Nikhef Colloquium, 6 March 2009

KM3NeT – towards a km³-Scale Neutrino Telescope in the Mediterranean Sea

Uli Katz ECAP / Univ. Erlangen

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

- Scientific rationale
- Neutrino telescopes
- KM3NeT: Towards design and construction
- Summary

KM3NeT

The Mysterious Cosmic Rays

- Particles impinging on Earth from outer space carry energies up to 10²¹ eV (the kinetic energy of a
 - tennis ball at ~200km/h.)
 The acceleration

mechanisms are unknown.

- Cosmic rays carry a significant fraction of the energy of the universe – cosmologically relevant!
- Neutrinos play a key role in studying the origin of cosmic rays.

Neutrino Production Mechanism

 Neutrinos are produced in the interaction of high energy nucleons with matter or radiation:

$$\begin{array}{c}
N + X \to \pi^{\pm}(K^{\pm}...) + Y \to \mu^{\pm} + (\overline{\nu_{\mu}}(\overline{\nu_{\mu}})) + Y \\
\downarrow \\
e^{\pm} + (\overline{\nu_{e}}(\nu_{e}) + (\overline{\nu_{\mu}}(\nu_{\mu}))
\end{array}$$

Simultaneously, gamma production takes place:

$$\underbrace{N} + X \rightarrow \pi^0 + Y \rightarrow \gamma \gamma + Y$$
Cosmic rays

- Cosmic ray acceleration yields neutrinos and gammas
- ... but gammas also from purely leptonic processes

Particle Propagation in the Universe

Photons: absorbed on dust and radiation;

Protons/nuclei: deviated by magnetic fields, reactions with radiation (CMB)

Potential Galactic Sources

- The candidate accelerators of cosmic rays
 - Supernova remnants
 - Pulsar wind nebulae
 - Micro-quasars
 - ...
- Interaction of cosmic rays with interstellar matter
 - Possibly strong v signal if CR spectrum harder in Galactic Centre than on Earth (supported by recent MILAGRO results)
- Unknown sources what are the H.E.S.S.
 "TeV gamma only" objects?

High-Energy γ Sources in the Galactic Disk

Status 2007:

- 18 Pulsar wind nubulae
- 7 Shell-type supernova remnants
- 4 Binaries
- 2 Diffuse
- 21 Unknown (no identified counterpart)

Example: v's from Supernova Remnants

ν Flux Predictions from γ Measurements

1 σ error bands include systematic errors (20% norm., 10% index & cut-off)

Another Case: SNR RXJ1713.7-3946

- Good candidate for hadronic acceleration.
- Expected signal well related to measured γ flux, but depends on energy cut-off.
- Few events/year over similar background (1km³).
- KM3NeT sensitivity in the right ballpark!

Potential Extragalactic Sources

AGNs

- Models are rather diverse and uncertain
- The recent Auger results may provide an upper limit / a normalisation point at ultra-high energies
- Note: Above some 100 TeV the neutrino telescope field of view is restricted downwards (v absorption), but starts to be significant upwards.

Gamma ray bursts

- Unique signature: Coincidence with gamma observation in time and direction
- Source stacking possible

Candidate Accelerators: Active Galactic Nuclei (AGNs)

Pierre Auger: First Hints at UHE Cosmic Ray Sources

- Directional correlation between AGN positions and cosmic rays (E>10^{19.7}eV, 27 events).
- Interpretation requires care and patience.

Science Cases for Neutrino Telescopes

- Astroparticle physics with neutrinos
 - "Point sources": Galactic and extragalactic sources of high-energy neutrinos
 - The diffuse neutrino flux
 - Neutrinos from Dark Matter annihilation
- Search for exotics
 - Magnetic monopoles
 - Nuclearites, strangelets, ...
- Neutrino cross sections at high(est) energies
- Earth and marine sciences
 - Long-term, continuous measurements in deep-sea
 - Marine biology, oceanography, geology/geophysics, ...

The Principle of Neutrino Telescopes

Role of the Earth:

- Screening against all particles except neutrinos.
- Atmosphere = target for production of secondary neutrinos.

Cherenkov light:

- In water: $\theta_C \approx 43^\circ$
- Spectral range used: ~ 350-500nm.

Angular resolution in water:

- Better than ~0.3° for neutrino energy above ~10 TeV, 0.1° at 100 TeV
- Dominated by angle(v,μ) below ~10 TeV (~0.6° at 1 TeV)

Neutrino Interaction Signatures

- Neutrinos mainly from π - μ -e decays, roughly ν_e : ν_{μ} : ν_{τ} = 1 : 2 : 0;
- Arrival at Earth after oscillations:
 ν_e: ν_μ: ν_τ ≈ 1 : 1 : 1;
- Key signature: muon tracks from v_{μ} charged current reactions (few 100m to several km long);
- Electromagnetic/hadronic showers: "point sources" of Cherenkov light.

