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1 Introduction

Most of the radiation which spreads through the universe and enters our atmosphere is ther-
mal radiation. It is generated by hot objects like stars. However, a certain amount of this
radiation has no thermal origin. The best-known example for non-thermal radiation are galac-
tic cosmic rays and extragalactic cosmic rays. In contrast to the radiation emitted by stars,
their power-law spectrum is not correlated to the temperature. Furthermore, the energies of
extragalactic cosmic rays up to 1020 eV are that high that their origin is not conceivable by
any known thermal emission mechanism [1].
The exploration of cosmic rays began in the year 1912, when the Austrian physicist Victor
Hess discovered cosmic rays in his famous balloon experiments. By using a balloon he mea-
sured an increasing ionisation from an altitude of 1 km. He concluded that high-energy cosmic
particles entered the atmosphere, namely cosmic rays [2]. For his discovery, he was awarded
the Nobel Prize in Physics in the year 1936. Since then, cosmic rays and the details of their
origin have been of particular interest in the field of research. Nowadays it is supposed that
cosmic particle accelerators, for example rotating neutron stars, pulsars, active galactic nuclei
and shock wave fronts of supernova explosions, are the origin of cosmic rays. In these acceler-
ators charged particles such as protons (hydrogen nuclei), α-particles (helium nuclei), nuclei
from more massive elements and electrons are accelerated to high energies until they leave the
accelerator and start to spread throughout the universe [1, 3].
The research of cosmic ray sources is challenging since charged particles are deflected by galac-
tic and intergalactic magnetic fields. In contrast, it is possible to observe gamma-rays, which
are generated as secondary particles of cosmic rays during their interaction with the ambient
medium. Gamma-rays have the advantage that they can be traced directly back to their origin.
By observing cosmic gamma-rays, it is therefore possible to localise the above-named cosmic
accelerators [1].

Gamma-rays and cosmic rays can be measured in different ways. One possibility are space ob-
servatory satellites like the Fermi Gamma-ray Space Telescope. However, such satellites only
have a limited detector size due to cost and constructional reasons. Because of the small flux
of gamma-rays for higher energies, it is not possible to measure them with space observatory
satellites. In order to determine very high energy (VHE) gamma-rays for energies between
1011 to 1014 eV, ground-based telescopes via the Imaging Atmospheric Cherenkov Technique
are used (cf. Chapter 3). These telescopes measure the Cherenkov light of air showers. Those
are generated when cosmic rays or gamma-rays enter the atmosphere. One experiment which
uses the Imaging Atmospheric Cherenkov Technique is the High Energy Stereoscopic System
(H.E.S.S.). It was named after Victor Hess. Further information about H.E.S.S. will be given
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in Chapter 3. In Figure 1.1, one of the small telescopes of H.E.S.S. is shown together with
galactic VHE gamma-ray sources along the galactic plane.

Supernova remnants (SNR) are prime candidates as sources of galactic VHE gamma-rays and
will be introduced in Chapter 2. So far, the detailed nature of the generation of gamma-rays in
the acceleration process within SNRs has not been clearly understood. Either mainly leptonic
or mainly hadronic particles are accelerated in the SNRs. Thus, a leptonic or a hadronic
scenario are a possible origin of gamma-rays. To investigate this topic further, it is necessary
to study the morphology of a supernova remnant in more detail. Thereby, the resolution of the
gamma-ray data plays a key role. The resolution can be improved by applying deconvolution
algorithms to the data. Yet it is important to understand, in which way spacial deconvolution
affects the data and how the development of deconvolution depends on the characteristics of
the source like its morphology or brightness.
In order to study deconvolution algorithms in the field of gamma-ray astronomy, simulations of
supernova remnants with different morphologies are a reasonable starting point. In the context
of this Master’s thesis, two different deconvolution algorithms are introduced in Chapter 4:
the Richardson-Lucy algorithm and the Maximum-Entropy algorithm. This is followed by the
explanation of the simulation of gamma-ray images in general and for sources with different
morphologies (cf. Chapter 5). Moreover, the development of deconvolution depending on the
iteration steps of the algorithm (in particular for the Richardson-Lucy algorithm) and different
aspects of the source are discussed. The results of this study are presented in Chapter 6
and in Chapter 7. Finally, the well-known supernova remnant RX J1713.7-3946 is examined.
This thesis concludes with a demonstration of an application of deconvolution algorithms
in the case of a correlation study between deconvoluted gamma-ray data and X-ray data of
RX J1713.7-3946 (cf. Chapter 8). It is intended to illustrate, how deconvolution algorithms
help to improve the investigation of the morphology of SNRs.

Figure 1.1: Photo montage of the night sky over Namibia with the H.E.S.S. map of the
galactic plane survey. The telescope in the foreground is one of the small H.E.S.S.
telescopes. The red spots in the background are VHE gamma-ray sources observed
by H.E.S.S. [4].
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This chapter is an introduction to supernova remnants. The current knowledge of their evolu-
tion and morphology is presented. Moreover, their role as galactic VHE gamma-ray accelera-
tors and in particular the two radiation scenarios which contribute to the production of VHE
gamma radiation are discussed.

2.1 Evolution and Morphology
During the explosion of a supernova, high energetic gas is ejected into the interstellar medium
(ISM). In the following, the evolution of the supernova remnant is explained. In total four
phases are distinguished:

Phase I: Free Expansion Phase

In the free expansion phase, a shock front is formed by the interaction between the ISM and
the ejected gas. Thereby, a shell structure is formed. During the process, the gas from the
SNR is slowed down [5]. SNRs in the free expansion phase can be identified by the lack of
hydrogen lines in their spectra. The radius R of the SNR is proportional to the age t of the
SNR.

R ∝ t (2.1)

The phase ends when the order of swept-up-mass of the ISM is comparable to the amount of
ejected mass [6].

Phase II: Sedov-Taylor Phase

In the Sedov-Taylor Phase, the swept-up matter dominates the supernova remnant. The
energy is conserved because radiative losses are negligible. The phase can be described by

R3v2 = constant. (2.2)

R denotes the radius of the remnant and v the velocity of the shock. From Equation 2.2
follows that the velocity of the shock decreases with increasing radius. Thus, the kinetic and
thermal energies are separately conserved [5]. The Sedov-Taylor phase ends when the energy
loss due to radiative cooling is no longer negligible [6].
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Phase III: Snowplough Phase

In the Snowplough Phase, the matter behind the shock cools quickly [5]. The cooling losses
take away most of the shock energy and the shell moves at a constant radial momentum [6].

Phase IV: Dispersal Phase

The interstellar gas which surrounds the SNR moves randomly. In the Dispersal Phase, the ve-
locity of the shell becomes comparable to the sound velocity of the ISM. The SNR is dispersed
by these random motions. Finally it loses its identity and merges into the ISM [5, 6].

Morphology

On the basis of radio observations, it is understood that there exist at least three different
types of SNR morphologies [7]. The three types of morphology are:

− Shell type remnants:
The vast majority of observed SNRs show a shell type morphology. They have the
appearance of a ring-shaped structure with nearly no central emission. The evolution
of a SNR described above, refers to a shell-like morphology [7].

− Crab-like remnants:
These SNRs are centrally-filled, containing a pulsar additional to the shock wave front.
An example of this morphology is the Crab nebula [7].

− Composite remnants:
There have also been observed SNRs with a “hybrid” morphology. They have a shell
structure, but the shell is further surrounded by a centrally condensed nebula. It looks
like a hybrid of the first two morphologies, depending on the waveband which is observed
[7].
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2.2 Diffusive Shock Acceleration
In SNRs, cosmic rays are accelerated through a diffusive shock acceleration mechanism. This
acceleration mechanism is described by the first-order Fermi acceleration in the presence of
strong shock waves. Historically seen the second-order Fermi acceleration mechanism was
proposed before.

2.2.1 The Second-Order Fermi-mechanism
The idea of the second-order mechanism is that particles can be accelerated to high energies
by colliding with clouds in the ISM. In the original description by Fermi, charged particles
are reflected from randomly moving “magnetic mirrors” and gain energy stochastically from
these reflections [8, 9].
The mirrors are presumed as infinitely massive. Hence, their velocity v does not change during
the collision. With the angle θ between the initial direction of the particle and the surface of
the mirror and γL the Lorentz factor, the energy E′ of a particle with initial energy E after
the collision in the centre of momentum frame is

E′ = γL(E + vp cos θ). (2.3)

The relativistic momentum p in x-direction is

p′x = γL(p cos θ + vE
c2 ). (2.4)

The energy of the particle is conserved. Its momentum in x-direction is reversed after the
collision. E′′ denotes the energy of the particle after the collision in the observer’s frame.

E′′ = γL(E′ + vp′x) (2.5)

Using Equation 2.4 and 2.5 and px/E = v cos θ/c2 with vp the velocity of the particle, we get

E′′ = γLE
⎡⎢⎢⎢⎢⎣
1 + 2vvpcosθ

c2 + (v
c
)

2⎤⎥⎥⎥⎥⎦
. (2.6)

After applying the Taylor expansion on Equation 2.6 and calculating ∆E = E′′ −E, the result
is integrated over all angles in the range 0 to π. As a result, one gets the average energy
increase of a particle per collision:

⟨∆E
E

⟩ = 8
3
(v
c
)

2

. (2.7)

However, there are some problems with this assumption that collisions of interstellar clouds
are the main acceleration source of charged particles. One problem is that random velocities of
clouds in the interstellar medium are quite small compared to the speed of light (V /c ≤ 10−4).
Another problem is that the free path for the scattering of cosmic rays in the ISM is very long
(in the order of 0.1 pc). This corresponds to only few collisions per year. The energy gain
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process of the particle would be really slow. However, the describe acceleration process fits
better to the shells of young SNRs since their velocities are much higher and more structure
is present [8, 9].

2.2.2 The First-Order Fermi-mechanism
In the first-order Fermi acceleration mechanism, particles are accelerated by propagating
through strong shock wave fronts of supernova explosions. It is assumed that high energy
particles are in front of and behind the shock front. The particles’ velocity is close to the
speed of light. As the gyroradius of such particles is quite small compared to the shock front,
they hardly notice the propagation throughout the shock front. The gyroradius of a charged
particle is the radius of its circular movement in a magnetic field. By performing a Lorentz
transformation the energy of a particle increases by propagating through the shock:

E′ = γV (E + vpx). (2.8)

The shock is assumed to be non-relativistic (γL = 1), but the particles are relativistic. There-
fore, we get

∆E = pv cos θ. (2.9)

For every propagation through the shock front, a particle gains a energy of

⟨∆E
E

⟩ = 2
3
(v
c
)

2

. (2.10)

and for a roundtrip:

⟨∆E
E

⟩ = 4
3
(v
c
)

2

. (2.11)
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2.3 Gamma Radiation
In the previous chapter an acceleration mechanism in SNRs was introduced. In the following,
different processes in which VHE gamma-rays are produced by high energetic protons or
electrons are discussed. VHE gamma-rays originate either from accelerated leptons or hadrons.
The question is which one is mainly responsible for the production of VHE gamma-rays in
SNR.

2.3.1 Hadronic Gamma-Ray Production
If protons are accelerated in a cosmic source as described in Section 2.2, they can interact
with other protons or nuclei and produce charged and neutral pions [10]. A possible process
is

p + nucleus → p′ + nucleus′ + π+ + π− + π0. (2.12)

Charged pions decay into muons and neutrinos, whereas neutral pions decay with a short live
time of only τ= 8.4 × 10−17 s into two γ quants:

π0 → γ + γ. (2.13)

2.3.2 Leptonic Gamma-Ray Production
There are three main processes through which an electron or a positron can lose its energy in
the ISM: Synchrotron radiation, bremsstrahlung and inverse compton scattering. Hereinafter
these three processes are presented.

