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Abstract
The discovery of neutrino oscillations around the year 2000 gave new insights into particle
physics. In addition, it also opened up new avenues for future developments in physics.
For example, it is possible to study decoherence effects that alter the oscillations. Along
these lines, we used a simple model for decoherence and studied how this influences
propagation of neutrinos. We further made sensitivity analyses for the neutrino detector
ORCA to see whether the above influence can be detected. The result of our analyses
shows that such decoherence processes do have a non-negligible effect on the oscillation
probabilities and that they are also measurable by ORCA. So, the focus can now shift
to theories that try to explain these decoherence effects. Hot candidates are quantum
gravity theories like the loop quantum gravity.
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1 Puzzles in neutrino physics

The effort of human beings to understand our universe has led to the discovery of many
different particles. At first, electrically charged and particles with mass clearly greater
than zero turned up in theory and experiments. But apart from these particles, also
particles without electric charge and with very little mass exist. Their discovery took
a much longer time. So was the most prominent and interesting of these particles, the
neutrino, first measured in 1956 [1]. As it only participates in weak interactions (its
masses are negligible small or zero), it can only be measured by detecting secondary
particles created by an interaction of a neutrino with matter.
While the neutrino was postulated in 1930 in a letter by Wolfgang Pauli in order to

achieve energy conservation in weak decays [2], the first one to publish such postulate
was Enrico Fermi a few years later [3, 4]. Theoretical investigations resulted in three
neutrino flavours that can take part in weak interactions, each related to one of the three
lepton families. Apart from these flavours, which are known today, also further ’sterile’
neutrinos without weak charge could exist. As these sterile neutrinos do (almost) not
interact with standard matter, it is very difficult to prove their existence today. Early
assumptions considered the neutrino to be a massless particle. This assumption led
to a period in neutrino physics which was dominated by a puzzle that made scientists
rethink their knowledge of neutrinos, the sun and experimental methods: the solar
neutrino puzzle. When in the mid-1960s the first values for the solar flux of neutrinos
were measured by R. Davis and his group (see [5] and [6]), a discrepancy between the
theoretically expected and the measured value was observed, which amounted to more
than 70 percent. In the following decades, several experiments confirmed this deviation
from experimental and theoretical values [7]. In the next almost 40 years different
attempts to solve this puzzle had been carried out (see for example [8], [9] and [10]).
In 2002 one of these theories, the theory of neutrino oscillations, was experimentally

confirmed [11]. Measuring not only electron neutrinos, which are generated in the sun,
but also muon and tau neutrinos, which are not generated in the sun and adding up all
three fluxes gives the expected flux of electron neutrinos from the sun. The explication
for that is simple from today’s point of view: Considered as quantum particles, neutrinos
interact in their flavour basis, but propagate in their mass basis. This leads to oscillations
between the different flavours during propagation, so an electron neutrino created in the
sun may be measured as a muon neutrino when it reaches the earth. The oscillation
parameters depend on different quantities like energy of the neutrino, its propagation
length and other fixed but today not known parameters like the masses of the neutrinos
and their mixing angles (that is the exact relation between the mass and flavour basis).
Enormous efforts are taken on to determine these inherent parameters (the most recent

values can be found at [12]). This effort is required, because reactions of neutrinos with
matter occur very rarely despite the huge neutrino flux on earth from different sources,
which is more than 65 billion neutrinos per second and cm2. From that issue arises the
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necessity of building large detectors to measure neutrinos along with their energy and
direction. One of these detectors being built is the Cubic Kilometre Neutrino Telescope,
in short KM3NeT ([13], [14]). It consists of two parts spread over the Mediterranean
Sea. One of them, the ORCA detector (Oscillation Research with Cosmics in the Abyss),
aims on a better measurement of neutrino oscillations than it is possible with already
built detectors.

Nevertheless, without an appropriate model the data might be misinterpreted. The
usual model of neutrino oscillations today does not take into account dependencies aside
from the above named ones, which contain the energy of the neutrino, its propagation
length, its masses and the mixing angles. But also an influence of non-classical decoher-
ence effects on a neutrino system is possible. Reasons for such non-classical decoherence
effects may arise for example from quantum gravity. Including this decoherence leads
to modified formulas for the oscillation and therefore may also give modified values of
the standard oscillation parameters. Due to this fact, it is highly important to consider
decoherence as early as possible if it is of a sufficient order of magnitude, such that
it makes us interpret the experimental data wrong. An interesting analysis concerning
this topic is presented in [15], where experimental differences measured for an oscillation
parameter are found to be explainable by decoherence effects arising in different baseline
lengths of the considered detectors.

In this project, we will investigate this non-classical decoherence effects in a three-flavour
model for neutrinos and test the sensitivity of ORCA for these effects. After introducing
the relevant theory in section 2, we will discuss the ORCA detector and its performance
in section 3. Then, we will introduce the software used to perform the analyses and
describe our setup in section 4. In section 5, we present our results and discuss them.
Finally, we will give an outlook in section 6. In contrary to several performed analyses
that used a two flavour picture (see for example [16], [17], [18] or [19]), we will perform
our analysis with the full three flavour picture ([15], [20] and [21]).
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2 Theory of Neutrino Oscillations
In this section, we discuss the phenomenological basics for neutrino oscillations. We
start with time evolution of a neutrino system in vacuum. As a next step, we take into
account matter effects and show, how they modify oscillations. In the second part, we
make a phenomenological approach to decoherence and include decoherence effects into
our evolution equations. The derivations will be close to [22].

2.1 Standard Oscillations

For our calculations, we will consider three interacting neutrino flavours. As already
mentioned, neutrinos propagate in the mass basis and interact in the flavour basis. Due
to reasons of conserved probability, the two bases are connected to each other with a
unitary transformation U . Labeling the flavour states with |να〉 and the mass states
with |νi〉, this gets

|να〉 =
3∑
i=1

Uαi |νi〉 . (1)

The matrix Uαi is also called the PMNS-matrix and can be decomposed into a product
of four matrices. These matrices contain three angles, one complex phase δCP , which
violates the CP-invariance if it is not zero, and two additional Majorana phase factors,
which are unimportant for our later purposes as they do not interfere with neutrino
oscillations.
As a next step, we will treat time evolution of the neutrino. For that, we choose to
work in the density matrix formalism. This is a reasonable choice, because using that
formalism it is possible to model evolution of a pure state into a mixed state. This
process, even though it is forbidden by standard quantum mechanics, is apparent in
nature: Black holes, which initially are in a pure states, may vanish after a certain time
and dissolve into thermal Hawking radiation. Microscopic, short-lived black holes can
arise out of vacuum and undergo such a transition from a pure to a mixed state. Density
matrix formalism with an extended time evolution equation (which we will introduce in
the next section) is capable of such transitions. The basic time evolution is given by the
Liouville-von Neumann equation:

∂tρ = −i[H, ρ] , (2)

with H denoting the Hamiltonian of our neutrino system. In vacuum, it has the form

Hvac = diag{E1, E2, E3} . (3)

The energies Ei correspond to the mass eigenstates mi of the neutrinos. Equation (2) is
a first order, linear and homogeneous differential equation. To find a solution, we first
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expand all operators in the following basis:

F0 = 1√
3
I3 Fj = 1√

2
Λj . (4)

This basis is defined by the identity I3 and the Gell-Mann matrices (Λj){j=1,...,8}, which
form a representation for the infinitesimal generators of the SU(3), fulfilling

[Λi,Λj ] =
∑
k

ifijkΛk . (5)

In this basis we expand an operator O according to

O =
8∑
i=0

Tr(OFi)Fi , (6)

as the nine matrices Fi form an orthonormal basis set with respect to the scalar product

〈Fi|Fj〉 := Tr[FiFj ] = δij , (7)

which can easily be verified using the explicit representation of the Gell-Mann matrices
given in [23]. Expanding both sides of equation (2) in this basis gives as prefactor in
front of Fj on the left hand side

Tr((∂tρ)Fj) = ∂tTr(ρFj) =: ∂tρj (8)

and on the right hand side

Tr((−i[H, ρ])Fj) = −i T r([H, ρ]Fj) . (9)

Next, expanding H and ρ in terms of the expansion (6) yields

=
∑
i,k

−i T r([Tr(HFi)Fi, T r(ρFk)Fk]Fj) =
∑
i,k

−i T r(HFi)Tr(ρFk)Tr([Fi, Fk]Fj) .