Muon Reconstruction

- The Cherenkov light is registered by the photomultipliers with nanosecond precision.
- From time and position of the hits the direction of the muon can be reconstructed to some 0.1°.
- Minimum requirement: 5 hits
 ... in reality rather 10 hits.
- Position calibration to ~10cm required (acoustic methods).

1.2 TeV muon traversing the detector.

The Neutrino Telescope World Map

South Pole and Mediterranean Fields of View

IceCube

- 4800 Digital Optical modules on 80 strings
- 160 Ice-Cherenkov tank surface array (IceTop)
- Instrumenting 1 km³ of Antarctic Ice
- Surrounding exisiting AMANDA detector

IceCube 22: Point Source Search

- Hottest spot found at right ascension 153°, declination 11°; pre-trial probability: 7×10⁻⁷ (4.8 sigma).
- Accounting for trial factor, p-value is 1.34% (2.2 sigma).
- At this significance level, consistent with fluctuation of background.

ANTARES Construction Milestones

ANTARES: Atmospheric Neutrinos

- 174 days of data with
 9-12 lines
- Reconstruction tuned for up-going tracks
- Rate of neutrino candidates:
 - ~ 3.5 events/day

down-going

The NEMO Project

Extensive site exploration (Capo Passero near Catania, depth 3500 m);

 R&D towards km³: architecture, mechanical structures, readout, electronics, cables ...;

Simulation.

Example: Flexible tower

- ~10 m bar length, bars 30-40 m apart;
- 3 pairs of PMs per bar
- Unfurls after deployment as compact structure.

NESTOR: the Delta-Berenike Platform

KM3NeT: from the Idea to a Concept

Major Achievements to Date

- Science & technology
 - Successful prototype deployments by NEMO and NESTOR
 - Installation and operation of ANTARES
 - → A large deep-sea neutrino telescope is feasible!
- Politics & funding
 - Endorsement by ESFRI, ApPEC/ASPERA and ASTRONET
 - Funding through EU: Design Study, Preparatory Phase
 - Funding through national authorities: pilot projects, commitments for KM3NeT
- Towards construction
 - Strong collaboration
 - Design concepts in CDR

The ESFRI Process

- ESFRI = European Strategy
 Forum for Research
 Infrastructures
- EU-initiated forum of research ministries and funding agencies.
- Objective: Identify and support the priority research infrastructures in all fields of science.
- Roadmap: Two editions with 35 (2006) and 43 (2008) RIs.
- KM3NeT included in both editions.

The KM3NeT Conceptual Design Report

- Presented to public at VLVnT0 workshop in Toulon, April 2008
- Summarises (a.o.)
 - Physics case
 - Generic requirements
 - Pilot projects
 - Site studies
 - Technical implementation
 - Development plan
 - Project implementation

KM3NeT

Conceptual Design for a Deep-Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea

available on www.km3net.org

Configuration Studies

The Reference Detector

- Sensitivity studies with a common detector layout
- Geometry:
 - 15 x 15 vertical detection units on rectangular grid, horizontal distances 95 m
 - each carries 37 OMs, vertical distances 15.5 m
 - each OM with 21 3" PMTs

This is NOT the final KM3NeT design!

Point Source Sensitivity

- Based on muon detection
- Why factor ~3 more sensitive than IceCube?
 - larger photocathode area
 - better direction resolution
- Study still needs refinements

Diffuse Fluxes

- Assuming E⁻²
 neutrino energy
 spectrum
- Only muons studied
- Energy reconstruction not yet included

Dark Matter Sensitivity

- Scan mSUGRA parameter space and calculate neutrino flux for each point
- Focus on points compatible with WMAP data
- Detectability:

- Blue: ANTARES

- Green: KM3NeT

- Red: None of them

KM3NeT Design Goals

- Sensitivity to exceed IceCube by "substantial factor"
- Core process: $v_{u}+N \rightarrow \mu+X$ at neutrino energies beyond 100 GeV
- Lifetime > 10 years without major maintenance, construction and deployment < 4 years
- Some technical specifications:
 - time resolution 2 ns
 - position of OMs to better than 40 cm accuracy
 - two-hit separation < 25 ns
 - false coincidences dominated by marine background
 - coincidence acceptance > 50%
 - PM dark rate < 20% of ⁴⁰K rate

Technical implementation

- Photo-sensors and optical modules
- Data acquisition, information technology and electronics
- Mechanical structures
- Deep-sea infrastructure
- Deployment
- Calibration
- Associated science infrastructure

Optical Modules: Standard or Directional

... or Many Small Photomultipliers ...