Synchrotron Radiation

A particle with a charge ze, which moves with a velocity v⃗ in a magnetic field B⃗, is accelerated
and deflected on a spiral path by the Lorentz force F⃗ :

F⃗ = ze(v⃗ × B⃗). (2.14)

Because of the acceleration, the particle emits electromagnetic radiation, the so-called syn-
chroton radiation (cf. Equation 2.15). It is the correspondent to bremsstrahlung in electric
fields.

−(dE
dt

)
S

= 4
3
σT cumag(

v2

c2 )γ
2
L (2.15)

umag denotes the energy density of the magnetic filed and σT the so called Thomson cross-
section, which denotes the total cross-section for the scattering of electromagnetic waves with
stationary free electrons. Synchrotron radiation has a main contribution to the non-thermal
X-ray and gamma-continuum emissions. The term “non-thermal” means that the continuum
radiation originates from particles with a non-Maxwellian energy spectrum [9].
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Bremsstrahlung

If a charged particle passes the electric field of another charged particle, for example an atomic
nucleus or an electron, it is deflected and decelerated. As a result it emits bremsstrahlung.
By defining a radiation length X0 over which the electron has only 1/e of its initial energy,
the energy loss per distance is

−(dE
dx

)
B

= E

X0
. (2.16)

The energy loss per time is than described by

−(dE
dt

)
B

= Ec
X0

. (2.17)

For high energy electrons bremsstrahlung is the main energy loss mechanism [9].

Inverse Compton Scattering

In inverse Compton scattering (IC) relativistic electrons scatter with low energy photons.
Through the scattering, the photons gain kinetic energy of the electrons while in the Compton
scattering the photons lose energy to the electrons, which is described by Equation 2.18.
Through this process high energetic photons can be produced. In the following the case of
non-relativistic electrons (γL << 1) is considered. Thus, the Thomson scattering cross-section
σT can be used to describe the probability of scattering.

−(dE
dt

)
IC

= 4
3
σT curad(

v2

c2 )γ
2, (2.18)

urad denotes the energy density of radiation. There is a clear similarity to Equation 2.15 of the
synchrotron radiation. The reason for that is the dependency of the energy loss rate on the
acceleration through the electric field whereas the origin of the electric field does not matter.
For the synchrotron radiation the electric field is the (v⃗×B⃗)-field and for the inverse Compton
scattering the electric field is the sum of electric fields of the electric waves which incident
upon the electron [9].



3 Ground-based Gamma-Ray
Telescopes

In the previous chapter the generation of gamma radiation and supernova remnants as a
source of gamma radiation were introduced. It is possible to measure this radiation outside
the atmosphere with space observatories, for example with the Fermi satellite. However, for
high energies the flux of gamma radiation is quite low. This leads to an upper limit of the
detectable energy range because of the relatively small size of the detector surface of Fermi.
This in turn caused by high cost factors for satellites.
Another possibility to detect gamma radiation is the so-called Imaging Atmospheric Cherenkov
Technique (IACT) which uses ground-based telescopes. In this case the earth’s atmosphere
is the detector material. The telescopes measure Cherenkov radiation, emitted by secondary
particles of air showers, which are caused by highly energetic particles. Thus, this technique
enables to measure gamma radiation at higher energies compared to space observatories.
In this chapter, the development of particle showers which are initiated by gamma-rays and
cosmic rays entering the atmosphere are explained. Afterwards, the emission of Cherenkov
radiation by superluminal charged particles is discussed. Finally, further information about
telescopes using the IACT and in particular the High Energy Stereoscopic System (H.E.S.S.)
is given.

3.1 Air Showers
When a highly energetic particle enters the atmosphere, a particle shower is generated. These
showers can have either electrons, positrons or photons as their origin or hadronic particles
like protons or nuclei. In the case of electrons, positrons and photons the shower is termed
as electromagnetic shower. Air showers initiated by hadronic particles are called hadronic
showers.

3.1.1 Electromagnetic Shower
When an electron, positron or photon enters the atmosphere, it interacts either via pair
production or bremsstrahlung. A gamma-ray, which is equal to a highly energetic photon,
generates an electron-positron pair due to pair production with atmospheric nuclei. The
photon transfers almost its whole energy to the the electron and the positron, only a small
part of the photon energy is transformed to the recoil energy of the nucleus [11]. Electrons
and positrons themselves can also interact with the atmosphere via bremsstrahlung. Withal
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Figure 3.1: The Heitler model of an electromagnetic shower: it is assumed that the particles
generated in pair production or bremsstrahlung share the energy E0 of the primary
photon equally and that the radiation length X0 is fixed. Adapted [12, 13].

an electron or positron is scattered in the Coulomb field of a nucleus and emits at least one
photon. The processes of pair production and of bremsstrahlung repeat until the energy of
the secondary photons is too small for further pair production. The emergence of a cascade of
secondary electrons, positrons and photons caused by a gamma-ray is called an electromagnetic
shower.
In Figure 3.1 the simplified model of an electromagnetic shower by Erwin Heitler is shown. In
the Heitler model electrons, positrons and photons undergo either one-photon bremsstrahlung
or pair production after a fixed radiation length of X0. Thus the number of particles in the
shower has doubled and the energy per particle has halved. After n repetitions the maximal
number of particles Nmax in the shower is 2n.
Hence, Nmax is proportional to the energy E0 of the primary photon and the maximal depth
of the shower X0,max is logarithmically proportional to E0, which is described by Equation 3.1
[9, 12].

X0,max = X0 lnNmax (3.1)

To simplify, several assumptions were made. In reality, the radiation lengthX0 is not fixed, but
differs for pair production and bremsstrahlung. Furthermore the energy is not equally shared
in the process of bremsstrahlung, neither is always only one photon produced. Nevertheless,
the model can correctly describe the most important features of electromagnetic showers, as
the proportional relation between the size of the shower and E0 or the logarithmic proportional
increase of the depth of shower with E0 [12].

3.1.2 Hadronic Shower
Besides electrons, positrons and photons, hadronic particles like cosmic protons or nuclei enter
the atmosphere. They interact with nuclei of the earth’s atmosphere and give rise to a large
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number of secondary particles. The secondary particles interact with atmospheric particles as
well, generating more secondary particles, which form a nucleonic cascade. These cascades are
the hadronic equivalent to electromagnetic showers. The cosmic background in gamma-ray
observations is composed by cosmic rays.
The majority of secondary particles are pions. Charged pions interact with nuclei in the
atmosphere and generate secondary pions. This process repeats until the energy of the charged
pions drops below a critical value of 1GeV, the amount of energy which is needed for pion
production. At this point, the charged pions begin to decay into muons (cf. Equation 3.2).
Thereby, a neutrino or an antineutrino is emitted [9, 12].

π+ → µ+ + νµπ− → µ− + ν̄µ (3.2)

Low energy muons decay further into a positron or electron, as well as an electron and muon
neutrino or antineutrino (cf. Equation 3.3).

µ+ → e+ + νe + ν̄µµ− → e− + ν̄e + νµ (3.3)

Neutral pions on the other hand decay immediately into two photons as already stated in
Chapter 2.3.1. The photons can initiate electromagnetic showers themselves.

π0 → γ + γ (3.4)

Other particles which are generated in the cascade besides pions are strange particles and
antinucleons. Hence, hadronic showers have three different components of secondary particles,
which are shown in Figure 3.2 [14]:

− The soft component is the electromagnetic part of the shower, consisting of electrons,
positrons and photons. Since the energy of the primary particle in this part of the
hadronic cascade is quite fast distributed, it is called soft component.

− The hadronic component consists of various hadronic particles. The vast amount of
them are pions.

− The hard component are muons and neutrions, which are generated in the pion decay.
Muons have a quite low interaction probability. Thus, this part of the hadronic shower
is called hard component.
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Figure 3.2: A schematic sketch of the development of a hadronic shower, which consists of
nucleonic cascades and electromagnetic showers. The composition of a hadronic
shower can furthermore be divided in three components: the electromagnetic
component, also referred to as soft component, the hadronic component, consisting
mainly of pions, and the hard component, comprised of muons and neutrinos.
Adapted [9].

3.1.3 Cherenkov Radiation
The observation of electromagnetic showers allows to draw conclusions about the energy and
the direction of the primary photon. Due to the fact, that the electrons and positrons of
the shower emit Cherenkov radiation, it is possible to observe an electromagnetic shower by
detecting the Cherenkov radiation.
A charged particle emits Cherenkov radiation, when it moves through a dielectric medium of
refractive index n with a velocity v greater than the speed of light c/n in that medium. β is
the relation between the velocity v of the particle and the speed of light in vacuum c.

v = c

n
≤ βc (3.5)

The origin of Cherenkov radiation are molecules in the medium, which are polarised by the
charged particle and become electric dipoles. Because of time variations of the dipole field,
electromagnetic radiation is emitted. If the velocity of the charged particle is smaller than
the speed of light, v < c/n, the dipoles are generated symmetrically around the trajectory
of the particle. The dipole field integrated over all polarised molecules is zero and thus, no
electromagnetic radiation is emitted. But if the particle velocity exceeds the speed of light
in the medium, v > c/n, the symmetry is broken. This leads to a non-vanishing dipole field,
which emits Cherenkov radiation [15].
The emission of Cherenkov radiation is described geometrically by a “shock wave” behind the
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superluminal particle. In Figure 3.3, the geometric representation of the emission of Cherenkov
radiation is shown. The particle travels a distance vt in the time t, whereas the wavefront
covers a distance of ct/n at the same time. Therefore, the wavefront of the particle is emitted
under a specific angle θ to the trajectory of the particle, which depends on the velocity v of
the particle as well as on the refractive index n of the medium (cf. Equation 3.6). The cone
of Cherenkov radiation under that angle is denoted as Cherenkov light pool [9, 16].

cos θ = c

nv
(3.6)

θ

Photons

Photons

v   c/n>

ct/n

vt

Figure 3.3: Geometric representation of the emission of Cherenkov radiation. The particle
travels a distance vt in the time t, whereas the wavefront covers a distance of
ct/n at that time. Hence, the wavefront of the particle is emitted under an angle
θ to the trajectory of the particle. Adapted [16].
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3.2 Imaging Atmospheric Cherenkov Technique
Like already stated at the beginning of this chapter, it is possible to measure cosmic gamma-
rays by detecting Cherenkov radiation of electromagnetic showers initiated by a gamma-ray.
The emitted Cherenkov photons form a light pool with a radius of about 200m on the surface
of the earth [17]. To detect these photons, the Cherenkov telescope has to be located inside
the Cherenkov light pool as shown in Figure 3.4.
Cherenkov telescopes measure light by using cameras, which consist of matrices of photo
multiplier tubes (PMTs). These cameras are mounted in the focal plane of a large reflector.
To reconstruct the direction of the air shower, a set of multiple telescopes is used. By means
of multiple telescopes, the shower can be measured from different points of view, which is
illustrated in Figure 3.4.
By using the IACT, it is possible to determine the arrival direction of the Cherenkov light.
This helps further to gain knowledge about the position of the celestial source of the gamma-
ray. The intensity of the image obtained with the telescopes is informative about the energy of
the incident gamma-ray, because the number of Cherenkov photons emitted in electromagnetic
cascade is correlated to the energy of the primary photon. The shape of the image gives an
indication about the nature of the primary particle of the shower, which can be either an
electromagnetic or a hadronic particle. Thus, it is possible to separate showers initiated by
cosmic rays from showers initiated by gamma-rays of a cosmic gamma radiation source. This
is important to reduce the cosmic background, which is formed by detected hadronic showers
[18, 19, 20].

