Concluding Remarks VLVvT Workshop Amsterdam, 6-8.Oct.2003

Uli Katz, Univ. Erlangen

This is NOT thought to be the summary of summaries!

1) Where we are, where we want to go

- S After almost 20 years: first vT's in sea water "ante portas"
- S Everybody is enthusiastically anticipating the future
- S But: until recently lack of coherence, no united effort
 - Ø no backup by politics and funding agencies
 - Ø no realistic roadmap to "the KM3 project"
 - Ø support by astroparticle community subject to conditions
 - Ø no chance to obtain world-wide consensus on

NEED FOR A CUBIC KILOMETER VT IN THE MEDITERRANEAN

- S NOW: the FP6 program has triggered a "unification process"
 - Ø common effort to obtain funding
 - Ø will it develop to a common effort to design and construct KM3?
- S Time scale: given by "community lifetime" and competition with ice detectors
 - Ø interest fades away if KM3 comes much later than IceCube
 - Ø remember: IceCube ready by 2010
 - Ø we better start NOW (even without EU money?!) . . .

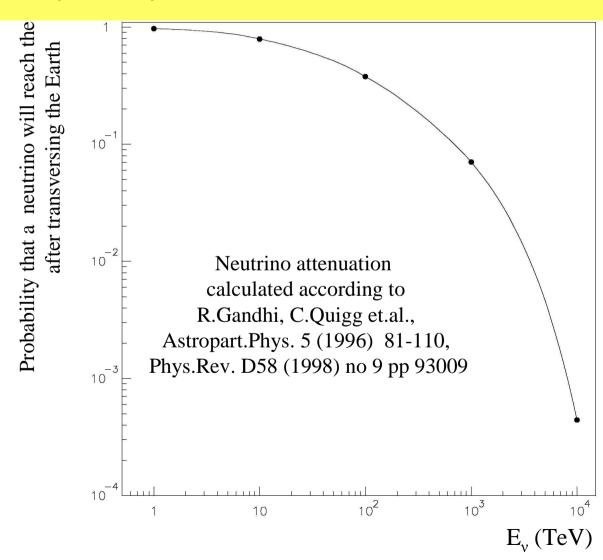
Imagine we fail at this point: What would it mean?

A FUTURE WITHOUT A NORTHERN-HEMISPHERE vT?

HOW DULL !!!

2) Physics Objectives and Implications for KM3

Physics objectives of current & future vTs:


```
importance for KM3
§ astrophysics: diffuse fluxes, point sources
  Ø point sources: need good angular resolution,
     medium energies
  Ø diffuse fluxes: large energies
§ dark matter ("low energies")
  Ø What happens, if LHC discovers something?
§ neutrino oscillations
  Ø Probably covered by dedicated experiments
§ others:
                                                   t.b.worked out
```

NEEDS DISCUSSION, ENERGY RANGE CRUCIAL FOR DESIGN!

=> Basic requirements:

Ø affordable!

Ø 4 pi acceptance?

Ø extendable? (must be able to react to new developments) **DUMAND** FREJUS γ bound **MACRO** -6 log $_{10}[{\sf E}_{ m V}^2\Phi\,({\sf E}_{ m V})'({\sf GeV}\;{\sf cm}$ **♥** Muons in Amanda-B10 (1997) WB bound **Expectation Amanda-II, 3 years**

-10

Э

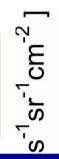
5

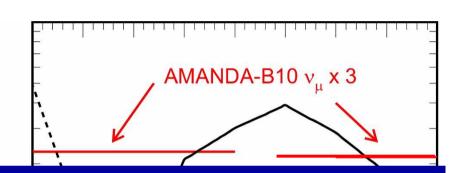
6

log [E/GeV]

8

Expectation IceCube, 3 years

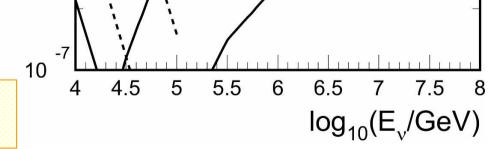

log E, /GeV


10

Ø sensitivity to muons AND to showers! (also gains from "looking upward")

assuming $v_e:v_u:v_\tau=1:1:1$ @ Earth

multiplicative factor 3
 applied for single ν_μ channel



=> ALL THESE REQUIREMENTS POSE SIGNIFICANT BOUNDARY CONDITIONS FOR DESIGN!!