(10)
Continuing with equality (5), which generalises to the Fj , we get

=
∑
i,k,m

Tr(HFi) ρk fikm Tr(FmFj) =
∑
i,k

Tr(HFi) fikj ρk =:
∑
k

(
H̃
)
jk
ρk . (11)

So we derived
∂t~ρ = H̃~ρ (12)

with ρj = Tr(ρFj) and
(
H̃
)
ij

=
∑
l Tr(HFl) flji. This is a system of nine first order

linear differential equations, so it can be solved by matrix exponentiation:

~ρ(t) = exp(H̃) · ~ρ(0) . (13)
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This exponentiation can be computed straight forwardly for a given Hamiltonian H.
Technically, its computation time can be improved by diagonalising H̃ =: TH̃DT

−1,
then (13) can be evaluated as

~ρ(t) = T · exp(H̃D) · T−1 · ~ρ(0) . (14)

For the vacuum Hamiltonian (3), it turns out that H̃vac is block diagonal and each block
depends only on energy differences ∆ij := Ei − Ej . The result obtained in this case is

ρ(t) =
∑
i

ρi(t)Fi =

 ρ11(0) ρ∗21(0) ei∆21t ρ∗31(0) ei∆31t

ρ21(0) e−i∆21t ρ22(0) ρ∗32(0) ei∆32t

ρ31(0) e−i∆31t ρ32(0) e−i∆32t ρ33(0)

 . (15)

The expression to get the probability of measuring a certain neutrino flavour β at time
t if flavour α has been created at time t0 = 0 is given by

Pα→β = | 〈να, 0|νβ, t〉 |2 = Tr(ρα(0) · ρβ(t)) (16)

with ρα(0) = |να〉 〈να|. So we can rewrite (16) using (15) as

Pα→β =
∑
j,k

Uβj U
∗
αj Uαk U

∗
βk e

−i∆jkt . (17)

This shows that the oscillations are caused by the differences in the energies ∆jk. As
neutrino masses are very small (which was shown by experiments), neutrinos are ex-
tremely relativistic particles, so their energy is approximately their momentum. This
implies (expanding the energies to order m2

i
E2 ):

∆ij ≈
m2
i −m2

j

2E (18)

with E = 1
3(E1 + E2 + E3). So the oscillations arise due to mass differences of the

neutrinos. As oscillations have been observed by several experiments in the last decades,
it is highly improbable that more than one neutrino has zero mass.

Taking matter effects into account, we have to add an additional term to our vac-
uum Hamiltonian. As matter is dominated by electrons, mainly electron neutrinos will
interact with it in weak charged-current interactions. In flavour basis, we therefore get

Hint ≈
√

2GF ne

 1 0 0
0 0 0
0 0 0

 . (19)

These interactions are influenced by the electron density ne in that specific matter and
by the Fermi coupling constant GF =

√
2 g2

8m2
W

with the electroweak coupling constant g
and the mass mW of the W-boson. This gives the effective Hamiltonian in mass basis:

Heff = Hvac + U †Hint U . (20)

Inserting this Hamiltonian into (13) gives the solution for propagation in matter.
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2.2 Oscillations with Decoherence

As a next step, we want to consider oscillations in matter that are affected by deco-
herence. Our starting point is again equation (2). This equation describes the time
evolution of a neutrino system without decoherence. To include decoherence effects, we
have to add an extra term that models them, which we call D[ρ]. We now consider the
neutrino system as an open system coupled to the environment. This coupling is rep-
resented by an additional term in the time evolution equation (2) which can be written
down (following the formalism in [24]) as:

∂tρ(t) = −i[H, ρ(t)]−D[ρ](t) . (21)

This equation together with a certain choice for D[ρ](t) (see below) is called the Lindblad
Master equation and allows transition from a pure to a mixed state. It is the most general
time evolution equation that neglects memory effects, which are effects that happen due
to prior states of the neutrino system. They happen on much shorter timescales than
oscillations, thus they are unimportant for our purposes. Before imposing additional
physical conditions on the Lindblad Master equation, we want to choose a suitable basis
for our system. As we include matter effects according to (20), the effective Hamiltonian
is no more diagonal. Nevertheless, this Hamiltonian is still hermitian and therefore we
can diagonalise it again and work in the basis, where it is diagonal. We will call this
basis the effective mass basis and denote objects in this basis with m̃ in the index. The
effective Hamiltonian is constant in time, thus also the transformation into the effective
mass basis is constant in time and commutes with time derivatives. This gives the
Lindblad Master equation in the chosen effective mass basis:

∂tρm̃(t) = −i[Hm̃, ρm̃(t)]−D[ρm̃](t) . (22)

Equations of this form can also be seen as generators of a quantum dynamical semigroup
γt with

γt : ρm̃ 7→ ρm̃(t) (23)

for t ≥ 0 and with group composition law

γt ◦ γs = γt+s (24)

for t, s ≥ 0 (for detailed information see for example [25] or [26]). We continue by
imposing a few physical conditions on our neutrino system. First of all, we want to have
conserved probability for any initial state. This is equivalent to requiring a constant trace
of the density matrix ρm̃. In addition to that, we also expect the individual probabilities
for the different neutrino states to be positive or zero for all times in future. In a closed
system, this is equivalent to positivity. As we treat an open system coupled to the
environment, we even need complete positivity. This ensures that interactions within
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our system and with the environment keep the probabilities for the different states non-
negative. These two conditions fix the form of D[ρm̃](t) to

D[ρm̃](t) =
dim(H)2−1∑

n=1
({ρm̃(t), D†nDn} − 2Dn ρm̃(t)D†n) . (25)

In this equation, {., .} denotes the anticommutator. The sum goes from one to the
dimension of the Hilbert space of the system of interest squared minus one. For our
three-flavour picture, it goes from one to eight, so we get eight operators Dn. These
operators form by construction an orthonormal basis set in the neutrino mass basis with∑

j

D†nDn <∞ . (26)

We also expect the von-Neumann entropy

S[ρm̃](t) = Tr[ρm̃(t) · ln(ρm̃(t))] (27)

to permanently increase with time. This can be modeled by assuming the Dns to be
hermitian (see [27]). A last condition which we impose onto our system is energy conser-
vation. This is a strong constraint and a priori not justified, as we coupled our system
to the environment. On the physical side, energy loss is characteristic for dissipation,
while energy conservation is characteristic for decoherence processes. As we expect de-
coherence to occur faster than dissipation, we include energy conservation into our set of
physical conditions. On the technical side, without conserved energy our system would
have 36 new parameters (which are far too many unknowns for a first investigation of
decoherence effects), with conserved energy we only get three new parameters for the
three flavour case. Energy conservation, which can be expressed as