Figure 3.4: Cherenkov telescope array detecting Cherenkov light from a particle shower. The
telescope has to be located inside Cherenkov the light pool. Adapted [18, 21].
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3.2.1 High Energy Stereoscopic System
For this thesis, data obtained by the High Energy Stereoscopic System (H.E.S.S.) as input for
the simulation of gamma-ray sources was used. In this subsection, a brief introduction to the
telescope system is given. H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes
located in Namibia, near the Gamsberg mountain at an altitude of about 1800 metres above
sea level. It is named after the Nobel laureate Victor Hess and is used to examine cosmic
gamma-rays within the energy range from 10s of GeV to 10s of TeV [18].

The telescope system consists of five telescopes (cf. Figure 3.5). The four smaller ones have
been operating since December 2003 (H.E.S.S. I). The larger telescope in the middle (CT5,
H.E.S.S. II) went into operation in July 2012. CT5 is with a total mirror area of 614m2 the
largest optical telescope in the world. The data as an input for the simulation was obtained
with the small telescope and therefore the focus is only on the small telescopes. Each of them
has a camera consisting of 960 PMTs (each PMT represents a pixel), which are mounted in
a hexagonal order. The camera is divided in 38 trigger-sectors. The trigger-sectors overlap
each other and consist of 64 PMTs. When more than four pixel measure a signal in one sector,
the camera is triggered. Thereby, the night sky background is reduced. Another trigger, the
coincidence trigger, makes sure that only events are stored if at least two telescopes trigger
within a certain time interval [18, 22].
For the observation of an object the so-called “wobble mode” is used. The telescope does not
point directly to the target, but uses an offset of ±0.5○ to the source. By doing this, it is later
possible to estimate the background and to subtract it. Moreover, the “wobble mode” reduces
systematics in the data taking [21, 22].

Figure 3.5: The H.E.S.S. Telescope Array in Namibia consists of five telescopes, four small
ones and a large one in the middle. Clementina Medina/Irfu-CEA [18].
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Figure 3.6: Schematic sketch of the data taking of the background (red circles) in the wobble
mode around the observation position with an offset of ±0.5○ in the direction of
the declination to the source [23].

3.2.2 H.E.S.S. Standard Analysis
To cross-check the results, the H.E.S.S. Collaboration uses different analysis techniques [22]. In
this subsection one of these techniques, the so-called H.E.S.S. Standard Analysis, is presented.
For this analysis technique the observed images of the telescope are first “cleaned” by a two-
stage tail-cut procedure. In this process all pixels with an intensity below 5 p.e. are neglected.
An intensity of 5 p.e. corresponds to a signal of five incident photons. Furthermore, a pixel
with an intensity below 10 p.e. is only kept when the intensity of a neighbour pixel is above
10 p.e. In Figure 3.7, a gamma-like event detected by the four small telescopes of H.E.S.S. is
shown. The elliptical form of the shower can be clearly seen.
After that, the shower image is parameterized by an ellipse by using the Hillas parameters.
The Hillas parameters are the size of the shower, which corresponds to the intensity of the
detected light, its length and width and the distance between the centre of the shower and the
camera centre. The orientation of the ellipse is specified by the angle α between the major
axis and the line defined by the centre of the camera. In Figure 3.8 (a) the parameterisation
of a shower image is shown.
For further analysis, several cuts, i.e. limitations on the range of value, are applied on these
parameters. The three most important are:

− Size cut:
The shower must have a minimal size. As a result, images which are not well recon-
structed are eliminated.

− Distance cut:
Only images are kept with a distance smaller than a certain threshold. Thus, images
which are truncated at the edge of the camera are sorted out.
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Figure 3.7: Gamma-like event detected by the four small telescopes of H.E.S.S. The colour
scale shows the number of measured photons per pixel. The elliptical form of the
shower is clearly visible.

− Mean-reduced scaled-width (MRSW) and length (MRSL) cut:
The MRSW is calculated from the measured width of the shower and its expected width,
determined by a simulation. The same applies to the MRSL for the length of the shower.
Hence, the MRSW and MRSL parameters describe the mean value of the difference in
standard deviation of width or length of a simulated gamma-ray event. Due to the
fact that hadronic shower events have usually a longer and wider shape as gamma-ray
events, it is possible to distinguish between gamma events and the cosmic background.

For the stereoscopic reconstruction of an event, at least the images of two telescopes have to
pass the size cut and the distance cut. Then it is possible to identify the incident direction
of the primary photon. Therefore, the intersection of the major axis of the elliptical shape of
the gamma-ray events of at least two telescopes is determined. The intersection represents
the initial direction of the shower and hence, the initial direction of the gamma-ray [20]. In
Figure 3.8 (b), the principle of the reconstruction of the shower direction is sketched.

As stated above, there are other analysis techniques utilised besides the Standard Analysis.
The data used as input for my simulation was analysed with the Model++ Analysis. This
technique is based on the comparison of observed shower images to a semi-analytical model of
the shower. Thereby, for example the asymmetry of the shower form, which is not a perfect
ellipse, is taken into account. The Model++ Analysis is more complicated and needs more
computing power than the Standard Analysis, but it provides also better angular resolution



24 3 Ground-based Gamma-Ray Telescopes

D
ec

li
na

tio
n

Right Ascension

direction

x

y

width

length

distance

α

(a) (b)

Figure 3.8: (a) The Hillas parameters of a shower parametrisation are the size of the shower,
the length and width, the distance to the centre of the camera and the angle α
between the major axis and the line defined by the camera centre. The x-axis
and the y-axis define the image plane in the camera coordination system. (b)
Principle of the reconstruction of the shower direction. Adapted [22].

[22].

After passing the above cuts, the detected events of an observed sky region are plotted in
a so-called “skymap”, a two dimensional histogram with the right ascension in units of deg
on the x-axis and declination in units of deg on the y-axis. In an ideal observation, the
events of a point source would be pinpointed in a single point of the skymap. In reality, the
point source signal is broadened due to uncertainties on the original direction of the detected
events. There is only a certain probability that the position of an event and its initial direction
coincide. The point spread function (PSF) describes these uncertainties. Furthermore, the
angular resolution and the accuracy of position determination of a point source are defined
by the PSF [22].
The PSF is the limit of the resolution of an observation. But there are ways to bypass this
limit by applying the technique of deconvolution to the skymap of an observed source. In the
next chapter this technique of deconvolution is explained.



4 Deconvolution Algorithms
The concept of convolution can be found in many different fields of science, for example in
optics, acoustics and signal processing, but also in the area of astrophysics. The convolution
of two functions f, g ∈ L(Rn) is defined as

(f∗g)(x) ∶= ∫
Rn
f(τ)g(x − τ)dτ. (4.1)

In Figure 4.1, the convolution of two Gaussian functions is shown. When a telescope observes
a light source, the resulting image represents a convolution of the function which represents
the actual source (hereafter referred to true source image) and the function of representation,
which reflects the influence of the telescope on the measured data.
Deconvolution is the reverse process to convolution and can be performed with deconvolution
algorithms. Those are widely used in the area of signal processing and image processing. They
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Figure 4.1: The convolution of two Gaussian functions.
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help to improve the measured data and to restore the original image of an object from the
measured image, which is affected by the properties of the measuring device. In the following,
the idea of deconvolution analysis for astronomical images is introduced. Afterwards the two
deconvolution algorithms which are used in this thesis are presented.

The astronomical image I(x,y) observed by a Cherenkov telescope with the right ascension
(RA) on the x-axis and the declination (Dec) on the y-axis is assumed to be a two dimensional,
discrete probability function [24]. A probability function of a sample is a function which
assigns a certain likelihood to every event in that sample [25]. The probability function of an
astronomical image I(x, y) is defined as

I(x, y) = A(x, y)(O ⊗ P )(x, y) +A(x, y)B(x, y). (4.2)

(O⊗P )(x, y) is the convolution of the probability function of the true source image O(x, y) and
the point spread function (PSF) P (x, y). A(x, y) in Equation 4.2 is the probability function
of the camera acceptance over the field of view. The camera acceptance has to be taken into
account due to the fact that the measurement properties of the camera are not equal over
the whole field of view of the camera. The PSF describes the influence of the function of
representation of a Telescope to the image of a point source. The noise term B(x, y) includes
the background of the VHE γ-ray domain [24, 26].
The convolution of a true source image and the PSF is called excess-map, to which the
algorithm is applied. To derive the excess-map, first the estimated background (A(x,y)B’(x,y))
has to be subtracted from the image I(x,y). Next, the obtained image has to be corrected by
the acceptance over the field of view.
Thus, applying a deconvolution algorithm requires the knowledge of the PSF. Under this
assumption it is possible to recover the original source image [26].

4.1 Richardson-Lucy Algorithm
The Richardson-Lucy algorithm (RCL) is an iterative Bayesian-based algorithm. Bayes’s
Theorem for two events A and B and the condition that the probability p(B) for the event
B is positive is defined in Equation 4.3. A represents the unknown information of the true
source image and B the information of the excess-map, which is already known. Using Bayes’s
Theorem in Equation 4.3, one can make an estimation of p(A) [27].

p(A ∣ B) = p(A)p(B ∣ A)
p(B) , (4.3)

p(B ∣ A) is the conditional probability of an event B given event A. The algorithm is intended
for a Poisson distributed background which converges to the maximum likelihood solution. As
already stated, it is applied to a discrete probability-frequency function, which describes the
degraded image E(excess-map) as the convolution of the original image O and the PSF P [24,
28]:
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E = (O ⊗ P )(x, y) =
Nx,Ny

∑
nx,ny=1

O(xnx , yny
) × P(x − xnx , y − yny

). (4.4)

Originating from Equation 4.3 the deconvoluted image of the (n+1)-th iteration On+1(x, y) is
expressed by

On+1(x, y) =
⎡⎢⎢⎢⎢⎣

E(x, y)
P ⊗On(x, y) × P

⊺(x,y)
⎤⎥⎥⎥⎥⎦
On(x, y). (4.5)

P ⊺(x, y) denotes the transposed PSF. The starting point of the first iteration O0(x, y) is
assumed to be the uniform distributed using Bayes’s postulate [24].
While using the RCL, one has to be aware of its disadvantages. As for other iterative deconvo-
lution techniques, statistical fluctuations can be interpreted as real structure for sources with
low significance. These fluctuations are called artefacts. With increasing number of iterations
and decreasing significance of the structure the artefacts are growing, especially at the edges
of the image. At a specific iteration number the negative influence of the artefacts is too high.
A further deconvolution step would then be useless. Therefore, it is indispensable to study
the behaviour of the RCL on different structures and significances by using simulated data.
Simulations have the advantage that one can compare the deconvoluted image with the model
image [26].

