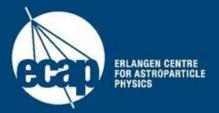
APPEC Technology Forum 2015 Low Light-Level Detection in Astroparticle Physics and in Medical Applications 22+23 April 2015, Munich, Germany


Photodetection in KM3NeT

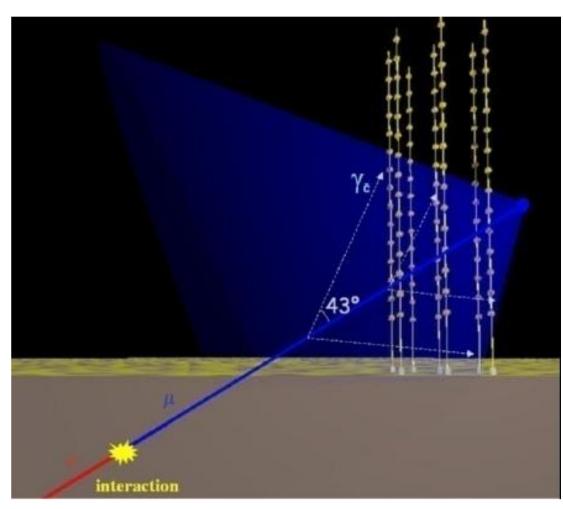
Uli Katz ECAP / Univ. Erlangen

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

The plan for the next 30 minutes:

- The KM3NeT project: Concept and overview
- Light detection in KM3NeT
- Prototype results
- Timelines
- Summary

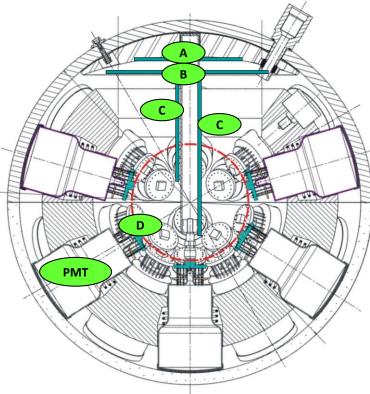
KM3NeT



The KM3NeT project: Concept and overview

How does a neutrino telescope work?

- Neutrino interacts in the (vicinity of the) telescope
- Charged secondaries cross the detector volume (water or ice) and stimulate Cherenkov emission
- Recorded by a 3D-array of photo-sensors
- Neutrino energy range: few GeV – above PeV (depends on density of instrumentation)



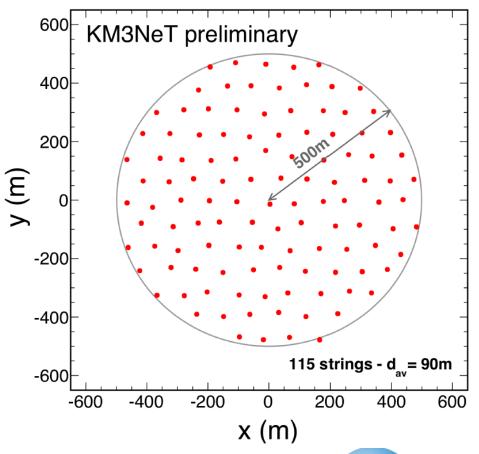
The KM3NeT Collaboration KM3NeT-HQ KM3NeT Collaboration 42 Institutes KM3NeT-Data Centre **KM3NeT** KM3NeT-Fr KM3NeT-Gr KM3NeT-It km3net.org @km3net APPEC Technology Forum, 22.04.2015: Photodetection in KM3NeT (U.Katz)

The KM3NeT DOM


- 31 3-inch PMTs in 17-inch glass sphere (cathode area~ 3x10-inch PMTs)
 - 19 in lower, 12 in upper hemisphere
 - Suspended by plastic structure
- 31 PMT bases (total ~140 mW) (D)
- Front-end electronics (B,C)
- Al cooling shield and stem (A)
- Single penetrator
- Advantages:
 - Increased photocathode area
 - 1-vs-2 photo-electron separation
 → better sensitivity to coincidences
 - Directionality
 - Cost / photocathode area