- Basic idea: Use ca. 30 small (3" or 3.5") PMTs in standard sphere
- Advantages:
 - increased photocathode area
 - improved 1-vs-2 photo-electron separation → better sensitivity to coincidences
 - directionality
- Prototype arrangements under study

... or Hybrid Solutions

- Idea: Use high voltage (~20kV) and send photo electrons on scintillator; detect scintillator light with small standard PMT.
- Advantages:
 - Very good photo-electron counting, high quantum eff.
 - large angular sensitivity possible
- Prototype development in CERN/Photonis/CPPM collaboration

Photocathode News

Hamamatsu

- New photocathode developments by two companies (Hamamatsu, Photonis)
- Factor 2 in quantum efficiency
 → factor 2 in effective photocathode area!
- Major gain in neutrino telescope sensitivity expected

Data Acquisition and Information Technology

Optical Module:

- Conversion of PM signal for transmission
- "Standard" electronic components or passive electro-optical solutions
- Local thresholds/requirements

Vertical signal transmission:

- Fibres or copper?
- Critical: time calibration and synchronisation, reliability

Transmission to shore:

- All data to shore (GB/s)
- No alternative to fibres

On shore:

- Computer farm for online data filter
- High-bandwidth connection to mass storage and data analysis facilities

Deep-Sea Infrastructure

Major components:

- main cable & power transmission
- network of secondary cables with junction boxes
- connectors

Design considerations:

- cable selection likely to be driven by commercial availability
- junction boxes: may be custom-designed, work ongoing in NEMO
- connectors: expensive, reduce number and/or complexity
- risk considerations (single-point failures etc.)

NEMO junction box design:

Deployment: on the Surface ...

- Deployment operations require ships or dedicated platforms.
- Ships: Buy, charter or use ships of opportunity.
- Platform: Delta-Berenike.

... and in the Deep Sea

- Deep-sea submersibles are likely needed for
 - laying out the deep-sea cable network
 - making connections to detection units
 - possibly maintenance and surveillance
- Remotely operated vehicles (ROVs) available for a wide range of activities at various depths
- Use of autonomous undersea vehicles (AUVs) under study

Commercially available ROVs:

	Number of Models	Maximum Depth (m)	Maximum Load (kg)
Micro	7	300	5
Mini	20	1500	20
	1	6000	
General	1	4000	500
	41	2000	
	2	5000	
Work	1	4000	4500
Class	1	3500	
	11	3000	
T	1 3500		
Trenching ROV	2	3000	38000
	8	2500	

Installations for Earth and Sea Sciences

 Earth and sea science devices will be installed at various distances around the neutrino telescope

- Issues:
 - interfaces
 - operation without mutual interference
 - stability of operation and data sharing
- Synergy effects

The Candidate Sites

- Locations of the three pilot projects:
 - ANTARES: Toulon
 - NEMO: Capo Passero
 - NESTOR: Pylos
- Long-term site characterisation measurements performed and ongoing
- Site decision requires scientific, technological and political input

Site Characterisation: an Example

Important parameter:
water transparency
(absorption and scattering)

Also: optical background, sea currents, sedimentation, biofouling, radioactivity, ...

A Green Power Concept for KM3NeT

- Idea: Use wind and/or solar power at KM3NeT shore installations to produce the required electrical power.
- Requires investment of 4-5 M€.
- Can only work if coupled to a larger (public) power network.

Open	Open sea		Hills and ridges	
m/s	W/m ²	m/s	W/m ²	
>9.0	>800	>11.5	>1800	
8.0-9.0	700	10.0-11.5	1500	
7.0-8.0	500	8.5-10.0	1000	
5.5-7.0	300	7.0-8.5	500	
<5.5	<200	<7.0	<400	

The KM3NeT Preparatory Phase

- "Preparatory Phase": A new EU/FP7 funding instrument restricted to ESFRI projects.
- KM3NeT proposal funded with 5 M€
- 3-year project, 3/2008 2/2011
- Major objectives:
 - Initiate political process towards convergence (includes funding and site selection/decision)
 - Set up legal structure and governance
 - Strategic issues: New partners, distributed sites, extendibility
 - Prepare operation organisation & user communities
 - Organise pre-procurement with commercial partners
 - Next-step prototyping

Timeline Towards Construction

Note: "Construction" includes the final prototyping stage

Summary

- Neutrinos would (and will) provide very valuable astrophysical information, complementary to photons and charged cosmic rays.
- Exploiting the potential of neutrino astronomy requires cubic-kilometre scale neutrino telescopes providing full sky coverage.
- The KM3NeT detector in the Mediterranean Sea will complement IceCube in its field of view and exceed its sensitivity by a substantial factor.
- We are working towards a start of construction by 2011.