∂tTr[Hm̃ ρm̃(t)] = 0 , (28)

can be achieved by requiring Hm̃ to commute with the Dn, that is

[Hm̃, Dn] = 0 . (29)

This means that Hamiltonian and Dns can be diagonalised simultaneously. We assume
that this happens in the effective mass basis and therefore the Dns in this basis are given
by

Dn = diag{dn1, dn2, dn3}m̃ = D†n . (30)

We will now sketch the derivation of the solution for (21) using the above discussed
decoherence term and working in the effective mass basis following [15]. With the specific
form (30) of Dn and its hermiticity, the anticommutator in (25) becomes(

{ρm̃(t), D†nDn}
)
ij

= (d2
ni + d2

nj) · (ρm̃)ij(t) . (31)
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The other part of the decoherence term gets(
−2Dn ρm̃(t)D†n

)
ij

= −2 dni dnj · (ρm̃)ij(t) (32)

and thus the entire decoherence term in the Lindblad Master equation reads

(D[ρm̃](t))ij = Γij · (ρm̃)ij(t) · (1− δij) (33)

with Γij :=
∑8
n=1(dni − dnj)2. The decoherence is now encoded in the six parameters

{Γij}i,j∈{1,2,3},i 6=j . From the definition of the Γij it is immediately apparent that they
are symmetric in i and j, so decoherence is described by only three parameters, Γ21, Γ31
and Γ32. They are still not three independent parameters, but due to their definition
via the dni, two can be picked completely free and the third one is then only an angular
degree of freedom. This can be seen by setting one Γij to zero. Then the two remaining
Γs have the same value according to their definition. This dependency can be expressed
by using as degrees of freedom Γ21, Γ31, and a decoherence angle Θ and leads to

Γ32 := Γ31 + Γ21 cos2(Θ)− cos(Θ)
√

Γ21 (4 Γ31 − Γ21 (1− cos(Θ)) . (34)

Now we want to use this form of the decoherence term to find a solution for (22).
Evaluating the commutator in this equation and then subtracting (33) from it, we see
that, compared to section 2,

− i∆ij −→ −i(∆m̃)ij − Γij . (35)

This can also be shown by repeating the derivation shown in section 2 with the Lindblad
Master equation in effective mass basis. This will give an equation similar to (12), but
including also the coefficient matrix (which is diagonal as well) of the Dn expanded in
terms of the Gell-Mann matrices. As we would expect from (35), the final solution then
is

ρm̃(t) =

 (ρm̃)11(0) (ρm̃)∗21(0) ei∆21t−Γ21t (ρm̃)∗31(0) ei∆31t−Γ31t

(ρm̃)21(0) e−i∆21t−Γ21t (ρm̃)22(0) (ρm̃)∗32(0) ei∆32t−Γ32t

(ρm̃)31(0) e−i∆31t−Γ31t (ρm̃)32(0) e−i∆32t−Γ32t (ρm̃)33(0)

 .

(36)
Transition probabilities can be calculated analogously to (17) by using the unitary trans-
formation which transforms into the effective mass basis and the assignment (35).
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3 The ORCA Detector
In this section, we will take a closer look on ORCA, the detector for which we perform
the decoherence analysis. Before going into technical detail, we first sketch how neutrino
detection is feasible.

3.1 Neutrino Detection

As already mentioned above, neutrinos only interact in weak interactions. Therefore it
is not possible to detect them directly. So a neutrino detector has to focus on measuring
secondary particles created by such a weak neutrino interaction. During a weak interac-
tion, two interacting particles exchange a boson, either a W± or a Z0 boson. Depending
on the kind of boson that is exchanged, two different current interactions can be dis-
tinguished: the CC interaction is transmission of charged current (W± boson), while
the NC interaction is transmission of neutral current (Z0 boson). In CC interactions,
the neutrino is converted into a lepton with the same flavour the neutrino had and a
hadronic shower is created. NC interactions result in the conservation of the neutrino
and also a hadronic shower.

Figure 1: Interaction channels of neutrinos with matter. (credit: J. Tiffenberg, NUSKY11)

For a detector, shower-like and track-like light emission is visible. Different kinds of
shower-like events are very difficult to distinguish. Thus NC actions look the same, no
matter which neutrino flavour took part in it. In contrary, for CC actions the original
neutrino properties can be determined up to a certain degree of probability. As matter
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consists of electrons, in CC interactions created electrons have a short mean free path
and end up in an additional shower which creates multiple particles. Muons have a
large mean free path and will therefore pass through the detector leaving a track. Tau
leptons have a very short mean free path and form two showers, which are separated at
the relevant GeV energies by a much shorter distance than the detector can measure.
All charged particles propagating through matter polarise the atoms along their path
and therefore create an electromagnetic wave. Neutrinos are highly relativistic particles,
which means they have very high momenta. Therefore also many particles, which are
created by the weak interaction, have high momenta due to momentum conservation.
This results in a particle’s velocity greater than the speed of light in matter. So a
charged particle might be faster than the electromagnetic wave created by polarisation
of the medium. Then the waves created in different atoms cannot interfere destructively,
but form a radiation cone. This radiation can then be detected and is called Cherenkov
radiation. From this behaviour arises the classification of two main event topologies:
track-like events on the one hand, which contain CC muon interactions, and shower-like
events on the other hand, which contain all other interaction channels.

3.2 KM3NeT - Cubic Kilometre Neutrino Telescope

The ORCA detector, which is short for Oscillation Research with Cosmics in the Abyss,
is part of KM3NeT, short for Cubic Kilometre Neutrino Telescope, which is being built
in the Mediterranean Sea. ORCA consists of one building block (see Figure 2) and
is located in the deep-sea, about 40km offshore from Toulon in France. Aside from
ORCA, the other two building blocks which are to be deployed offshore from Sicily form
ARCA (short for Astroparticle Research with Cosmics in the Abyss). While ORCA’s
specifications are optimised for evaluating oscillation parameters of neutrinos, ARCA’s
main goal is to find sources of high-energetic neutrinos in the Galaxy. The building
blocks are similar and consist of the same parts, only the spacing between the single
detectors in each block is different for ORCA and ARCA. For investigating decoherence
in oscillations, the natural choice is to work with data collected by ORCA. Thus our
analysis will focus on ORCA.

3.3 Photomultiplier Tube

A photomultiplier tube (PMT) is a detector to measure photons. It can detect single
photons, but therefore works best with as few background photons as possible. As
KM3NeT is located at the bottom of the deep-sea, no light from the sun reaches the
detector. Thus PMTs are a very good choice to detect photons from the Cherenkov
radiation of particles propagating through water near the detector. In this section,
we briefly sketch the functionality of a PMT (see also Figure 3 for visualisation): An
incident photon hits the photocathode and ejects an electron from it. Inside the tube, a



13 Sensitivity of the ORCA neutrino detector to quantum decoherence effects

Figure 2: A building block of KM3NeT (Artist’s impression). (credits: Edward Berbee/Nikhef and
KM3NeT)

high voltage is applied, such that a large attracting force towards the other end of the
tube acts on the electron. So the electron is accelerated quickly. After passing through a
focusing electrode, it hits a first dynode. This process frees some new electrons which are
accelerated again and hit a second dynode after short propagation time. Each electron
frees a bunch of new ones and the process continues. After certain dynodes, a high
current of electrons has been created by the incident photon(s). This high current is
visible very well and converted into an electrical signal at the end of the tube.