For this thesis, a C++-program written by Sebastian Heinz for the RCL deconvolution was
used [22].
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4.2 Maximum-Entropy Algorithm
Besides the RCL algorithm, the Maximum-Entropie algorithm (ME) is utilised to restore
astronomical images. It is based on the method of maximum entropy and uses the Bayesian
formulation as well as the RCL. The ME assumes that the probability distribution which
reflects best our current knowledge about the available prior data is the probability distribution
with the largest entropy. The principle of this ME method is that the prior data is “testable”.
This constraint means that it is possible to make a statement about the falsity or verity of
the data [29]. The entropy S is defined as

S(p⃗) = −
L

∑
i=1
pi log pi (4.6)

with pi(i = 1, 2, ..., L) the best set of proportions for a hypothetical probability function h.
One can assume that the distribution h is positive and additive, which is applicable for many
distributions used in science [27, 29]. With the measuremi assigned to every cell i, the entropy
can be written in the following form:

S(h) =
L

∑
i=1

(hi −mi − hi log(hi/mi)) (4.7)

The global maximum of the entropy can be found at h = m. At this point the deviation of
h from the assigned measure m is minimal and the entropy is maximal. At the maximum
entropy, one has the maximal information of the prior data set [27, 29].

For this master thesis, the MemSys5 package for maximum entropy analysis is used. The
package has been developed by Maximum Entropy Data Consultants Ltd. and is written in
FORTRAN 77.



5 Simulation of Gamma-Ray Images
In the last chapter two deconvolution algorithms were introduced, which use different ap-
proaches for deconvolution and behave differently. The question is what improvement they
achieve for the analysis of an astronomical image. To study this, simulations of gamma-ray
sources are used. A simulation has the advantage that the original source morphology is
known. Therefore it is possible to compare the deconvoluted image to the true source mor-
phology, which is in not possible for real data. Other advantages are that the PSF is exactly
known and that different types of source morphologies can be studied.
In this chapter, the simulation used in this thesis will be discussed. First, the simulation of a
the gamma-ray image of a point source will be described, which is the easiest case. Starting
from the point source later on also the simulation of gamma-ray images of extended sources
like a ring-shaped source or a Gaussian-shaped source will be presented.

5.1 Point Source
The structure of the simulation of the gamma-ray image is presented in Figure 5.1. Each
part of the simulation is designated with a number. These designations are used for further
explanations of the different parts of the simulation.
In the beginning of the simulation of a gamma-ray image one has to choose the model, i.e. the
morphology of the source. In the case of a point source, the source model is a skymap with only
one single pixel with a bin content different from zero (cf. Figure 5.2 (a)). But in reality, the
camera does not observe a point but an extended source due to the broadening effects of the
measurement equipment, which are described by the PSF (cf. Figure 5.2 (b)). The PSF used
in the simulation is taken from the analysis of the supernova remnant RX J1713.7-3946 [23].
In Figure 5.3, the θ2-distribution of the PSF of the analysis is shown. The θ2-distribution of a
skymap is its integral representation with regard to Nbin small cycles around the centre of the
skymap. Nbin is the number of bins in the one-dimensional histogram of the θ2-distribution.
The PSF was fitted with a Landau distribution and after that filled into a skymap. The
two-dimensional skymap of the PSF was used in the simulation and in the deconvolution.
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Figure 5.1: Sketch of the structure of the simulation of a gamma-ray image. Each part of the
simulation is designated with a number, which is used to explain the structure of
the simulation.
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Figure 5.2: (a) Slice in the direction of the right ascension through the centre of the skymap
of a point source model. (b) Slice in the direction of the right ascension through
the centre of the skymap of the two-dimensional PSF.

θ2 [deg2]
0 0.005 0.01 0.015 0.02 0.025 0.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3−
10×

a
rb

. 
u

n
it

Figure 5.3: θ2-distribution of the PSF from the analysis of RX J1713.7-3946 [23].
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The first step of the simulation is to generate NON random events according to the point
source model and to fill them into a skymap. NON is the number of events in the source with-
out background. The generated skymap according to the source model is called simulated
model map. The simulated model map simulates the fluctuations of the data taking in a real
observation.
After that, the simulated model map is convoluted with the PSF. This process is also des-
ignated as “blurring” of the simulated model map with the PSF. The convolution of the
simulated model map and the PSF corresponds to part 1a in the structure sketch of the sim-
ulation (cf. Figure 5.1). In Figure 5.4 (a), the convolution of the simulated model map and
the PSF for NON=3806 is shown.

Due to the fact that the camera acceptance for real telescopes is not uniformly distributed,
but drops at the edges, one has to take the acceptance distribution in form of a so-called
acceptance map into account. The acceptance map for this purpose is also taken from the
analysis of RX J1713.7-3946 [23] and shown in Figure 5.5 (a). Before using it in the simulation,
the θ2-distribution of the original acceptance map is polynomial fitted. The fit was done to
avoid further artefacts. In Figure 5.5 (b), the fitted acceptance map can be seen. The
term “acceptance map” will from now on refer to the fit of the θ2-distribution of the original
acceptance map.
The acceptance is considered in the simulation by the multiplication of every bin of the present
simulated model of step 1a with every bin of the acceptance map. This part of the simulation
corresponds to part 1b in Figure 5.1.
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Figure 5.4: (a) Convolution of the simulated model map and the PSF (step 1a in Figure 5.1).
The number of events in the source without background is NON=3806.
(b) Addition of the background to the simulated model map (step 1c in Figure
5.1). The number of background events is NOFF=8969.
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Figure 5.5: (a) Acceptance map from the analysis of RX J1713.7-3946 [23]. (b) The fitted
θ2-distribution of the original acceptance map in (a).

So far no background has been included in the simulation of the source image. To include
fluctuations of the data taking, NOFF random events are generated according to the acceptance
map and filled into a skymap. NOFF is the number of all background events in the skymap.
The generated skymap in accordance with the acceptance map is hereafter called simulated
acceptance map. The simulated acceptance map is convoluted with the PSF and after that
added to the simulation. The adding of the background is illustrated by part 1c in Figure 5.1
and is shown in Figure 5.4 (b).
Part 1c of the simulation actually represents the astronomical image after the reconstruction
of the shower direction of gamma events, observed by a virtual telescope. Because the camera
acceptance affects the observed image, one has to apply an acceptance correction. For this
purpose, the skymap of the simulation is divided by the acceptance map. Beforehand the
acceptance map was normalised to one. This was done to make sure that bins in the simula-
tion of the source image with 100% acceptance (that means within the centre of the skymap,
around the source) are not changed by the division. The acceptance correction corresponds
to part 1d in the simulation (cf. Figure 5.1).
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The next step is now to subtract the background in order to obtain the excess-map. The
deconvolution algorithms are later on applied to the excess-map. But before the background
can be subtracted, it has to be simulated. The template of the background simulation is again
the acceptance map.

First, αNOFF random events are generated according to the acceptance map and filled into a
skymap. The skymap is hereafter called simulated background map and is convoluted with the
PSF. NOFF represents again the number of background events and α is the nomination factor
that takes the difference of the area and life time of the OFF-region and ON-region, which
means the region where the source is located, into account. The life time is the acceptance
corrected observation time of the telescope. By using αNOFF random events, the background
simulation follows the idea of background models like the multiple background model in a real
measurement. Thereby the camera observes α different OFF-regions. The background is then
determined by aligning the size of the OFF-regions to the size of the ON-region. In Figure
5.6, a sketch of the gamma-ray image of a point source is shown. The yellow circle around the
source is the ON-region. The red circles are the α OFF-regions to determine the background.
α is a number normally smaller than ten. For the simulation, α=7 was used.

The number of events in the simulated background map is aligned to a number of events in
the simulation of the gamma-ray image, by dividing it by α. This alignment of the back-
ground, i.e. the OFF-regions, to the simulation, i.e. the ON-region, reduces fluctuations in
real data-taking as well as in the simulation. This part of the simulation corresponds to step
2a in Figure 5.1.

ON-region

OFF-regions

Figure 5.6: Sketch of the choice of α different OFF-regions. The OFF-regions are background
regions around the source. The ON-region is the area in which the source lies.
The background is determined by aligning the size of the OFF-regions to the size
of the ON-region.
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Figure 5.7: (a) Simulated Excess-map of a point source. (b) Slice in the direction of the right
ascension through the centre of the excess-map

.

As well as for the simulation of the gamma-ray image, also the simulated background map
needs to be acceptance corrected, which is done by the division of the simulated background
map by the acceptance map. This is illustrated by part 2b in the simulation sketch. In the
final step the simulated background map is subtracted from the simulation to get the excess-
map, which corresponds to step 3 in Figure 5.1. The resulting excess-map is shown in Figure
5.7. Now a deconvolution algorithm can be applied to the excess-map. The results of this
deconvolution are presented and discussed in the next chapter.
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5.2 Gaussian Morphology

In the universe, supernova remnants have extended morphologies instead of the point-like
morphology explained in the previous subsection. To study the deconvolution of such sources,
the simulation of gamma-ray images of extended sources is required. In this section the
simulation on the example of a Gaussian source is presented.
Starting from the simulation the gamma-ray image of a point source, one has only to change
the model of the source’s morphology in the beginning of the simulation which corresponds to
step 1a in Figure 5.1. In the case of a point source the model is a skymap with only one filled
bin in the centre. For a Gaussian-shaped source however, a skymap with a two-dimensional
Gaussian in the centre is used (cf. Equation 5.1). The nomination factor was α=1.5. In this
way, it is also possible to adjust the size of the source by changing the 68%-radius dGauss of
the Gaussian. In Figure 5.8 (a), the skymap of the source model of an extended point source
for dGauss=0.1 deg is shown. In Figure 5.8 (b), the slice through the centre of the skymap in
5.8 (a) can be seen.
Similar to a Gaussian-shaped source, it is also possible to simulate gamma-ray images of ring-
shaped sources, which is explained in the next section. The results of the deconvolution of a
Gaussian-shaped source are discussed in Chapter 7.

fGauss(x, y) =
1

2πd2
Gauss

⋅ exp(−x
2 + y2

2d2
Gauss

) (5.1)
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Figure 5.8: (a) Skymap of the source model of a extended point source for a two-dimensional
Gaussian with a width of dGauss=0.1 deg. (b) Slice through the centre of the
skymap in (a) in the direction of the right ascension.

.
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5.3 Ring Structure
Besides extended gamma-ray sources with a Gaussian morphology, there are also sources with a
ring-shaped morphology like shell-type supernova remnants. One of the best known shell-type
supernova remnants is RX J1713.7-3946. The correlation study with X-ray data presented
in Chapter 8 for the supernova remnants RX J1713.7-3946 demonstrates an application of
deconvolution algorithms.
To investigate the influence of deconvolution on the gamma-ray image of a ring-shaped source,
it is appropriate to study it by means of a simulation. The simulation of a ring structure
is implemented just as the simulation of a gamma-ray image of a Gaussian-shaped source.
Instead of the Gaussian in the centre of the skymap, a model of a ring structure is used,
defined by the function fring(x, y) in Equation 5.2. The nomination factor was α=1.5. The
size of the ring is adjusted by six parameters: the inner radius rin and the outer radius rout

of the ring, the steepness of the inner side and the outer side of the ring, kin and kout, and
the position of the coordinates of the ring centre xc and yc. The first two parameters, rin and
rout, were varied to study the influence of the size of the ring on the course of the relative
error. The other four parameters have fixed values for all simulations of ring structures. The
parameter values are presented in Table 5.1.

fring(x, y) = [1 + exp(
√
(x−xc)2+(y−yc)2−rout

kout
)]

−1

⋅ [1 + exp(−
√
(x−xc)2+(y−yc)2−rin

kin
)]

−1

(5.2)

In Figure 5.9 (a) the model of a ring structure fring(x, y) with an inner radius of rin =0.1 deg
and an outer radius of rout =0.3 deg can be seen. In Figure 5.9 (b), the slice through the centre
of the skymap in Figure 5.9 (a) in the direction of the right ascension is shown. The results
of the deconvolution of a ring-shaped source are discussed in Chapter 7.

parameter value [deg]
rin varied
rout varied
kin 0.001
kout 0.001
xc 258.388
yc -39.7622

Table 5.1: Parameter values for the model of the ring structure fring(x, y), which is defined
by Equation 5.2. The radii rin and rout of the ring structure were varied to adjust
different sizes of the source. The other parameters were fixed in all simulations.
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Figure 5.9: (a) Skymap of the source model of a ring structure with a inner radius of
rin =0.1 deg and a outer radius of rout =0.3 deg. (b) Slice through the centre of
the skymap in (a) in the direction of the right ascension.
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6 Deconvolution of a Point Source
In the previous chapter, the simulation of gamma-ray images of sources with different mor-
phologies was illustrated. The final result of the simulation led to the excess-map which is the
starting point for the application of a deconvolution algorithm. In the framework of this thesis,
two different deconvolution algorithms were utilised: the first one was the Richardson-Lucy al-
gorithm which was used to investigate the influence of the deconvolution. The second one was
the Maximum-Entropy algorithm which was planed to be used to compare its deconvolution
results to the RCL. Due to a server update during this thesis, it was no longer possible to use
the software of the ME. Thus, only some data of ME can be shown which was recorded before
the update. Additional deconvolutions with the ME which were scheduled to be presented in
this thesis, were unfortunately not possible.
In the following, the results of the deconvolution of a point source with the RCL are discussed.
In the first part of this chapter, the behaviour of the so-called 68%-radius depending on the
brightness of the source or the lifetime is examined. Afterwards, the focus is on the develop-
ment of the relative error or the number of events in the excess-map during the deconvolution.

