acoustic triangulation.
- Accuracy on sea bed: a few meters!

2 Problems and Their Diagnose

The clock fiber failure

• The symptom:

The clock signal did not arrive at the readout modules (both lines!)

• The consequences:

- → no data with ns time resolution;
- → no measurement of signal charges;
- → no acoustic positioning.

However, we still were able to

- → measure PM rates;
- → control HV settings, thresholds;
- → take slow control data (compasses, tiltmeters etc.).

• The diagnose:

One plastic tube around the optical fiber for the clock signal collapsed.

- → Plastic material changed by manufacturer without notification.
- ⇒ Even worse: material not qualified for high-pressure applications!

• The remedy:

Final cable design modified (use steel tubes now).

A water leak

• The symptom:

The mini instrumentation line stopped to work on April 11.

- The consequence: Immediate recovery of the line.
- The diagnose:

An o-ring secured connector had developed a leak.

Specifications of hole diameter and tolerances by manufacturer were wrong.

No problems seen in pressure tests!

The remedy: different connectors.

Rate Measurements and Bioluminescence

Observations:

- Strong variability of rates: bursts and slow changes.
- "Base line rate" (BR) and "burst fraction" (BF).
- Some correlation between BR and BF, but low-low, high-low, low-high, high-high all appear.
- Mostly bioluminescence (40 K: $\sim 50 \, \text{kHz/PM}$).

Currents and Line Movement

The Future

The ANTARES schedule:

- End of 2004: Deployment and connection of the first string.
- 2006: 12-string detector completed.
- And then: Data taking, data analysis, discoveries?!

Beyond ANTARES:

- A km³-scale neutrino telescope in the Northern hemisphere to assess the full physics potential of cosmic neutrinos.
- Natural choice: A deep-sea detector in the Mediterranean Sea.
- Significant R&D efforts are necessary to develop cost-effective solutions with sufficient long-term stability.
- A common effort of the European groups to solve the major technical questions has begun in the framework of an EU FP6 Design Study proposal.
- VLV ν T workshop in Amsterdam, 5-8. Oct. 2003: dedicated to technical aspects of the future deep-sea ν T.

Summary

- The ANTARES project has completed the design and test phase and entered the construction phase.
- Successful deployment of major components completed (Main Electro-Optical Cable, Junction Box).
- Pre-production test string and mini instrumentation line successfully deployed and connected by submarine.
- Technical problems have been understood and will be avoided in future.
- The long-term system test in deep-sea environment is a major step towards the realization of the detector.
- ANTARES is on a good track to fulfill its mission and to accomplish the objectives.