Figure 3: A photomultiplier tube. (from Wikimedia Commons)

3.4 ORCA - Oscillation Research with Cosmics in the Abyss
ORCA is formed by 115 strings. These strings are fixed on the sea floor with one end,
while on the other end a buoy arranges each string such that it points vertically upwards.
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Each string consists of 18 digital optical modules (DOMs, see Figure 4). The DOMs are
pressure-resistant glass spheres containing 31 PMTs each. These PMTs emit a signal, if
they detect a photon. The spacing of the single strings is about 20m horizontally. The
DOMs are separated about 9m vertically and start about 40m above sea floor. These
distances make it possible to address neutrino energies in the GeV range. The first
strings have already been deployed. According to schedule, ORCA should be completed
by 2020.

Figure 4: A digital optical module (DOM) used for KM3NeT. (credits: KM3NeT)

The PMTs in the DOMs are distributed in five rings with six PMTs each. One
additional multiplier tube is at the bottom of the DOM, so it contains in total 19
PMTs in the lower and 12 in the upper hemisphere. The PMTs have a photo-cathode
diameter of at least 72mm and a length of 122mm. They consist of a ten stage dynode.
High voltage applied to it creates an amplification of 3 · 106. A reflector ring around the
face of each PMT increases the photon collection efficiency of each PMT by about one
third. To keep up optical contact between the PMT and the glass, the cavity inbetween
is filled with an optical gel. In addition to the 31 PMTs, each DOM also contains sensors
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permanently reporting its orientation and direction. All sensors and PMTs of one DOM
consume about 7 W together.
All data collected by the detector (with a trigger of approximately 0.3 photo-electrons)

is transferred to shore with a bandwidth of 1Gb/s per DOM. There, different filters on
multiple levels are applied to drop events which were not caused by neutrinos. These
backgrounds arise for example in atmospheric muons, bioluminescence caused by or-
ganisms in the deep sea, or 40K decays (that create electrons, anti electron-neutrinos
and photons among other particles). After that, several algorithms separate track- and
shower-like event topologies from which we can infer on the original neutrino, its ap-
proximate energy and direction.

3.5 Limits on the precision
Uncertainties on the reconstructed neutrino come from many different factors. To start
with, ORCA cannot distinguish neutrinos and antineutrinos. However, as from GeV
energies upwards the crossections of neutrinos and antineutrinos differ by a factor of
two, one can include this into the reconstruction process. Uncertainties in the oscilla-
tion parameters of the neutrino and also in the atmospheric spectra, neutrino flux and
earth matter density profile prevent us from calculating the exact amount of neutrinos
reaching the detector. Also during weak interactions information is lost, as the leptons
created in this interactions do not propagate in exactly the same direction as the neu-
trino did before. In addition, fluctuations in the development of particle cascades and
in the production and propagation of their Cherenkov radiation exist. Furthermore, the
detector has only limited efficiency and does not detect all photons. Finally, the filter
and reconstruction algorithms do not give perfect results. All these sources of errors
and limits on the precision lead to a smearing of the output of the detector. We will see
later that this smearing has high impact on our analysis. More information on limits on
the precision and a detailed analysis of uncertainties for charged current events can be
found in [28].
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4 Software and Setup

In this section we introduce our simulation tools. We start by illustrating the model we
used for the earth. Then we explain OscProb, which computes oscillation probabilities
of neutrinos. This program is included in paramNMH, a tool to transform the incident
neutrinos into event rates adapted to ORCA. Finally we document the considered os-
cillation parameters and discuss the investigated parameter space for the decoherence
parameters.

4.1 Model for Earth: PREM

Atmospheric muons are a big issue for neutrino astronomy. As one cannot hardly distin-
guish whether a downgoing muon was created by a neutrino interaction or by a reaction
of the cosmic background radiation with the atmosphere, such downgoing muons are no
reliable source for neutrino measurements. Therefore neutrino detectors measure parti-
cles that propagate through the earth. Neutrinos have a much higher mean free path
than muons. So, while muons cannot penetrate the earth, almost all neutrinos can at the
relevant GeV energies. According to the above derived formulae for oscillations, matter
affects the neutrino oscillations, so we need to know the properties of the earth and its
density at different radii. In addition to that, we also need to know the kind of matter
dominating each layer in order to be able to calculate the neutrino interaction probabil-
ity. To get this information, we use the Preliminary Reference Earth Model (PREM).
This model gives different physical quantities of the earth, like its density, with respect
to the radius. It was developed in 1981 by geophysicists (see [29]) and is sufficient for our
purpose. We interpolate it using 44 layers, which is an appropriate compromise between
accuracy and computation time. The difference of the results compared to these using
a more detailed interpolation is negligible. In Figure 5 this 44 layer model is visualised
and the exact values are given in the Appendix, see 8.

4.2 Calculating neutrino oscillation probabilities: OscProb

OscProb is a set of classes to compute exact neutrino oscillation probabilities for different
scenarios written in C++ by João A. B. Coelho (see [30]). It is based on a three flavour
model and uses the CERN data analysis framework ROOT (see [31]). The library
supports the following setups:

• Calculation of standard oscillation probabilities according to the procedure in sec-
tion 2

• Calculation of oscillation probabilities including any number of sterile neutrinos

• Calculation of oscillation probabilities including non-standard interactions
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Figure 5: The 44 layer PREM with the Earth matter density and the radial distance to
the centre of the Earth.

• Calculation of oscillation probabilities including the decoherence model introduced
in section 2

All these oscillations can be evaluated in vacuum or matter. For the matter case OscProb
comes along with the PREM and splits the calculation for the oscillation probabilities
into single layers of constant density. Also a visualisation of the result in form of a
histogram is implemented among other features.

4.3 Event rates for ORCA: paramNMH
paramNMH is a software package that simulates the detector response to an incident
neutrino flux for ORCA. It uses OscProb to calculate neutrino oscillation probabilities
and the Honda atmospheric neutrino flux model (see [32]) as parametrisation for the
original incident neutrino flux. The outcome is the number of events that are recon-
structed for a certain energy Erec and a certain zenith angle Θrec. The event number is
different for tracks and showers. It is calculated via

Nα(Θrec, Erec) =
∫
dE dΘ

∑
i

P IDiα (E)P reciα (Θrec, Erec|Θ, E)M eff
i (Θ, E)N int

i (Θ, E) .