6.1 Study of the 68%-Radius of a Point Source
The main motivation to use deconvolution algorithms is to improve the resolution of the ob-
served data. In the case of a point source, an improvement means that the width of the source
becomes as small as possible to approximate the underlying morphology of a point source. The
influence of the deconvolution on the width of the source is exemplary illustrated in Figure 6.1.

In order to measure the width of the source, the 68%-radius is used. The 68%-radius of a
point source represents the resolution as well. The 68%-radius is defined as the radius in
which 68% of all events are included. It is determined via the θ2-distribution of the skymap of
each iteration step of the deconvolution. The θ2-distribution takes the bin content of a bin of
a two-dimensional histogram and fills it into a one-dimensional histogram depending on the
squared radial distance to the source centre. Afterwards, the integral from the source centre
to each bin of the one-dimensional histogram is calculated. The bin centre of the bins in the
one-dimensional histogram of the θ2-distribution corresponds to the squared radial distance
to the source centre. The integral is then compared for each bin to the integral over all entries
of the one dimensional histogram to find the radius at which 68% of all events are included.
In Figure 6.2 (a), the θ2-distribution of the 23th iteration of a deconvolution is shown. The
source is located around a squared radial distance of 0 deg2 in the θ2-distribution. Around a
squared radial distance of 2.2 deg2 huge artefacts can be seen. These artefacts occur during
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(a) (b)

Figure 6.1: (a) Skymap of the deconvoluted excess-map after two iterations. (b) Skymap of
the deconvoluted excess-map after nine iterations. One can clearly see, that the
deconvolution leads to a narrowing of the source, i.e. the 68% radius decreases.
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Figure 6.2: (a) θ2-distribution of the whole excess-map: the source is located around squared
radial distance of 0 deg2 and marked in red. Between squared radial distances of
2.0 deg2 to 2.5 deg2, i.e. at the edges of the skymap, artefacts can be seen. (b)
θ2-distribution around the source. The range of the y-axis is limited to 180 counts,
higher values are truncated to provide a clear overview of the θ2-distribution for
lower counts. It is sufficient to take the direct area around the source for the
calculation of the 68%-radius into account.

the deconvolution at the edges of the skymap and increase with the number of iterations. If
one regards the θ2-distribution of the whole skymap for the determination of the 68%-radius,
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the artefacts would distort the result. Therefore, one has to consider only the area around the
source as shown in Figure 6.2 (b).

Another important point is the binning, i.e. the size of the bins, of the one-dimensional
histogram of the θ2-distribution and its relation to the binning of the deconvoluted excess-
map. In Figure 6.3, a schematic sketch of a skymap is shown. The yellow bin in the centre
represents the underlying model of the morphology of a point source. The binning of the
θ2-distribution corresponds to the width of the coloured circles. Depending on the percentage
of the bin area lying for example within the orange circle, the corresponding part of the bin
content is filled into the orange bin in the one-dimensional histogram. The θ2-distribution-
binning, that means the width of the coloured circles, has to be small enough to provide a
sufficient resolution to resolve the decrease of the 68%-radius during the deconvolution. On
the other side, with a smaller binning the impact of the weighting of the area increases. The
“real” shape of the θ2-distribution of the examined skymap actually depends on the binning
of the skymap, but it is affected by the binning of the θ2-distribution. Furthermore, a smaller
binning leads also to longer run times. One has to decide if a smaller binning of the θ2-
distribution in the area directly around the source really leads to a better resolution.
In this thesis a binning of the θ2-distribution of 0.000032 deg2 was used. This bin size was
chosen to guarantee a sufficient resolution of skymaps with a small binning. It was fixed for
all calculations of the 68%-radius. The choice of the binning of the skymap and its influence
on the 68%-radius is discussed later on.
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Figure 6.3: On the left side a schematic sketch of a skymap of a point source is shown. The
yellow bin represents the point source, the width of the coloured circles the binning
of the θ2-distribution. The bin content of each bin of the skymap is weighted by
the percentage of the bin area lying in one of the coloured circles. Depending on
the weighting, it is filled in the one-dimensional histogram on the right side in
respect to its squared radius to the centre of the skymap. The black dots in the
one-dimensional histogram represent the bin centre, which defines the position of
the bin for the calculation of the 68%-radius.
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Significance

The brightness of a source is defined as the ratio between the source events (in reality these
would be detected events originating from gamma photons) and background events (from
cosmic radiation). The brighter the source, the more events are stemming from the source
compared to the background. This definition corresponds to the term significance σ. In Equa-
tion 6.1 after [30] the number of ON-events NON (signal events without background) depends
on the number of OFF-events within a fixed area around the source NOFF,source, the normalisa-
tion factor α and the significance σ. Source simulations with high σ contain more ON-events
and thus, represent brighter gamma sources.

NON = 1
2
σ2 + 2αNOFF,source +

√
1
4
σ4 + 8σ2

α
NOFF,source (6.1)

In Figure 6.4 the dependence of the 68%-radius for point sources with different significances
on the number of iterations of the RCL is shown. The lifetime is the acceptance corrected
observation time and it is 25 h in this study. The data points are the mean values the 68%-
radius of 20 simulations. The error is the standard error. In order to provide a clear overview
of the presented data, every tenth iterations was plotted. Furthermore, for each significance
the starting point is varied to avoid the overlap of the data points. Apart from that, the
first iteration of the RCL, which actually corresponds to the uniform distribution as stated in
Chapter 4, is neglected. Since the uniform distribution does not include the source morphology,
the result of the first iteration is always significant worse (in the case of the 68%-radius
higher) than the results of the following iterations. The first iteration in Figure 6.4 represents
therefore the second iteration. This applies to all plots which are presented in context of the
deconvolution of a point source.
The 68%-radius decreases with increasing number of iterations. It is significantly smaller than
the 68%-radius of the PSF with 0.048 deg, which is the resolution of the undeconvoluted image.
In addition, the 68%-radius is on average smaller for higher significances, as one can see in
Figure 6.4. This is in line with the expectations since a source with higher significance has
more events in the source area. Hence, it stands out better from the background. Moreover,
it is apparent that the standard error decreases with increasing significance. The reason for
that is the same as for the smaller 68%-radius: more events in the source area lead to a
better-defined source shape and facilitate the deconvolution. Consequently the results of the
68%-radius of different simulations with a high significance do not vary as much as for a source
with a lower significance.
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Figure 6.4: The 68%-radius as a function of the number of iterations for point sources with
different significances. The data points are the mean values the 68%-radius of 20
simulations. The error is the standard error. In order to provide a clear overview
of the presented data, every tenth iterations was plotted.

Lifetime

In a real observation the observation time indicates how long a source was observed. The life-
time is the acceptance corrected observation time as already stated in the previous paragraph.
The longer the lifetime, the more events are measured, including gamma events as well as
background events. The number of events used in this simulation originates from the already
mentioned analysis of the supernova remnant RX J1713.7-3946 [23], for which the lifetime
is known. Hence, different lifetimes can be adjusted by scaling the number of events of the
analysis.

In the following, the impact of the lifetime on the 68%-radius is discussed. In Figure 6.5, the
68%-radius for different lifetimes depending on the number of iterations for a point source of
60 σ can be seen. The plotted data points are the mean values of 20 simulations for each
iteration, the error is the standard error. Also here every fifth iteration was plotted.
As can be seen, the influence of the lifetime on the 68%-radius is quite small. The small
difference for various lifetimes is significant smaller than the standard error on the mean value.
The results can be explained by the influence of the lifetime on the simulation: the number of
OFF-events in the source region NOFF,source depends on the lifetime. Furthermore, the number
of ON-events NON is calculated from NOFF,source to obtain a significance of 60σ. However, the
different lifetimes only lead to a slightly different NON. Thus, one would not expect to see a
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Figure 6.5: The 68%-radius as a function of the number of iteration for point source with
different lifetimes. The significance of the sources is 60σ. The error is the
standard error of 20 simulations. Every fifth iteration was plotted.

significant difference for the behaviour of the 68%-radius. For the studies of the deconvolution
of a point source a lifetime of 25 h was used if not stated otherwise.

Binning of the excess-map

An essential factor at the issue of how small the calculated value of the 68%-radius can be-
come is the binning of the excess-map. The binning of the excess-map in the simulation is
about 0.0013 deg. For a point source this value achieves the best result one can reach for the
68%-radius. But also if one would use this binning, it is not guaranteed to reach the small-
est value in a fixed number of iterations. In practise, the time per deconvolution is limited
and therefore also the number of iterations. However, finer binnings are stronger affected by
statistical fluctuations. Therefore, the 68%-radius decreases slower during the deconvolution
then in the case of a rougher binning. A finer binning does consequently not always lead to a
better result.
Another striking aspect is the relation between the binning and the run-time of the calcula-
tion: the finer the binning, the higher the run-time. For example, a rebinning of 5 bins would
lead to a 25-times faster calculation. So, it is promising to use some kind of rebinning. The
term “rebinning” designates the combination of a group of bins to one bin. In the case of a
rebinning of 5 (rebin 5), 25 bins are combined to one bin. Hence, the new bin is five times
wider in the direction of the right ascension as well as in the direction of declination, i.e. the
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rebin bin width [deg] of
right ascension

bin width [deg] of dec-
lination

- 0.0013 0.0010
2 0.0026 0.0020
5 0.0065 0.0050
10 0.013 0.010
15 0.020 0.015

Table 6.1: Different rebinnings of the excess-map with corresponding bin width in the direction
of right ascension and the declination.

Figure 6.6: The left sketch shows the histogram of a point source model with rebin of 5, the
right sketch the same histogram with a rebin of 2. The width of the coloured
circles represents the binning of the θ2-distribution, which is used to calculate
the 68%-radius. The model of a point source is illustrated by the yellow bin in
the centre.

rebinning of 5 leads to a twenty five times enlargement of the initial bin.