LIJ'IU OCV OII 3 31

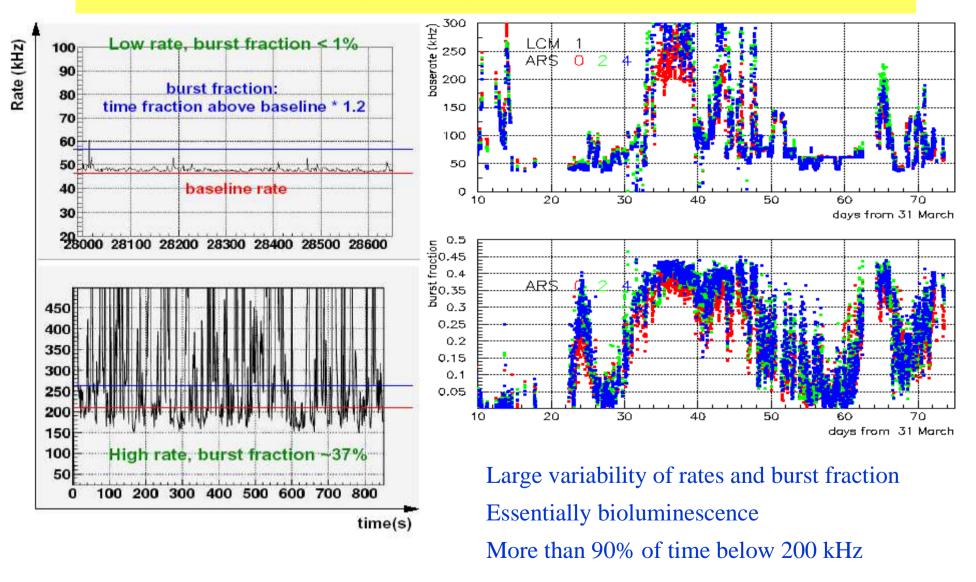
 $2000 \ \nu_{\mu} \ \ analysis will yield all-flavour limit comparable to cascade limit$

3) Lessons to be learned from current projects

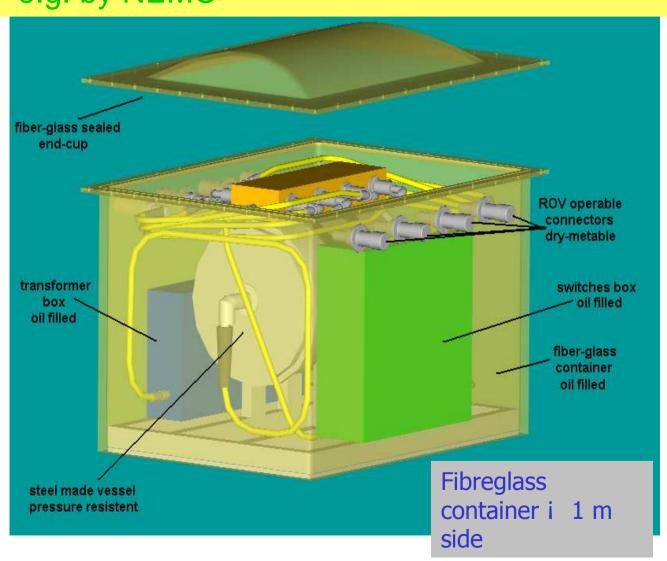
S Lots of tested technological solutions

Ø which of them can be used "as are"?

Needs critical review!


Ø offer basis for (some? many?) future developments

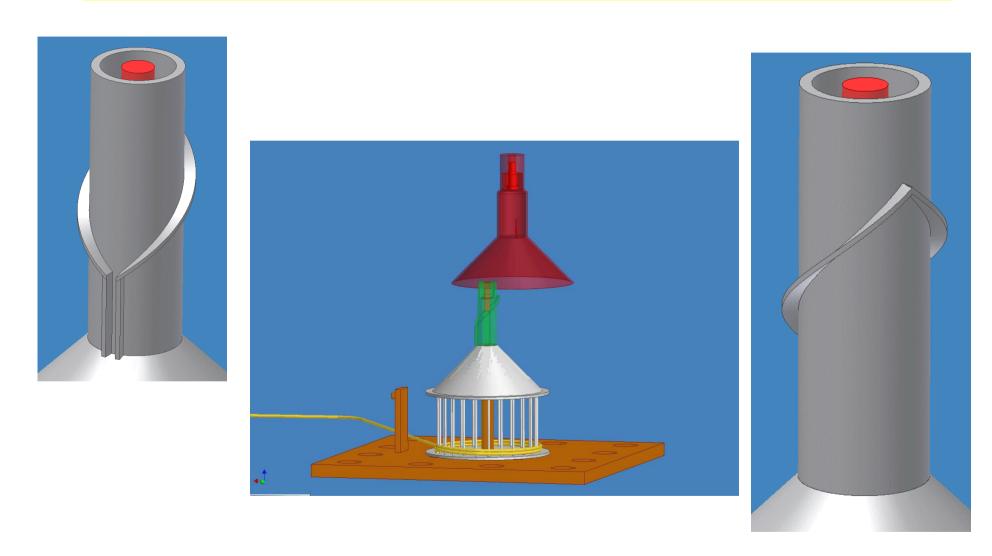
ØWARNING: existing solutions are well-tested, low-risk ...
BUT may reduce acceptance for new, better approaches