(37)
Here, the index α denotes the classification of an event as track-like or shower-like. The
index i in the sum goes over all different neutrino flavours and (anti-)neutrinos. In the
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formula appears the term P IDiα (E) that gives the probability for a neutrino i of energy
E to be classified as an event α. Another contribution is P reciα (Θrec, Erec|Θ, E) which
models the detector response function, that is the probability for an event with energy
E and zenith angle Θ to be reconstructed with the energy Erec and the zenith angle
Θrec. N int

i (Θ, E) denotes the number of interacting neutrinos per unit mass of seawa-
ter. This quantity can be calculated using the (unoscillated) atmospheric neutrino flux
Φj(Θ, E), the oscillation probability of neutrino j oscillating into neutrino i, P oscji (Θ, E),
the crossection σi(E) of neutrino i, the mass mnucleon of the nucleons in water and the
live time ∆t:

N int
i (Θ, E) = σi(E) ∆t

mnucleon

∑
j

Φj(Θ, E)P oscji (Θ, E) . (38)

The last quantity left in (37) is the effective mass M eff
i (Θ, E). This gives the mass

of water contained in an equivalent detector with 100% detection efficiency and can be
calculated using

M eff
i (Θ, E) = ρwater Vgen

N sel
i (Θ, E)

N int
i (Θ, E)

. (39)

Here, ρwater is the density of seawater, Vgen the volume where the events are generated
and N sel

i (Θ, E) the number of selected events.
paramNMH evaluates the number of events for tracks and showers for a given recon-
structed energy and zenith angle range according to equation (37). As parameters it uses
the specifications of ORCA, the Honda neutrino flux model and oscillation probabilities
provided by OscProb.

4.4 Considered oscillation parameters
As already mentioned, a set of specifications for ORCA is already implemented in param-
NMH. Earth was modeled according to the PREM with 44 layers. The oscillation pa-
rameters were chosen according to the most recent parameters in [12] (except for Θ32,
which fluctuates somewhere between 40◦ and 50◦ with each new measurement). The
values are from January 2018 and can be seen in Table 1.

Parameter Unit normal ordering inverted ordering
∆m2

21 10−5 eV 2 7.40 7.40
∆m2

32 10−3 eV 2 2.420 2.465
Θ21 deg 33.62 33.62
Θ31 deg 8.54 8.58
Θ32 deg 45.0 45.0
δCP deg 234 278

Table 1: Oscillation parameters used in our studies. Values taken from [12].
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4.5 Investigated parameter space for the decoherence parameters
As outlined in the theory part (see section 2.2), using our approach we are left with
three decoherence parameters Γ21, Γ31 and Γ32. In order to be able to make statements
for the general case, we use three limiting cases. In each of the cases, we set one of
the decoherence parameters to zero. The other two are then equal to each other, which
follows directly from (34). So we get one effective decoherence parameter for each limiting
case. These limits give the most conservative results for the entire parameter space of
the three Γij , which is shown in detail in Appendix B of [21]. The specific limits are:

Limit Γ21 Γ31 Γ32

atmospheric limit (Alim) 0 γ γ
solar limit 1 (Slim1) γ γ 0
solar limit 2 (Slim2) γ 0 γ

For each limit, experimental data of other neutrino telescopes has already been anal-
ysed and upper bounds on the decoherence parameter γ have been set: The data has
been compared to theoretical expectations given with and without decoherence and the
γ value has been determined that can be excluded on a 95% confidence level. This
means that a decoherence parameter larger than the set upper bound can be excluded
with a probability of 95% or more with the given experimental data (SK [17], MINOS
[33], KamLAND [34], IceCube / DeepCore [21]). For our analysis, we used the lowest
existing upper bounds as starting point. Furthermore we tested different energy depen-
dencies of γ. In detail, we analysed the five cases of γ being independent of energy,
or dependent on energy in a power law with exponent ∈ {±1,±2}, that is in general
γ = γ0

(
E
GeV

)n
with n ∈ {0,±1,±2} . Aside from the limit, the bounds also depend

on the neutrino mass ordering. The detailed starting parameters can be extracted from
Table 2.

NO n = −2 n = −1 n = 0 n = 1 n = 2
Alim 4.3 · 10−20 2.5 · 10−22 4.0 · 10−24 1.0 · 10−27 1.0 · 10−31

Slim1 1.2 · 10−20 2.5 · 10−22 1.3 · 10−24 3.5 · 10−28 1.9 · 10−32

Slim2 7.5 · 10−21 3.7 · 10−24 9.7 · 10−25 2.4 · 10−28 9.0 · 10−33

IO
Alim 1.4 · 10−20 2.5 · 10−22 1.3 · 10−24 3.5 · 10−28 1.9 · 10−32

Slim1 8.3 · 10−21 2.5 · 10−22 9.8 · 10−25 2.4 · 10−28 9.0 · 10−33

Slim2 5.0 · 10−20 3.7 · 10−24 4.1 · 10−24 1.0 · 10−27 1.0 · 10−31

Table 2: Upper limits for the decoherence parameter on 95% CL from data collected by
SK [17], MINOS [33], KamLAND [34] and IceCube/DeepCore [21]. The bold
value will be used as example in section 5.1.
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5 Sensitivity of ORCA to the most recent lowest decoherence
bounds

In the next two sections we present our results and discuss them. In this section we start
by visualising the impact of the detector on the results. Then we give the sensitivity of
ORCA to decoherence using the lowest bounds previously found by other experiments
and summarised in Table 2.

5.1 From flux to asymmetries

5.1.1 Flavour topologies

We start with analysing the loss of information and the flow of data given by the Honda
neutrino flux through the detector (modeled by OscProb and paramNMH). For this
analysis we focus on the atmospheric limit in normal ordering (NO) with an energy in-
dependent decoherence parameter. It can be generalised to the other cases. In Figures 6
and 7 are shown the event rates of neutrinos separately for electron, muon and tau neu-
trinos, that are measured by the detector within three years. The first figure corresponds
to no decoherence, the second one to the atmospheric limit for decoherence, thus using
γ = 4.0 · 10−24 (see Table 2). For the analysis a binning of 100 × 100 was used. From
the figures it is apparent that the event number of the different neutrino types differs
reasonably. While detected electron neutrinos mainly carry energies between 4 GeV and
10 GeV and arrive at a zenith angle close to 90◦ (horizon), detected tau neutrinos, which
are almost all generated by oscillations, are dominant in the sector between 20 GeV
and 30 GeV for a zenith angle close to 180◦ (up-going) and form a broad band up to a
zenith angle of approximately 105◦, where their number and energy decreases. Below 3
GeV no tau neutrinos arrive at the detector, as the production energy threshold for tau
leptons is approximately 3 GeV. In the event number diagram of the muon neutrinos
the oscillation pattern is more apparent. Clearly visible is the band, where some of the
muon neutrinos oscillate into tau neutrinos between 20 GeV and 30 GeV for a zenith
angle close to 180◦. Decoherence does not change these structures. This is due to the
relatively small distance the neutrinos have travelled until they reach the detector, as
neutrinos at this energy are all atmospheric neutrinos. Nevertheless, decoherence effects
are clearly measurable at these energies, as we will see later in this section. Before
we are able to extract this information about measurability of decoherence, we have to
take into account the limited precision of detector and the reconstruction algorithms,
which was discussed in section 3.5. This leads to a substantial decrease of structure in
the oscillograms. Exemplary, this is shown in Figures 8 for no decoherence and 9 for
the decoherence case considered in Figure 7. The concentration of the distinct flavours
at different positions in the diagrams is still clearly recognizable. While the structure
of the tau and electron neutrinos is still approximately the same as before, as they do
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not show subtle structures, the oscillatory structure prior observed in the oscillogram
of the muon neutrinos now has completely vanished. The reason lies in the different
event topologies of the neutrino flavours, which were introduced in section 3.1: On one
side, an interaction of tau or electron neutrinos ends up in showers, which produce a lot
of particles that can be detected and therefore the direction and energy of the original
neutrino can be reconstructed fairly well. On the other side, an interaction of a muon
neutrino produces a muon. Muons are minimal ionising particles according to Bethe-
Bloch, which means that their energy loss while propagating through a medium is very
low compared to other particles like electrons or tauons. Thus they form a long track
and leave the detector. A consequence of that is loss of information, so it becomes much
more difficult to reconstruct the energy of the muon and therefore also the energy of the
original neutrino cannot be reconstructed with such a high precision as the energy of an
electron or tau neutrino. This results in the complete loss of the oscillatory structure of
muon neutrinos in the oscillogram. Considering the tau neutrino diagram, it is conspicu-
ous that the reconstructed energy range of the neutrinos differs clearly from the original
one. Before the detector, the above mentioned energy band started between 20 GeV and
30 GeV at zenith angle 180◦. The reconstruction algorithms lower the energy associ-
ated to this band by roughly 10 GeV. Also the oscillatory structure, that gets smeared
due to the detector, is located at lower energies than it originally was: Before detector
reconstruction effects it was close to 8 GeV, afterwards it is lowered to approximately
5.5 GeV. So the reconstruction algorithm for tau neutrinos is not optimal concerning
their original energies. This energy shift arises in the decay chain of the created tauon:
When the tauon decays, it creates apart from an electron / muon / hadronic shower
also one or two electron / muon neutrinos. These neutrinos carry some energy of the
original tau neutrino out of the system, which cannot be measured. In Figure 10 the
asymmetry between the case without decoherence and the above specified atmospheric
limit is plotted. The asymmetry is a quantity to compare both cases and was calculated
for each bin of the oscillogram using the following formula:

Asym := AL−ND√
ND

, (40)

where AL denotes the bin value of the atmospheric limit and ND the value of the case
with no decoherence. In our case we see that the asymmetry is very small for electron
neutrinos. There is one mentionable difference of more than 4 % at a reconstructed
energy of about 7 GeV. Here, the atmospheric limit predicts more electron neutrinos
coming from the center of the earth with a smaller cosine of the zenith angle than is
the case without decoherence. But in exchange to that, it suggests less neutrinos at the
same energy to come from a zenith angle of approximately 134◦. For muon and tau
neutrinos, the decoherence effect is clearly visible at energies around 25 GeV. Here the
asymmetry is quite large at about 10 %. While the asymmetry for electron and muon
neutrinos tends to vanish for higher energies, it increases for tau neutrinos and reaches
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its maximum of more than 15 % in the oscillogram for the highest considered energy of
100 GeV. Thus decoherence effects may also be worth to be investigated by detectors
covering higher energy ranges than ORCA, like ARCA.
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(a) Electron neutrinos

(b) Muon neutrinos

(c) Tau neutrinos

Figure 6: Number of detected events within three years for the different neutrino flavours
for no decoherence and normal ordering. cos(Θ) denotes the cosine of the
zenith angle, Eν the true energy of the neutrino.
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(a) Electron neutrinos

(b) Muon neutrinos

(c) Tau neutrinos

Figure 7: Number of detected events within three years for the different neutrino flavours
for atmospheric limit, normal ordering, without energy dependence of γ (see
Table 2). cos(Θ) denotes the cosine of the zenith angle, Eν the true energy of
the neutrino.
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(a) Electron neutrinos

(b) Muon neutrinos

(c) Tau neutrinos

Figure 8: Number of detected events within three years for the different neutrino flavours
without decoherence and for normal ordering. cos(Θreco) denotes the recon-
structed cosine of the zenith angle, Ereco the reconstructed energy of the neu-
trino.
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(a) Electron neutrinos

(b) Muon neutrinos

(c) Tau neutrinos

Figure 9: Number of detected events within three years for the different neutrino flavours
for atmospheric limit, normal ordering, without energy dependence of γ (see
Table 2). cos(Θreco) denotes the reconstructed cosine of the zenith angle, Ereco
the reconstructed energy of the neutrino.



Sensitivity of ORCA to the most recent lowest decoherence bounds 28

(a) Electron neutrinos

(b) Muon neutrinos

(c) Tau neutrinos

Figure 10: Asymmetries between the atmospheric limit (normal ordering, without energy
dependence of γ, see Table 2) and no decoherence on the number of detected
events within three years for the different neutrino flavours. cos(Θreco) de-
notes the reconstructed cosine of the zenith angle, Ereco the reconstructed
energy of the neutrino.
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5.1.2 Event topologies

Unfortunately ORCA cannot distinguish the three neutrino flavours very well, as was ex-
plained in section 3.1. Only a separation in track-like and shower-like events is possible,
which leads to an additional loss of information. In Figure 11 the event rates for these
two topologies are visualised for no decoherence, in Figure 12 they were calculated with
decoherence in the same atmospheric limit that was considered in section 5.1.1. The
behaviour of the secondary particles created by the different neutrino types can be rec-
ognized very well. The shower-like events mainly arise from electron and tau neutrinos.
Therefore the pattern of the shower-like events is a combination of the patterns obtained
for electron and tau neutrinos (compare for example Figure 8 to Figure 11). The band
created by the tau neutrinos is not directly apparent any more in the shower-like event
diagram. This is due to the small amount of tau neutrinos being detected compared to
the number of electron neutrinos in the same time interval. The underlying reason of
that is the difference in the crossections for charged current tauon and electron / muon
reactions, where the first one is much smaller than the latter two due to the large mass
of the tauon. The asymmetry plots are shown in Figure 13. For the considered case, it
is clearly recognizable and in some parts of the oscillogram even larger than 8 %. Such
asymmetry plots form the first central result of our project, as they show, for which cases
we are able to find new information on decoherence using ORCA. Thus we calculated
the asymmetries for all cases named in section 4.5. These oscillograms will be discussed
in the next section.
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(a) Shower-like events

(b) Track-like events

Figure 11: Number of detected events within three years for the different event topolo-
gies without decoherence for normal ordering. cos(Θreco) denotes the recon-
structed cosine of the zenith angle, Ereco the reconstructed energy of the
neutrino.
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(a) Shower-like events

(b) Track-like events

Figure 12: Number of detected events within three years for the different event topologies
for atmospheric limit, normal ordering, without energy dependence of γ (see
Table 2). cos(Θreco) denotes the reconstructed cosine of the zenith angle,
Ereco the reconstructed energy of the neutrino.
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(a) Shower-like events

(b) Track-like events

Figure 13: Asymmetries between the atmospheric limit (normal ordering, without energy
dependence of γ, see Table 2) and no decoherence on event numbers measured
by the detector within three years for the different event topologies. cos(Θreco)
denotes the reconstructed cosine of the zenith angle, Ereco the reconstructed
energy of the neutrino.
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5.2 Sensitivity to the lowest bounds on decoherence set by MINOS,
KamLAND, IceCube and DeepCore

After having understood the path of the neutrino flux information through the detector
and its evaluation using asymmetries, in this section we present different asymmetry
plots for certain parameters. These parameters were in detail named in section 4.5 and
we also gave reasons for using specifically these values.

5.2.1 Energy independent gamma

For an energy independent decoherence parameter and normal ordering the results for
solar limit 1 and 2 look similar to the ones we got for the atmospheric limit. The
structures look quite similar and also the size of the asymmetries is comparable (for
shower-like events up to ±3 %, for track-like events up to 8 %). For inverted ordering
the structures and magnitudes mainly remain comparable, only slight deviations can be
observed. The detailed asymmetry plots can be found in Figure 14 and Figure 15.