In Table 6.1, different rebinning with their corresponding bin width in respect to the bin width
of the unrebinned excess-map are listed. In Figure 6.6, a sketch of a histogram of a point source
model with a rebin 5 and a rebin 2 in respect to the unrebinned bin width of 0.0013 deg is
shown. The yellow bin in the centre is the model of the point source. The coloured circles
represent the binning of the θ2-distribution, which is applied to determine the 68%-radius. As
one can see, a finer binning like rebin 2 provides theoretically a better resolution and allows a
smaller θ2-distribution. In contrast, for a rougher binning like rebin 5 also a rougher binning
of the θ2-distribution would be sufficient. Though, in this study always the same binning of
the θ2-distribution was used, independent of the binning of the deconvoluted excess-map.
In Figure 6.7 the dependence of the 68%-radius on the binning of an excess-map of 60 σ for
1000 iterations is shown. The data points are the mean values of the 68%-radius of 20 simu-
lations, error is the standard error. To provide a clear overview of the presented data, every
20th iterations was plotted.
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Figure 6.7: The 68%-radius as function of the number of iteration for different binnings of
the excess-map of a point source. The significance of the sources is 60σ. The
error is the standard error of 20 simulations, the data points are the mean values
of the 68%-radius of 20 simulations. To provide a clear overview of the presented
data, every 20th iterations was plotted.

With a rough binning like rebin 15 the minimal possible value is reached quite rapidly in
comparison to the finer binning. The smallest value can be determined with rebin 5. The
68%-radius with a smaller binning of rebin 2 decreases also continuously, but slower, than
with rebin 5. Viewing Figure 6.7 it stands out that the errors for rebin 2 are larger than for
rebin 5. This gives a hint to an explanation, why the rougher binning provides better results:
a smaller binning is theoretically expected to provide a better resolution and hence, a smaller
value for the 68%-radius. However, it includes also more fluctuations which are interpreted as
signal. Hence, the 68%-radius decreases slower in the case of a finer binning.
In this thesis a rebinning of 5 was used for all further studies of the point source because it
has a good resolution for the 68%-radius and it results into smaller run-times compared to
finer binnings. In the study of the deconvolution of extended sources, which is presented in
Chapter 7, a rebinning of 10 was used in consideration of the smaller number of reasonable
iterations and the resulting lower resolution.

Comparison of both algorithms

Initially, the goal of this thesis was the comparison of the two deconvolution algorithms, which
were introduced in Chapter 4. Unfortunately this was no longer possible after the software up-
date. Nevertheless, some deconvolutions with the ME were already executed before the update.
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For these deconvolutions an earlier version of the simulation was used. Therefore, the number
of events was not defined over the lifetime with regard to the data file of RX J1713.7-3946. In-
stead, the number of all OFF-events of α OFF-regionsNOFF,tot was adjusted toNOFF,tot=8000,
which corresponds to an lifetime of 13.39 h. The lifetime was the only parameter which was
changed compared to the other studies of the point source.
In Figure 6.8 the deconvolutions of a point source of 20σ by the RCL and ME deconvolution
algorithms are shown. The run of one single deconvolution for 1000 iterations by the ME
takes two weeks, whereas the RCL needs for the same deconvolution less than half an hour.
Due to the long run time of the ME, only one deconvolution was executed.
One can clearly see the steps in the behaviour of the 68%-radius in Figure 6.8. These steps
originate from the binning of the θ2-distribution. The comparison of the results of the RCL
to the ME shows that the 68%-radius obtained by the RCL decreases faster. After 1000 itera-
tion the deconvolution with the RCL achieved a smaller result of 0.012 deg for the 68%-radius
than the ME with 0.013 deg. But it is possible that also the results of the ME would decrease
further if the deconvolution would be executed with more iteration.
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Figure 6.8: Deconvolution of a point source of 20σ by the RCL and ME deconvolution
algorithms. The plotted curve is the 68%-radius as a function of the number of
iterations.
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6.2 Study of the Relative Error of a Point Source

So far the development of the 68%-radius during the deconvolution was studied. Another
interesting quantity is the relative error. It is of particular importance in the case of extended
sources in Chapter 7. However, the relative error is first studied in the context of point sources.
The relative error indicates how well the deconvolution matches to the model of the source.
It is therefore, just as the decrease of the 68%-radius, a way to assess the question to what
extent an iteration step of the deconvolution leads to an improvement of the gamma-ray
image’s resolution. The relative error is calculated according to Equation 6.2:

∣∆z
z0

∣ =
¿
ÁÁÀ∑i=1(zi − z0,i)2

∑i=1 z2
0,i

. (6.2)

Here ∣∆z
z0

∣ denotes the relative error of a deconvoluted excess-map in relation to the source
model. The bin content of a bin i of the deconvoluted excess-map is zi, the bin content of
a bin i of the source model is z0,i. The sum over the squared bin content of all bins of the
skymap of the source model is ∑i=1 z2

0,i. The relative error was determined in an area around
the source with a radius of 0.20 deg to the source centre, in which 99% of the area of the PSF
is included. In Figure 6.9, the size of the 99%-radius of the PSF is illustrated by a withe circle
in the bottom left corner.
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Figure 6.9: Skymap of the PSF with illustration of the size of the 99%-radius of the PSF as
a white circle in the bottom left corner. The relative error is calculated within
this radius around the source in the case of a point source.
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Significance

In Figure 6.10 the relative error as a function of the number of iterations for different signif-
icances of a point source is presented. The error is the standard error of 20 simulations. In
order to provide a clear overview over the presented data, every fifth iteration was plotted.
One can see that the relative error decreases slowly and continuously. The reason for the small
decrease is the fact that the deconvoluted excess-map is compared to a source model with only
one filled bin. Therefore, it is clear that the relative error is quite high. Furthermore, the
68%-radius decreases with increasing number of iteration, i.e. the deconvoluted point source
becomes narrower for higher significances. This dip can be explained in a similar way as in
the study of the 68%-radius: a simulation with a higher significance contains more ON-events.
Thus, the morphology of the source stands out better from the background.
Another striking feature in Figure 6.10 is the increase of the standard error with the number of
iterations. If one looks at the single values for each simulation and each iteration, one sees that
the simulations diverge during the deconvolution. Some simulations are closer to the model
than other at beginning due to statistical fluctuations. During the deconvolution this initial
difference develops further and is more pronounced with every iteration step. That means
that the relative error of a simulation close to the model decreases faster than the relative
error of a simulation which differs more from the model. The standard error just reflects this
development by increasing with the number of iterations.
A similar behaviour of the standard error was not observed for the 68%-radius.

 iterations
0 50 100 150 200

 r
el

at
iv

e 
er

ro
r

0.95

0.96

0.97

0.98

0.99

1.00 σ 20 

σ 40 

σ 60 

σ 80 
σ 100 

Figure 6.10: The relative error as a function of the number of iterations for point sources
with different significances. The error is the standard error of 20 simulations.
Every fifth iteration was plotted.
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Binning of the excess-map

Besides the significance one can also study the relative error as a function of the number of
iterations for a point source simulation with different binnings, which is shown in Figure 6.11.
The error is the standard error of 20 simulations. In order to provide a clear overview over
the data, every 40th iteration was plotted.
Once more the relative errors decreases continuously. Remarkable is the difference of the
behaviour of the relative error for finer and rougher binning: for finer binning the relative
error decreases slowly, for rougher binning the relative error drops off more rapidly. The
reason for that is clear if one keeps in mind that a larger rebinning of the excess-map requires
also a larger rebinning of the source model. Thus, the size of the source in the skymap
of the source model, or to be more precise, the bin width is larger. At the same time the
fluctuations within the deconvoluted excess-map are smaller since the excess-map is smoothed
by the rougher binning. Hence, the difference between the deconvoluted excess-map to the
source model becomes smaller.
Another notable feature is the increase of the relative error with growing number of iterations.
The reason for that is the same as already explained in the last paragraph for the dependence
on the significance: some simulations are closer to the model than other. The difference of
the deviation to the model for the simulations develops further during the deconvolution, i.e.
the difference between the simulations increases with every iteration steps and therefore also
the standard error.
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Figure 6.11: The relative error as a function of the number of iterations for different binnings
of the excess-map of a point source. The significance of the sources is 60σ.
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6.3 Study of the Event Conservation of a Point Source
The 68%-radius and the relative error allow to judge to what extent the deconvolution im-
proves the resolution of a point source. An important requirement of the application of
a deconvolution algorithm is the fact that the algorithm does not influence the number of
events in the excess-map. The RCL is an event conserving algorithm and fulfils the above
stated requirement.
In Figure 6.12, the deviation of the event number during the deconvolution compared to the
number of events of the undeconvoluted excess-map as a function of the number of iterations
is shown. The deviation means the difference between the number of events of the deconvo-
luted excess-map to the number of events to the undeconvoluted excess-map normalised to the
events of the undeconvoluted excess-map. The error is the standard error of 20 simulations.
The deviation during the deconvolution to the initial number of events is around 2%. For a
smaller significance the behaviour is more variable and the error is larger than for a higher sig-
nificance. Despite the small deviation can be concluded that the number of events is conserved
during the deconvolution. Hence the requirement of the application is fulfilled.
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Figure 6.12: The deviation of the event number during the deconvolution compared to the
number of events of the undeconvoluted excess-map as a function of the number
of iterations. The deviation means the difference between the number of events
of the deconvoluted excess-map to the number of events to the undeconvoluted
excess-map normalised to the events of the undeconvoluted excess-map. The
error is the standard error of 20 simulations.





7 Deconvolution of Extended Sources
So far the deconvolution of point sources was discussed. In the wavelength range of gamma
rays, typical point sources are blazars which are a subcategory of active galactic nuclei [31].
In contrast to blazars, supernova remnants have an extended morphology [32]. Deconvolution
algorithms are extremely useful to study the morphology of extended sources. By means
of deconvolution, the angular resolution of an astronomical image can be improved. Unlike
for a point source, not the 68%-radius is the indication of the improvement of the match
between the simulated image and the source model during the deconvolution, but the relative
error. The relative error has a minimum. For further iterations, the resolution of the image
deteriorates again. Hence, the iteration number of the minimum of the relative error represents
an optimum of the iterations which provides the best resolution of the data.
In this chapter the deconvolution of extended sources with a ring-shaped and a Gaussian
morphology as an example for extended sources is discussed. In order to understand the
influence of the deconvolution on the data, the dependence of the optimal iteration number
on the significance, the lifetime and the size of the sources was studied. Thus, it is possible
to chose the optimal iteration number to achieve the maximal resolution for the gamma-ray
image of a source. The knowledge of the optimal iteration number of a source is therefore
crucial for the deconvolution of real data.
The simulation of a Gaussian morphology and a ring structure were presented in Chapter
5.2 and 5.3. All deconvolutions were performed with the RCL. The results for both source
morphologies are presented parallel to allow a comparison.

7.1 Study of the Influence of the Significance
The strong influence of the significance on the behaviour of the relative error in the case of
a point source was already presented in Chapter 6.2. The focus is now on the impact of the
significance on the relative error of a deconvoluted gamma-ray image of an extended source. In
Figure 7.1, the relative error as a function of the number of iterations for ring-shaped sources
with different significances is shown. The size of the underlying ring structure of the source
is defined by the inner radius rin=0.1 deg and the outer radius rout=0.3 deg. The error is the
standard error of 20 simulations.
The relative error increases with decreasing significance. Furthermore, the standard error for
smaller significances is larger than for higher significances and grows with the number of iter-
ations. The same behaviour was already observed for the relative error in the case of a point
source and was discussed in Chapter 6.2. Another striking feature in Figure 7.1 is that the
minimum of the relative error REmin depends on the significance. For higher significances,
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Figure 7.1: The dependence of the relative error as function of the number of iterations for a
ring-shaped source with different significances. The size of the underlying ring
structure of the source model is defined by the the inner radius rin=0.1 deg and
the outer radius rout=0.3 deg. The error is the standard error of 20 simulations.