KM3NeT detection units (DUs)

- Mooring line:
 - Buoy (syntactic foam)
 - 2 pre-stretched Dyneema[©] ropes (4 mm diameter)
 - 18 storeys (one DOM each)
- Electro-optical backbone (VEOC):
 - Flexible hose ~ 6mm diameter
 - Oil-filled
 - Fibres and copper wires
 - At each storey: connection to 1 fibre + 2 wires
 - Break-out box with fuses at each storey:
 One single pressure transition



The building block concept

- Building block:
 - 115 detection units
 - Segmentation enforced by technical reasons
- Large block (neutrino astronomy)
 - Sensitivity for muons independent of block size above ~75 strings
 - One block ~ half IceCube
- Small block (neutrino oscillations)
 - Precision measurement of atmospheric neutrinos
 - One block ~ 6 Mtons
- Allows for staged, block-wise, multi-site installation

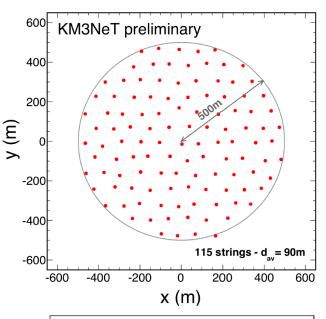
DU distance adjusted to scientific objective: 90-120 m for neutrino astronomy / 20 m for oscillation research