Figure 14: Asymmetry for atmospheric limit and no decoherence using an energy inde-
pendent γ (see Table 2). Upper row: normal ordering, shower-like events
(left) and track-like events (right). Lower row: inverted ordering, shower-like
events (left) and track-like events (right).
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Figure 15: Asymmetry for solar limit 1 / 2 and no decoherence using energy independent
γ (see Table 2). Left column: shower-like events for solar limit 1 (normal
ordering, inverted ordering) and for solar limit 2 (normal ordering, inverted
ordering). Right column: analogously for track-like events.
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5.2.2 Power law for dependency of gamma on energy with exponent -1

For γ depending on the energy in a power law with exponent −1, we get a larger spread
in the asymmetries. While the atmospheric limit provides us with asymmetries that are
larger than 50 % in some cases, the solar limit 2 gives asymmetries of only a few per
mille. This is due to the fact that in this limit, the considered decoherence parameter
is almost two orders of magnitude smaller than the one for atmospheric and first solar
limit (see Table 2). So we give here only the asymmetry plots for the atmospheric limit,
as they are the most pronounced ones, see Figure 16. For the others, we reference to the
analysis in Section 6.1.

Figure 16: Asymmetry for atmospheric limit and no decoherence using γ ∝ E−1 (see
Table 2). Upper row: normal ordering, shower-like events (left) and track-
like events (right). Lower row: inverted ordering, shower-like events (left)
and track-like events (right).
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5.2.3 Power law for dependency of gamma on energy with exponent -2

This case gives the highest asymmetries compared to the other considered parameter sets.
The calculated asymmetries are in some parts of the limits more than 80 %. This high
sensitivity arises from two main reasons. On the one hand, the given upper boundaries
for the decoherence parameter are of the order of 10−20 and therefore several orders of
magnitude larger than the bounds given for the other exponents of the power law. On the
other hand, this is an energy range where ORCA has good sensitivity due to its geometry.
As the observed energy range of ORCA centers around 10 GeV, the decoherence effect
will be of the order (see for example (36)):

Γ · L = γ

(
E

GeV

)−2
· L ≈ 10−22 · 107 GeV m ≈ 10−6 eV m ≈ 10 , (41)

where we used the propagation length L of the neutrinos instead of the propagation
time t in equation (36). As ORCA works with atmospheric neutrinos, this propagation
length L is roughly the diameter of the earth. In addition, we used that in natural units
1 eV ≈ 0.5 · 107 m. Decoherence enters the oscillations in terms of the additional factor
e−Γt ≈ e−10, which clearly changes the outcome and is well measurable by ORCA. In
Figure 17 and Figure 18 the asymmetries for the case of γ ∝ E−2 are plotted.

5.2.4 Power law for dependency of gamma on energy with exponent 1 or 2

Here, the geometry and size of ORCA as well as the upper boundaries given in Table
2, which are very low compared to the other cases, make it impossible to gain new
information for these two cases with ORCA. Performing a simple estimate similar to
(41) using the highest upper bound for each case (that is 10−27 for γ ∝ E and 10−31 for
γ ∝ E2) and 100 GeV as reference energy for ORCA, so the highest observable energy,
we get for γ ∝ E

Γ · L = γ

(
E

GeV

)1
· L ≈ 10−25 · 107 GeV m ≈ 10−9 eV m ≈ 10−2 , (42)

and for γ ∝ E2

Γ · L = γ

(
E

GeV

)2
· L ≈ 10−27 · 107 GeV m ≈ 10−11 eV m ≈ 10−4 . (43)

So, for both cases the decoherence effect is orders of magnitude smaller than for the
other cases (see for example (41)). Thus ORCA cannot provide new information if
gamma depends on E or E2. But KM3NeT also provides access to these cases: ARCA,
which is sensitive to higher energies than ORCA, may be able to address the energy
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Figure 17: Asymmetry for atmospheric limit and no decoherence using an γ ∝ E−2 (see
Table 2). Upper row: normal ordering, shower-like events (left) and track-
like events (right). Lower row: inverted ordering, shower-like events (left)
and track-like events (right).

regimes needed to work with these two cases and to look for decoherence effects there.
In ARCA, L increases from 107 m (once through the Earth) up to 1020 − 1025 m, so we
would expect a lot of new information on decoherence in this region. Unfortunately, this
is compensated by the very low flux (and thus bad statistics) of astrophysical neutrinos
that arrive at the detector from such distances (see [35] for more information on quantum
decoherence of high-energy neutrinos). However, a sensitivity study for ARCA is outside
the scope of this project.
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Figure 18: Asymmetry for solar limit 1 / 2 and no decoherence using γ ∝ E−2 (see
Table 2). Left column: shower-like events for solar limit 1 (normal ordering,
inverted ordering) and for solar limit 2 (normal ordering, inverted ordering).
Right column: analogously for track-like events.
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6 Sensitivity of ORCA to quantum decoherence
In this section we present and discuss the sensitivity of ORCA to quantum decoherence.
We analyse the sensitivity of ORCA on simulated data to see if detailed analyses can
provide us with new lower bounds on the decoherence parameters. To achieve this, we
first analyse the sensitivity to the decoherence parameter and then test the dependence
of the sensitivity on the mixing angle Θ23.

6.1 Sensitivity to the decoherence parameter
In the last step of the project we tested the sensitivity of ORCA to the decoherence
parameter γ. We performed the study for normal and inverted ordering and for the five
different energy dependencies named above. In the simulation, we worked with data
taken during three years and we varied the parameter of γ over several orders of magni-
tude. For each value we made a fit for each of the three limits, using the same parameters
as in the previous section. This generalises the asymmetries obtained in section 5.2. For
comparison we also marked the upper bounds from Table 2 with vertical lines. The
given values from literature are all on 95 % confidence level (CL), therefore we also used
this CL as reference value. The sensitivity analyses were performed using paramNMH.
For each ordering, energy dependence of γ and limit, a fit of the oscillogram without
decoherence to the one with decoherence was computed. The only fixed constraint was
Θ13 which is known with good precision. Then the algorithm evaluated the minimum
sensitivity by slight variation of the other parameters entering the equations, which are
Θ23, δCP , ∆m2

32, the ratios
#ν̄e
#νe ,

#ν̄µ
#νµ ,

#νe
#νµ (where # denotes ’number of’), as well as the

ratio between track and shower-like events. The minimisation process is performed by
paramNMH using Minuit2 (see [36] for more details).
The minimisation algorithm converged for almost all considered cases. Failures occured
at the atmospheric limit with inverted ordering, where the minimisation did not con-
verge for γ ∝ E0, γ ∝ E1 and γ ∝ E2. Nevertheless, the discussions in section 5.2 have
shown that these cases are uninteresting for ORCA, as the detector cannot provide new
information for them.
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Energy independent gamma

For energy independent γ, the analyses resulted in Figure 19. Here, ORCA is not able
to improve the limits on the decoherence parameter on a 95 % confidence level. Its
sensitivity is comparable to the sensitivity of IceCube for this case.