- Make best use of experience gained!
 - Ø crucial failures may appear where they are the least expected
 - complexity of detectors must be reduced
 - quality control and assurance will be a central topic
 - Ø time schedules are difficult to control but are crucial for the KM3 project
 - Imagine construction and deployment take longer than the detector lifetime! (IceCube: ~50%)
 - DANGER: technical solutions outdated by ~10 years at construction time

(imagine building km3 with technology from 1990).

Ø understand well (better?) the environmental conditions

JB i a lot of interesting developments are under way, e.g. by NEMO


4) Asking Questions and Collecting Options ...

since it helps us to identify problems, find solutions and to initiate / continue / intensify the necessary R&D steps

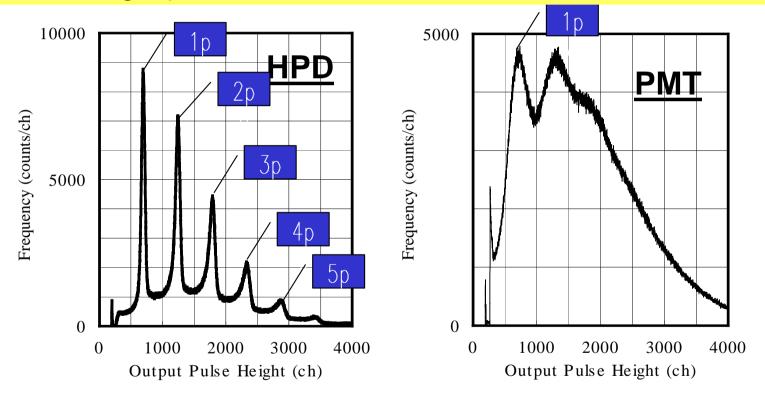
S a selection of such questions/options (strongly interrelated!):

- => How will the detector look like?
 - Ø which structures are optimal?
 - Ø dry or wet connections, or wet from top, or ...?
 - Ø how to avoid single point failures?
 - Ø star or linear or circular interconnection topologies or . . . ?
 - Ø how to optimize architecture? needs thorough simulation!
- => Sea operations are a major part of the project and must be considered from the very beginning

=> Dry or wet connections, or wet from top, or . . . ?

=> What materials to use?

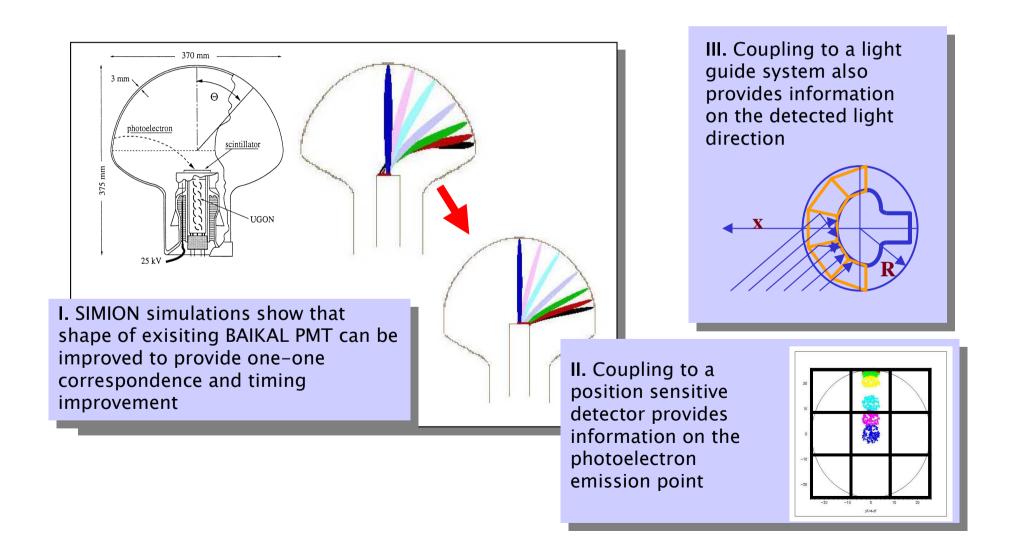
- Ø replacement(s) for titanium?
- Ø composite solutions
- Ø polyurethane encapsulation (as for hydrophones)?


=> Cables and connectors?