REmin is located at higher iteration numbers. The iteration number at which REmin is po-
sitioned, represents hence the optimal iteration number. More iterations are not reasonable
since the relative error would grow again and thus, the match between the deconvoluted image
and the source model would deteriorate again.

To study the influence of the significance on REmin in more detail, the optimal iteration num-
ber as a function of the significance of a ring-shaped source is presented in Figure 7.2. The size
of the underlying ring structure of the source model is rin=0.1 deg and rout=0.3 deg. The error
is the standard error of 20 simulations. One can clearly see that the optimal iteration number
increases for higher significances of the source. Simultaneously the standard error grows with
the significance. In comparison to the results of the deconvolution of a ring-shaped source,
the optimal iteration number as a function of the significance of a Gaussian-shaped source is
shown in Figure 7.3. The size of the Gaussian model is defined by the 68%-radius of the Gaus-
sian dGauss=0.1 deg. The error is the standard error of 20 simulations. As for the ring-shaped
source, the optimal iteration number increases with the significance.
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Figure 7.2: The optimal iteration number as a function of the significance of a ring-shaped
source with rin =0.1 deg and rout =0.3 deg. The error is the standard error of 20
simulations.

To explain the observed dependence of the optimal iteration number on the significance of
the source, one has to keep in mind in which way sources with different significances differ
from each other. The brighter a source, the better the source morphology stands out of the
background. It is therefore not surprising that the deconvoluted image of a bright source
matches more with the original model than the deconvoluted image of a weak source. In the
case of a weak source more statistical fluctuations are interpreted as signal and are intensified
with every further iteration step. Thus, also the optimal iteration number is smaller, which is
demonstrated in Figure 7.2 and Figure 7.3. Since extended sources with a more complicated
morphology than point sources are regarded, the contrast of the source morphology to the
background is crucial for the deconvolution. Due to the fact that sources with higher signifi-
cances include more source events, the extended source morphology is better pronounced than
compared to a weaker source with less events. Consequently, the difference of the relative error
between higher and lower significances can be seen even more clearly than it was the case for
the point source in Chapter 6.2.
Another notable feature in Figure 7.2 and Figure 7.3 is the standard error, which is zero for
some significances. In this case, all simulations resulted in the same optimal iteration num-
ber. Within the zones in which the standard error is zero, the optimal iteration number is
for several significances constant and forms a plateau. These plateaus are smaller and less
pronounced for higher significances or do not occur any more. AS a result one can choose
quite surely the optimal iteration number for the deconvolution of gamma-ray sources with
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Figure 7.3: The optimal iteration number as a function of the significance of a Gaussian-shaped
source with dGauss=0.1 deg. The error is the standard error of 20 simulations.

significances inside theses plateaus. Outside of the plateau the choice is less clear and one has
to weight between two possible optimal iteration numbers in consideration of the standard
error.
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7.2 Study of the Influence of the Lifetime
The number of OFF-events in the simulation is calculated from the lifetime as was explained
in Chapter 6.1. It can be adjusted by scaling the number of events of the analysis of the
supernova remnant RX J1713.7-3946 [23] for which the lifetime is known. Since the number
of ON-events depends directly on the number of OFF-events within the source region and
therefore on the lifetime, one expects that the lifetime as well as the significance both influ-
ence the relative error and hence, also the optimal iteration number.
In Figure 7.4, the optimal iteration number as a function of the lifetime for a ring-shaped
source is shown. The size of the underlying ring structure of the source model is rin=0.1 deg
and rout=0.3 deg. The error is the standard error of 20 simulations. For comparison, the
optimal iteration number as a function of the lifetime for a Gaussian-shaped source is shown
in Figure 7.5. The size of the underlying Gaussian model is dGauss=0.1 deg. The error is the
standard error of 20 simulations.

For the ring-shaped source the optimal iteration number increases with growing lifetime. In
contrast, the influence of the lifetime on the optimal iteration number of a Gaussian-shaped
source is small. The optimal iteration decreases slowly with a slope of -0.0008±0.0004 with
growing lifetime (cf. Figure 7.5). Therefore, the difference of the results for the optimal iter-
ation number for different life times in the case of a Gaussian-shaped source is negligible.
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Figure 7.4: The optimal iteration number as a function of the lifetime of a ring-shaped source
with rin =0.1 deg and rout=0.3 deg. The significance of the source is 60σ. The
error is the standard error of 20 simulations.
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Figure 7.5: The optimal iteration number as a function of the lifetime for an Gaussian-shaped
source with dGauss=0.1 deg The significance of the source is 60σ. The error is the
standard error of 20 simulations.

To understand the difference between the result for the two extended sources, one has to study
the morphology of their models: in the case of a ring-shaped source, the ring model is a ring-
shaped plateau with steep sides. On the other hand, the slope of a Gaussian model is much
more extended due to the slow decrease of the Gaussian. For a Gaussian with dGauss=0.1 deg
the 99%-radius of the model is 0.28 deg and thus, much larger as dGauss. As a consequence the
area of a Gaussian-shaped source with dGauss=0.1 deg is nearly of the same size as the area of
a ring structure with rin=0.1 deg and rout=0.3 deg.
Furthermore, there is a certain difference in the calculation of the OFF-events of a Gaussian-
shaped source and a ring-shaped source: the OFF-events of the Gaussian-shaped source are
calculated within its 99%-radius, the OFF-events of the ring-shaped source are calculated
within the fourfold radius of rout, which corresponds to a circle with a radius of 1.2 deg around
the source centre. The number of OFF-events of a ring-shaped source is hence much larger
than the number of OFF-events of a comparable Gaussian-shaped source. As a result also the
number of ON-events for a the ring-shaped source is much larger than for a Gaussian-shaped
source. The ratio of the number of ON-events to the area of the source for both morphologies
is listed in Table 7.1. The area of the source is in the case of Gaussian source the area within
the 99%-radius and for a ring-shaped source the area within rin and rout. If one regards the
ratio of the number of ON-events to the source area for different lifetimes, the result is notable:
in the case of a ring-shaped source the ratio of the ON-events to the area increases signifi-
cantly more than for a Gaussian-shaped source. Hence, an increasing lifetime leads to much
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more additional ON-events in the simulation of a ring-shaped source and thus, to a better
pronounced morphology than it is the case of the simulation of a Gaussian-shaped source.
Besides the different development of the ratio of the number of ON-events to the area in
dependence of the lifetime, the shape of the morphology is of particular interest. As already
stated above, the morphology of the ring structure model is a ring-shaped plateau with steep
sides. The ON-events are uniformly distributed over the source area. For the Gaussian-shaped
model it is the contrary: due to the probability distribution of the Gaussian the ON-events are
mainly distributed in the centre of the source model. However, there exists a small probability
for the ON-events to be distributed far away of the centre. This probability leads to statistical
fluctuations, which can be interpreted as signal and intensified by the deconvolution algorithm.
Because of these false interpreted fluctuations additional ON-events provided by a higher life-
time can also lead to a smaller optimal iteration number. Due to the probability-distribution
of the morphology of a Gaussian-shaped it is likely to occur more often than for a ring-shaped
source.

In summary, the difference of the behaviour of the optimal iteration number in dependence
on the lifetime between a Gaussian source and a ring-shaped source is caused by the different
numbers of OFF-events of both morphologies. Furthermore, a growing lifetime leads to a
smaller increase of ON-events in the case of a Gaussian source compared to a ring-shaped
source. In addition the extended morphology of a Gaussian results in higher probability of
misinterpretation of fluctuations as signal during the deconvolution.
To take the better results for higher lifetimes at least for the ring-shaped source into account,
in all simulations of extended sources a lifetime of 100 h was used, if not otherwise stated.

morphology lifetime [h] NON/Asource [1/deg2]
ring 100 36704
ring 170 55017
Gaussian 100 18908
Gaussian 170 21651

Table 7.1: Ratio of ON-events to the area of the simulation of the gamma-ray image of
a ring-shaped source with rin=0.1 deg and rout=0.3 deg and a Gaussian-shaped
source with dGauss=0.1 deg. The significance of the sources is 60σ each.
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7.3 Study of the Influence of the Morphology
A deconvolution shall improve the angular resolution of a gamma-ray image to enable a deeper
investigation of the morphology of a source. However, the morphology has a strong impact
on the deconvolution itself and hence on the optimal iteration number.
In order to study the influence of the width and the radius of a ring-shaped source sepa-
rately, the width of the ring, defined as dring = rout − rin, and radius of the ring, defined as
R = rin + dring/2, are hereby introduced. The size of a Gaussian-shaped source is indicated by
dGauss. In this section the influence of the size parameters on the optimal iteration number is
discussed.

In Figure 7.6 the optimal iteration number as a function of the radius R for a ring-shaped
source with different dring is shown. The significance of the source is 60σ. The error is
the standard error of 20 simulations. One can clearly see that the optimal iteration number
decreases with increasing R. Moreover, the optimal iteration number is for some radii of the
source constant and forms a plateau. Inside these zones it is straightforward to chose the
optimal iteration number for the application of the deconvolution algorithm on real data of a
source similar to the simulated one. Outside of these plateaus the iteration number fluctuates
more and the choice of the optimal iteration number is more difficult.
Also a strong dependence of the optimal iteration number on dring is striking. The optimal
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Figure 7.6: The optimal iteration number as a function of the radius R for a ring-shaped
source with different dring of 0.1 deg, 0.2 deg and 0.3 deg. The significance of the
source is 60σ. The error is the standard error of 20 simulations.
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iteration number for a narrow ring with dring=0.1 deg is significantly higher than for broader
ring structures. Furthermore, the results of dring=0.1 deg and dring=0.2 deg are much more
different to each other than the results of dring=0.2 deg and dring=0.3 deg in comparison.
To study the influence of dring on the optimal iteration number in more detail, in Figure 7.7
the optimal iteration number as a function of dring for a ring-shaped source with R=0.3 deg is
plotted. The significance of the source is 60σ. The error is the standard error of 20 simulations.

Striking is here as well that a smaller dring leads to a higher optimal iteration number than a
larger dring. This can be explained by the increasing source area Aring of the ring for larger
dring, which is listed for different dring in Table 7.2. In comparison the area A4rout , which is
defined by the fourfold radius rout around the source centre, increases less with dring. Within
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Figure 7.7: The optimal iteration number as a function of dring for a ring-shaped source with
R=0.3 deg. The significance of the source is 60σ. The error is the standard error
of 20 simulations.

R [deg] dring [deg] Aring [deg2] A4rout [deg2]
0.3 0.1 0.57 10.18
0.3 0.2 0.38 8.04
0.3 0.3 0.19 6.16

Table 7.2: Source area Aring and A4rout of the simulation of the gamma-ray image of ring-
shaped source for different dring and fixed R. Aring is the area between rin and rout,
in which the ON-events are distributed. A4rout is defined by the fourfold radius
rout around the source centre in order to calculated the number of OFF-events.
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R [deg] dring [deg] NON/Aring [1/deg2] NOFF/A4rout [1/deg2]
0.3 0.1 65100 4319
0.3 0.2 35481 4066
0.3 0.3 24469 3479

Table 7.3: Ratio of ON-events to the source area and ratio of OFF-events to A4rout for the
simulation of the gamma-ray image of ring-shaped source for different dring and
fixed R.