Figure 19: Sensitivity of ORCA to decoherence for energy independent γ. Upper bounds
taken from Table 2. Unfortunately, the computation for the atmospheric limit
(inverted ordering) did not work correctly, but from section 5.2 follows that
there is no new information from ORCA for this limit.
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Power law for dependency of gamma on energy with exponent -1

For γ ∝ E−1 ORCA can provide new information for the atmospheric limit and the
solar limit 1, which is apparent from Figure 20. This implies that data gathered by
ORCA can be analysed in terms of decoherence. If decoherence effects appear, assuming
γ ∝ E−1, the parameter must be somewhere within ORCA’s sensitivity region below the
old upper bound. If no decoherence effects are observed, we are able to lower the upper
bound for this case by approximately one order of magnitude. This discussion holds
for both normal and inverted ordering, as their behaviour is quite similar for γ ∝ E−1,
which is visible in Figure 20. We do not list the exact new values for γ that could
be interpolated from the plots, as our analysis was qualitatively, so quantitative values
might be misleading.
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Figure 20: Sensitivity of ORCA to decoherence for γ ∝ E−1. Upper bounds taken from
Table 2.



43 Sensitivity of the ORCA neutrino detector to quantum decoherence effects

Power law for dependency of gamma on energy with exponent -2

Following from the considerations about the magnitude of decoherence made in section
5.2.3, we expect to get the highest significance for γ ∝ E−2 compared to the other cases.
And indeed, as is recognizable in Figure 21, in this case ORCA has a sensitivity of 15σ
to 20σ for decoherence at the starting values in Table 2. This implies that we can
deliver new input in this case: Either decoherence is measured, or we can set new upper
boundaries that are approximately two orders of magnitude smaller than the old ones.

Figure 21: Sensitivity of ORCA to decoherence for γ ∝ E−2. Upper bounds taken from
Table 2.
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Power law for dependency of gamma on energy with exponent 1 or 2

For γ ∝ E or γ ∝ E2 the existing upper bounds for the decoherence parameters are
several orders of magnitude below the sensitivity of ORCA, see Figure 22. The reasons
for this lie in the geometry of the detector, which has been explained and estimated in
section 5.2.4. Therefore no new information can be expected for this parameter set from
ORCA.

Figure 22: Sensitivity of ORCA to decoherence for γ ∝ E1 (left column) and γ ∝ E2

(right column). Upper bounds taken from Table 2. Unfortunately, the com-
putations for the atmospheric limit (inverted ordering) did not work correctly,
but from section 5.2 follows that there is no new information from ORCA for
these limits.
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6.2 Dependence of the sensitivity on the mixing angle Θ23

As a next step we analysed how the sensitivity of ORCA to decoherence depends on the
value of Θ23. For previous simulations we assumed Θ23 = 45◦. We chose this value as the
3σ-range is approximately between 40◦ and 50◦ and the best fit value is also fluctuating
between these two edges. As Θ23 is a crucial parameter for determining the neutrino
mass ordering and its value is not known very well, we wanted to test how sensitivity
analyses for decoherence may change if a new value for Θ23 is fixed. We performed
sensitivity analyses for both normal and inverted ordering using the five different cases
named above for the energy dependence of γ. The values of γ were assigned according
to Table 2. As ORCA is not sensitive to the cases γ ∝ E and γ ∝ E2, we are only going
to present the results for the other three cases. These results can be seen in Figure 23
for normal ordering and in Figure 24 for inverted ordering.
The sensitivity analyses were performed using paramNMH. For each ordering, energy
dependence of γ and limit, a fit of the oscillogram without decoherence to the one with
decoherence was computed using each integer value of Θ23 between 40◦ and 50◦ (bound-
aries included) as starting point. The only fixed constraint was Θ13 which is known with
good precision. Then the algorithm evaluated the minimum sensitivity by slight varia-
tion of the other parameters entering the equations, which were named in the previous
section.
In summary, the highest minima for the sensitivity lie close to 45◦ for almost all con-
sidered cases. So in order to generalise the asymmetries we got and also the sensitivity
analyses on γ (which were presented in the previous section), we have to lower the
sensitivity of our results slightly, depending on the most recent best fit value of Θ23.
Nevertheless, the decrease of sensitivity is for most cases lower than 1σ and in general
lower than 2σ. Details can be taken from Figure 23 and Figure 24.
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Figure 23: Sensitivity of decoherence to Θ23 for normal ordering. The values of γ were
taken from Table 2.
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Figure 24: Sensitivity of decoherence to Θ23 for inverted ordering. The values of γ were
taken from Table 2.
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7 Conclusion and Outlook
Within the research project we performed a first analysis whether ORCA can give
new insights into non-classical decoherence effects of neutrinos. Using a simple model,
we modified existing analysis tools and made a systematic study for a small specific
parameter room. This particular choice of parameters was motivated and we were
able to deduce predictions for a fairly high volume of the parameter space from it.
Our computations showed that ORCA gives new information on quantum decoherence
of neutrino systems and that therefore more detailed analyses promise to be fruitful.
To conclude, in this project we found out that ORCA is an influential player in the
detection of decoherence and we get new knowledge on decoherence with data gathered
by ORCA.
Due to its geometry, we found that ARCA might be a complementary supplement.
Thus KM3NeT should be able to deliver new values for almost the entire parameter
space of the decoherence parameters.

Possible extensions of the project include a more complex model for decoherence
than the one we applied, for example one could try to drop the condition of energy
conservation. This gives rise to many new, unknown decoherence parameters. But
detailed investigations of the new parameter space may give certain limits where
only few independent parameters remain, as it was the case for our analysis. Also a
systematic analysis of the parameter space we used is productive. When performing the
fits to determine the sensitivity of ORCA to quantum decoherence effects, we assumed
that the dependency has similar behaviour like the sensitivity to the neutrino mass
ordering on Θ23. This is a priori not justified, but detailed analyses of the parameter
space and its behaviour when investigating decoherence require significantly more time.

As decoherence might have an essential influence on the neutrino oscillation pa-
rameters we measure and also might give access to quantum gravity theories, it is of
high importance to continue research on this topic.
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8 Appendix
Values for the 44 layer PREM

Radius (km) Density (103kg/m3) Z/A Layer
200.0 13.088 0.4691 Inner Core
400.0 13.080 0.4691
600.0 13.054 0.4691
800.0 13.010 0.4691
1000.0 12.949 0.4691
1200.0 12.871 0.4691
1221.5 12.775 0.4691
1400.0 12.166 0.4691 Outer Core
1600.0 12.069 0.4691
1800.0 11.947 0.4691
2000.0 11.809 0.4691
2200.0 11.655 0.4691
2400.0 11.483 0.4691
2600.0 11.293 0.4691
2800.0 11.083 0.4691
3000.0 10.853 0.4691
3200.0 10.602 0.4691
3400.0 10.327 0.4691
3480.0 10.029 0.4691
3600.0 5.566 0.4954 Mantle
3630.0 5.506 0.4954
3800.0 5.491 0.4954
4000.0 5.407 0.4954
4200.0 5.307 0.4954
4400.0 5.207 0.4954
4600.0 5.106 0.4954
4800.0 5.003 0.4954
5000.0 4.898 0.4954
5200.0 4.790 0.4954
5400.0 4.678 0.4954
5600.0 4.563 0.4954
5701.0 4.443 0.4954
5771.0 3.992 0.4954 Crust, Sea,
5871.0 3.976 0.4954 and Atmosphere
5971.0 3.850 0.4954
6061.0 3.543 0.4954
6151.0 3.490 0.4954
6221.0 3.360 0.4954
6291.0 3.367 0.4954
6346.6 3.375 0.4954
6356.0 2.900 0.4956
6368.0 2.600 0.4956
6371.0 1.027 0.5525
6386.0 0.001 0.4991
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