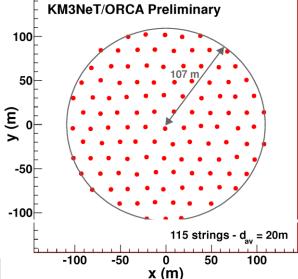
ARCA and **ORCA**

Vertical OM distance = 36 m

ARCA =

Astroparticle Research with Cosmics in the Abyss


ORCA =


Oscillation

Abyss

Research with

Cosmics in the

KM3NeT preliminary

200

-200

-400

-600

-600

-400

-600

-400

-600

-400

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

-600

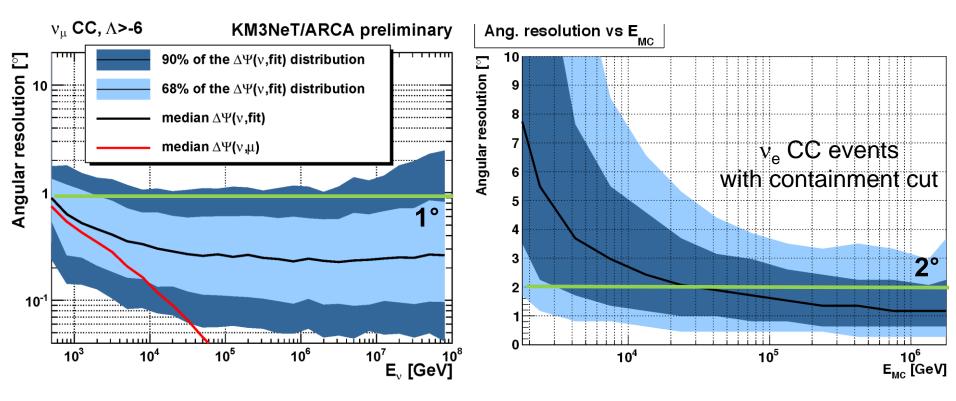
-600

-600

-600

-60

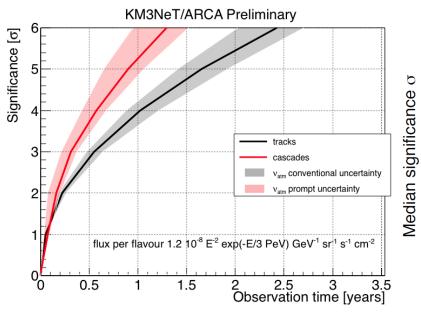
Vertical OM distance = 6 - 12 m


KM3NeT development

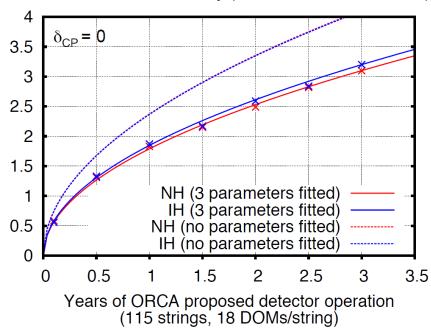
Phase	Blocks/ strings	Primary deliverables / site(s)	PMTs needed
1	0.2/31	Proof of feasibility and first science results; KM3NeT-Fr + KM3NeT-It sites	18.000
2.0	2/230	Measurement of neutrino signal reported by IceCube; All-flavor neutrino astronomy; KM3NeT-It site	+175.000
	1/115	Neutrino mass hierarchy; KM3NeT-Fr site	
3	6+1/805	Neutrino astronomy including Galactic sources; Multiple sites	+260.000

KM3NeT resolutions

Track-like events:

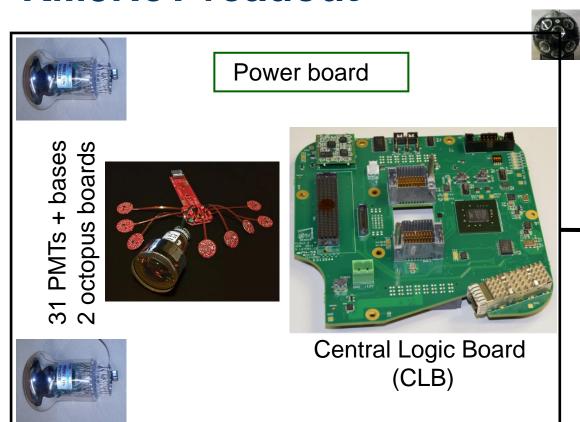

Cascades:


- Muon energy: d(log10 E)=0.25-0.3 at E > 10 TeV
- Cascade energy: 5-10% at E > some 10 TeV
- All-flavour neutrino astronomy in reach


KM3NeT science objectives

Full KM3NeT - (detector with 6 building blocks) - Preliminary

KM3NeT/ORCA sensitivity (PRELIMINARY Feb 2015)


- All-flavour neutrino astronomy
- Precision measurements in neutrino physics
- Nodes for earth and sea science research

Light detection in KM3NeT

KM3NeT readout

All data
to shore
(optical
Fibres)

Online filter
on shore

HV for PMTs
Discrimination
w.r.t. predefined
threshold

Signal collection

FPGA for TDC (time & time over threshold), time stamping (1 ns precision);

Interface for time synchronisation:

Control of calibration devices; Communication;

Implementation in DOM

- Reflective rings around PMTs (+27% light detection, see JINST 8 (2013) T03006)
- PMTs supported by plastic structure produced by 3D-printing
- Calibration: Acoustic sensor and compass + tiltmeter
- Electronics components attached to cooling structure
- One single penetrator for connection to vertical cable

PMT specifications

Parameter	Requirement
Photocathode diameter	> 72 mm
Nominal Voltage for Gain 3x10 ⁶	900 – 1300 V
Gain slope = $log_{10}(gain)/log_{10}(HV)$	6.5 - 8.0
QE at 404 nm	> 23 %
QE at 470 nm	> 18 %
TTS (FWHM)	< 5 ns
Dark count rate (0.3 p.e. threshold)	< 2 kHz
Pre-pulses	< 1 %
Delayed pulses	< 3.5 %
Early afterpulses	< 2 %
Late afterpulses	< 10 %