- Ø connectors are extremely expensive how to reduce number, in particular wet-matable ones
- Ø reliability is crucial!

=> Which photodetectors?

can we improve on:


quantum efficiency * sensitive area / cost ? time resolution? single photon electron resolution?

Remember: 10% larger PM distance @ same efficiency

=> ~ 30% more detector volume!

=> is directional sensitivity possible?

=> How to get data to shore (and from shore to detector)?

- Ø needs integrated concept for sensor – frontend electronics – data transport – technology on shore
- Ø Promising approach using commercial optical solutions
- Ø Can we send analogue signals to shore?

=> How do we calibrate the detector?

- Ø are current calibration tools adequate/scalable/reasonable?
- Ø is it feasible/helpful to separate detection and calibration units?
- Ø do we need a surface array? How to decide and design it?

Cooperation with Industry

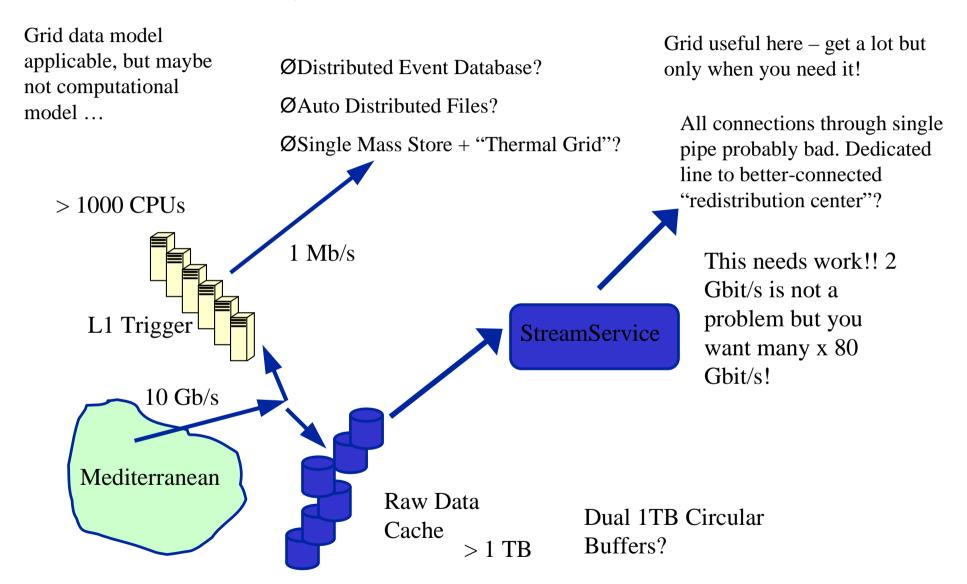
§ v telescopes do and will need industrial partners for various components

- Ø cables and connectors
- Ø IT solutions for data transport
- Ø photo sensors
- Ø glass spheres
- Ø deep-sea technology, . . .

S Many companies followed invitation to VLVvT workshop

- Ø mutual interest !?
- Ø we must find / maintain suitable "interfaces" to describe needs and problems
- Ø we astroparticle physicists must not re-invent the wheel, even if we are capable of doing so!
- S Integration of SME's in Design Study is of strategic value and politically adequate

Cooperation with other Scientific Partners


SESONET (biology, oceanography, environment, . . .)

- Ø there seems to be a lot of potential for synergetic cooperation
- Ø we'll have to understand how to combine our interests without compromising our scientific goals

§ GRID

- Ø mutual interest in cooperation!?
- Ø may provide solutions for a data analysis and reconstruction

VLVvT Reconstruction Model

The Future

Design Study:

Call expected by 11.11.2003

Brussels deadline for proposal: 4. March 2004

ApPEC will review astroparticle proposal for DS's and possibly issue recommendations / priority list (meeting in Munich, 25.11.2003)

Jos Engelen: "KM3 project fits very well into DS frame"

If successful: provides funding for R&D studies (3 – 4 years) Result can / should / must be a **technical design report**

=> start construction of detector thereafter

Site Decision

- decouple site decision from R&D work towards KM3
- for simulations, use "site" as "mathematical symbol" including
 - depth
 - distance to shore
 - water transparency
 - bioluminescence
 - sedimentation
 - . . .
- However, the final detector design needs the site decision
 - => this sets the/a time scale!

We NOW have the HISTORICAL chance to realize KM3 No guarantee – but realistic possibility LET 'S GO FOR IT!

- Ø be open to all ideas and options
- Ø solve open questions on scientific basis

Thanks to all who contributed to the workshop and will carry on the efforts towards KM3!

ØVLVvT Workshop was first in a series
=> next location and date to be announced soon

See you all there!