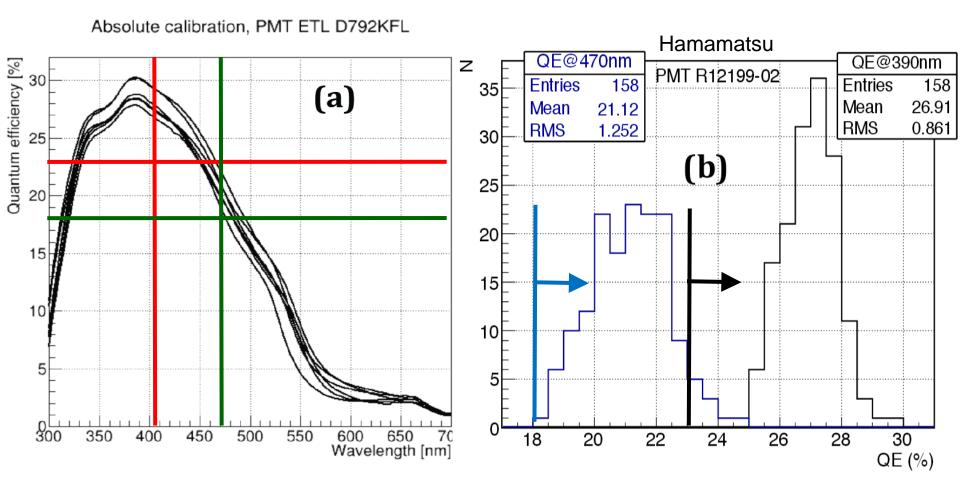
PMTs available

+MELZ ...

ETEL D792

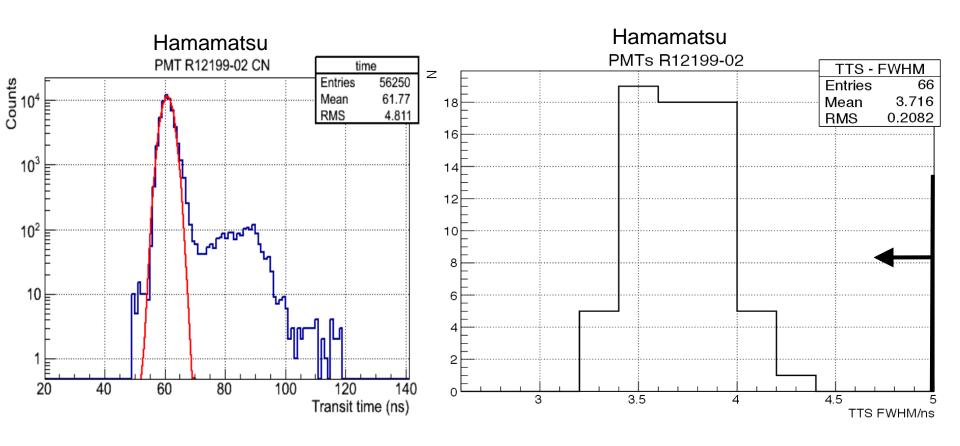
Hamamatsu R12199

HZC XP53B20



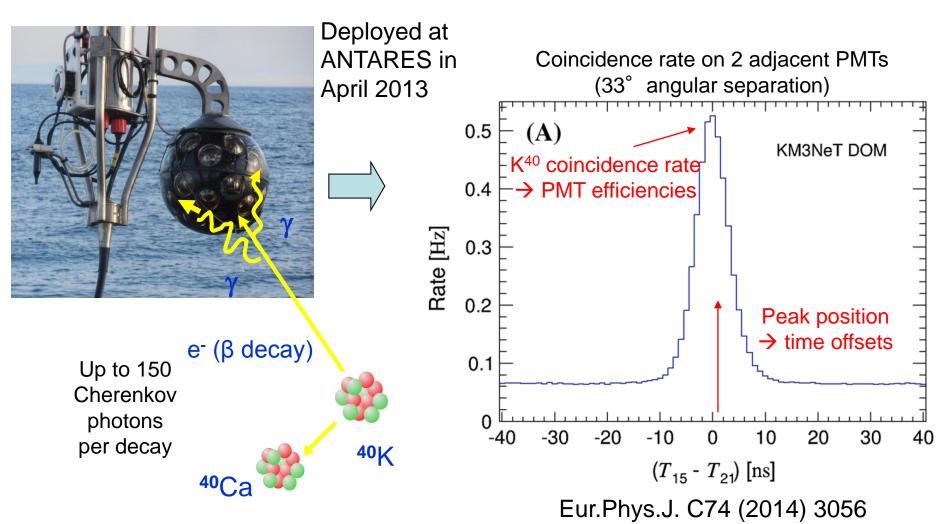
First prototype not yet compliant with specifications (gain, dark rate, afterpulses, ...), further development under way

Note: In all cases price/photocathode area < 10-inch tubes (MELZ?)

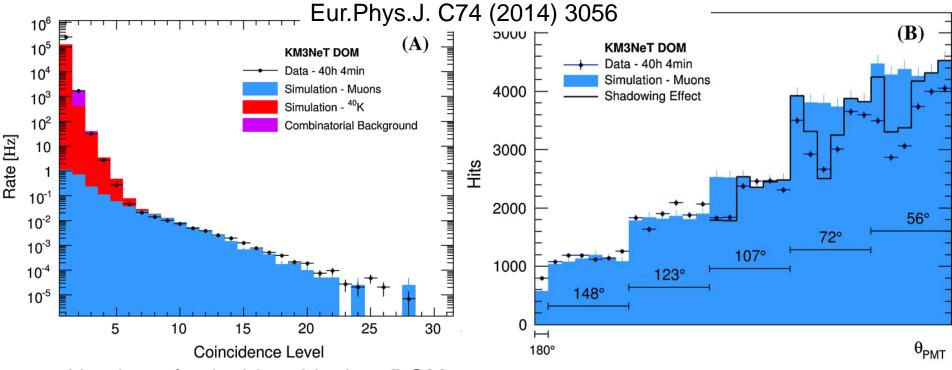

Some results of PMT measurements: QE ...

Note: These are "normal", i.e. not super- or hyper-bialkali PMTs

... and TTS


All measurements for ETEL & Hamamatsu within specifications

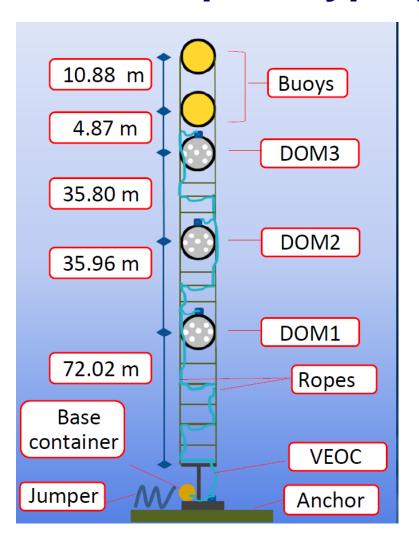
Prototype results


DOM prototype (PPM-DOM)

Concentration of ⁴⁰K is stable (coincidence rate ~5 Hz on adjacent PMTs)

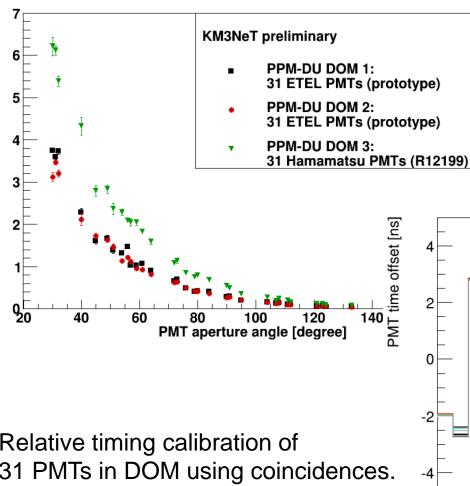
PPM-DOM: Atmospheric Muons

Number of coincident hits in a DOM

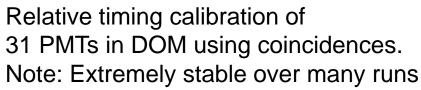

>5 coincidences within 20ns ⇒ reduced K40 contribution, dominated by atmospheric muons

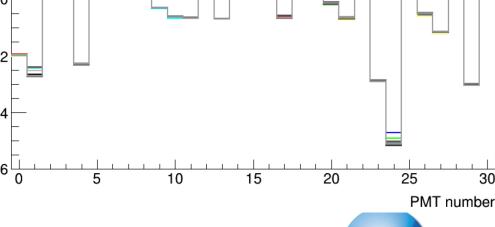
More upper PMTs in multi-hit events ⇒ directional information from single storey

Zenith angle of hit PMTs in events with more than 7 coincident hits



DU mini-prototype (PPM-DU): 3 DOMs

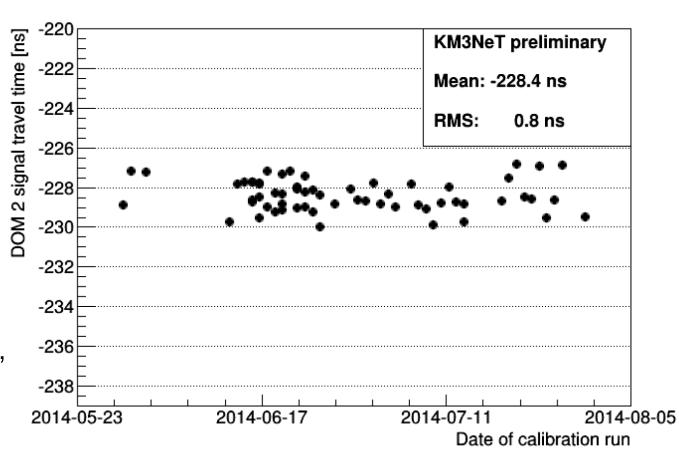

PPM-DU: Inter-DOM timing



40K coincidence rate [Hz]

K40 coincidence rate as a function of the angle between PMTs.

Note: Different PMT types!

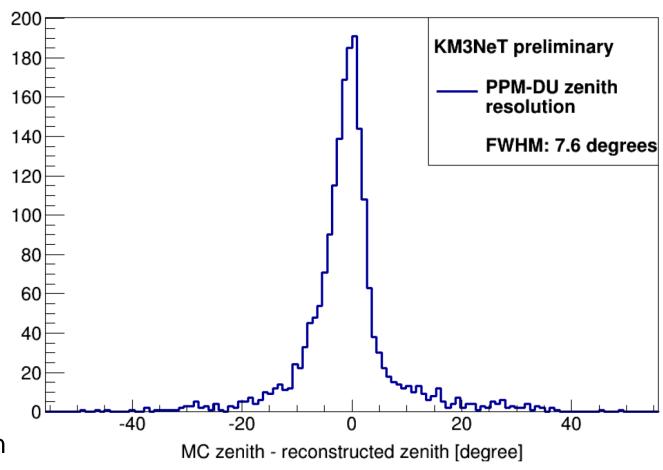


KM3NeT preliminary

DOM 3 PMT offset 16 runs

PPM-DU: Intra-DOM timing

- Calibration with pulsed LED
- Time difference light travel time = Signal travel time
- Result very stable over several months, RMS of jitter < 1 ns


PPM-DU: Muon reconstruction

counts

 Reconstruct muon trajectory from hits on 3 DOMs

 Ambiguities can be reduced by cuts on time differences

 7° FWHM resolution achieved

Timelines

KM3NeT time lines and funding

Phase	Invest/M€	Time lines	Funding
1	31	2014-16: Construction (24 ARCA- and 6 ORCA-DUs)	secured
2.0	+55 +40	2015: ESFRI proposal (decision 2016) 2016-20: Construction 2022: Physics results	applications pending
3	+100-120	After 2020	to be defined

Summary

Summary and outlook

- KM3NeT is a future multi-site research infrastructure in the Mediterranean Sea
- Priority science goals:
 - All-flavour neutrino astronomy
 - Measurement of the neutrino mass hierarchy
- Light detection using multiple 3-inch PMTs per optical module
 - Concept technically proven
 - Prototypes and simulations show high potential
- KM3NeT construction has started (Phase-1), next phase (ARCA & ORCA) to follow in 2016-20

Stay tuned!