A4rout , the number of OFF-events is calculated. Due to the number of ON-events in turn
depends on the number of OFF-events, the number of ON-events increases with increasing
A4rout . Though, the area A4rout and hence, the number of ON-events grows slower than the
source area Aring, in which the ON-events are distributed. Thus, the ratio of ON-events per
source area NON/Aring is significant smaller for larger dring than for smaller dring as can be seen
in Table 7.3. Consequently it is in line with the expectations that dring has a strong influence
on the behaviour of the optimal iteration number.
Moreover, the optimal iteration number does not depend linearly on dring, which can also be
seen in Figure 7.6. The same is apparent if one regards NON/Aring for different dring (cf. Table
7.3). Even more striking is this feature for the ratio of OFF-events to the area A4rout : the
ratio NOFF/A4rout depends on dring and hence on rout. To understand this, one has to take
into account that the OFF-events are calculated within a large circle around the source centre
of the acceptance map. The acceptance map drops to the edges. Thus, it is comprehensible
that a narrow ring-shaped source with a small rout and a small dring has more OFF-events and
hence, ON-events per area than a more extended ring-shaped source due to the influence of
the acceptance. Consequently the morphology of a narrower source is more pronounced which
leads to higher optimal iteration number.

In Figure 7.8 the optimal iteration number as a function of dGauss for a Gaussian-shaped
source is shown. The significance of the source is 60σ. The error is the standard error of
20 simulations. As well as for the ring structure, also the optimal iteration number for the
Gaussian-shaped source decreases with increasing size of the source. Furthermore, one can
see that the optimal iteration number drops apparently faster with growing size than in the
case of the ring-shaped source. However, one has to keep in mind, that the actual size of the
Gaussian-shaped source is much larger than dGauss as was already explained in Chapter 7.2.
Therefore, the result in Figure 7.8 are in line with the expectations.
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Figure 7.8: The optimal iteration number as a function of dGauss for a Gaussian-shaped
source. The significance of the source is 60σ. The error is the standard error of
20 simulations.





8 Supernova Remnant
RX J1713.7-3946

In the previous chapter the simulation of gamma-ray sources and their deconvolution was dis-
cussed. The used PSF and camera acceptance were taken from the already mentioned analysis
of the supernova remnant RX J1713.7-3946 [23]. RX J1713.7-3946, which is also known as
G347.3-05, is the brightest and best studied young supernova remnant in the range of VHE
gamma-rays. It was the first gamma-ray source to be resolved spatially and enabled compre-
hensive studies of morphology and spatially resolved spectra. Furthermore, it allows insights
into the acceleration process of charged particles within a supernova remnant, which is de-
scribed theoretically by the model of diffusive shock acceleration [33, 34]. RX J1713.7-3946 is
therefore one of the most important sources of VHE gamma-rays.
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Figure 8.1: Excess count image of RX J1713.7-3946, which was corrected by the reconstruc-
tion acceptance. The image was smoothed with a two-dimensional Gaussian of
width 0.03 deg. The size of the PSF is demonstrated by the white circle in the
bottom left corner.
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The supernova remnant RX J1713.7-3946 is located in the constellation Scorpius in the galatic
plane and is a strong gamma-ray as well as X-ray source with a shell-type morphology. It
was first discovered in the year 1996 in the soft X-ray waveband by ROSAT. In the VHE
regime RX J1713.7-3946 was observed in two distinct observation campaigns by H.E.S.S. The
first one was in the years 2003-2005, the second one took place in 2011 and 2012. In Figure
8.1, the excess count image of RX J1713.7-3946 is shown. The image was smoothed with a
two-dimensional Gaussian of width 0.03 deg. The size of the PSF is indicated by the white
circle in the bottom left corner. [33, 34, 35].

Despite the previous morphological studies of the supernova remnant, the origin of the VHE
gamma-ray emission of RX J1713.7-3946 is so far unclear. There are two possible scenarios
for the generation of gamma-rays: in a leptonic scenario, gamma-rays are produced due to
synchrotron losses of accelerated particles in the shock front via the inverse Compton effect
of relativistic electrons with ambient low energy photons (cf. Chapter 2.3.2). In the hadronic
scenario gamma-rays are emitted via the generation and decay of neutral pions (cf. Chapter
2.3.1). However, there are some indications which contradict to a pure leptonic or hadronic
scenario. In the case of a leptonic scenario the presence of a weak magnetic field is required
to reduce the energy loss of the electrons [36]. That disagrees to the model of diffusive shock
acceleration, which does not include any kind of magnetic field amplification in the shock.
On the other hand, in the scenario of hadronic origin a high gas density is required. In this
case one would expect to observe also strong thermal X-ray emission. Such X-ray emission
was not detected for RX J1713.7-3946 [36]. Due to these uncertainties of the production of
gamma-rays in RX J1713.7-3946, whether leptonic, hadronic or a mixture of both, further
investigations are required [33].

(a) (b)

Figure 8.2: (a) X-ray image of RX J1713.7-3946, detected by XMM-Newton. (b) Gamma-ray
image of RX J1713.7-3946, deconvoluted with RCL after six iterations. [33]
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It is, for example, assumed, that magnetic field amplification in the vicinity of clumps due
to shock-clump interactions increases the synchrotron X-ray emission, which would support
the hadronic scenario. To study the origin of the gamma-ray emission, it is therefore promis-
ing to study the morphology of RX J1713.7-3946. One way is thereby to compare the VHE
gamma-ray image of the supernova remnant to its X-ray image, observed by XMM-Newton
in the energy range of 1 keV to 10 keV [33].

In order to compare the X-ray image to the gamma-ray image, the Pearson’s correlation
coefficient is calculated between both data sets. Beforehead, the gamma-ray image was de-
convoluted by the RCL to improve its resolution. In Eq. 8.1 [36] the Pearson’s correlation
coefficient rX−ray,V HE is defined:

rX−ray,V HE = ∑i(zi,X−ray − z̄X−ray)(zi,V HE − z̄V HE)√
(zi,X−ray − z̄X−ray)2

√
(zi,V HE − z̄V HE)2

(8.1)

The sum is the sum over all bins i in the image. The bin content of a bin i is denoted in the
case of the X-ray image as zi,X−ray, whereas for the gamma-ray image as zi,V HE . z̄X−ray and
z̄V HE , respectively, are the mean values of the bin content of all bins in the image.
As one can see in Figure 8.2 (b), the morphology of RX J1713.7-3946 deviates from a perfect
ring structure. Thus, to determine the optimal iteration number, a modified ring model of
RX J1713.7-3946 is required, which reflects the individual morphology of the supernova rem-
nant. In this thesis the result of Sebastian Heinz for the optimal iteration number was used
[22].
The deconvolution of the gamma-ray image of RX J1713.7-3946 was performed with six iter-
ations. Thereby an angular resolution of 0.024 deg can be reached considering a point source.
In Figure 8.2, the X-ray image and the deconvoluted gamma-ray image after six iterations of
RX J1713.7-3946 are shown.
The correlation between the X-ray image and the gamma-ray image was calculated within an
annular region defined by a radius of 0.2 deg to 0.6 deg in respect to the centre of the remnant.
The radii are chosen in order to make sure that the X-ray source as well as the gamma-ray
source are included. In Figure 8.3, the Pearson’s correlation coefficient in dependence of the
bin size for the deconvoluted and undeconvoluted gamma-ray image is shown.

The Pearsons’s correlation coefficient for the deconvoluted case is nearly constant for a bin size
smaller than 0.04 deg. In this range the correlation coefficient varies only slightly from 0.69 to
0.72. For bin sizes larger than 0.04 deg the coefficient fluctuates more. Apart from that, the
results show that X-ray data correlates well with the gamma-ray data. In comparison to the
deconvoluted case, the unconvoluted gamma-ray image correlates far less to the X-ray data.
Only from a bin size of more than 0.04 deg, the correlation coefficients of both the convoluted
as well as the convoluted case are at the same scale. This coincidences with the fact, that
the 68%-radius of the PSF (and hence, the angular resolution of the undeconvoluted image)
is 0.048 deg. Therefore, a higher correlation of the undeconvoluted image is not to expect for
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smaller bin sizes [36].

For a more detailed investigation of the correlation between X-rays and gamma-rays in the
supernova remnant, the image was separated in five sub-regions, which are shown in Figure
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Figure 8.3: Pearson’s correlation coefficient as a function of the bin size for the deconvoluted
and non deconvoluted gamma-ray image of RX J1713.7-3946.
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Figure 8.4: H.E.S.S. gamma-ray image separated in five sub-regions between a radius of
0.2 deg to 0.6 deg, in order to compare gamma-ray data and X-ray data [33]. The
angular borders of all regions are listed in Table 8.1. The Pearson’s correlation
coefficient was calculated for every region.
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whole shell 1 2 3 4 5
starting angle φ1 0 deg 240 deg 160 deg 90 deg 20 deg 310 deg
stopping angle φ2 360 deg 310 deg 240 deg 160 deg 90 deg 20 deg

rX−ray,V HE 0.70 0.45 0.56 0.68 0.80 0.67

Table 8.1: Radial coordinates of the sub-regions in the gamma-ray image for the correlation
study of RX J1713.7-3946 and Pearson’s correlation coefficient for five selected
sub-regions [33].

8.4. The sub regions are defined with the radial coordinates of the above-named annular
region, i.e. the radii 0.2 deg and 0.6 deg and the angles φ1 and and φ2. The radii are fixed for
all subregions, the angles are listed in Table 8.1 and were also used in the H.E.S.S. analysis
of RX J1713.7-3946 [33]. The Pearson’s correlation coefficient was calculated for a bin size of
0.021 deg. The results are also listed in Table 8.1.
The region with the highest correlation coefficient is region 4 with a value of 0.80. Region 3
and region 5 have almost the same correlation coefficient of 0.68 and 0.67, respectively. In
these three regions a high gamma-ray emission was observed and also the X-ray-emission is
higher than for the other regions. Region 1 has the lowest correlation coefficient of 0.45.

As a result of the correlation study, it can be concluded that the X-ray data and the VHE
gamma-ray data of the supernova remnant RX J1713.7-3946 are well correlated. In contrast,
two distinct correlation studies with different deconvolution algorithms led to the result that
VHE gamma rays and the proton distribution of the ISM are only weakly correlated [36, 37].
In a hadronic scenario one would expect that the gamma-ray emission due to neutral pion
decay is correlated to the proton distribution of the ISM. Hence, the combined results of the
correlation studies support a leptonic scenario via the inverse Compton scattering between
high-energetic photons and the ambient photon field. This result challenges the hadronic
model which have so far been used to explain the observed spectra [38]. Furthermore, the
result of the correlation study is consistent to observations of RX J1713.7-3946 by Fermi LAT.
These support a leptonic origin as well [39].





9 Summary and Outlook

In this thesis the influence of deconvolution algorithms on simulated gamma-ray images with
different source morphologies was investigated.

As deconvolution algorithm mainly the Richardson-Lucy algorithm was used. In order to
compare the results of the RCL to another algorithm, the Maximum-Entropy algorithm was
utilised as well. The influence of the deconvolution was studied in dependence of the morphol-
ogy of a point source and of extended sources. As examples of extended sources a Gaussian-
shaped source and a ring-shaped source were examined.

In the case of a point source the behaviour of the 68%-radius, i.e. the angular resolution,
during the deconvolution was discussed. Different source properties and their influence on
the results of the deconvolution as the significance, the lifetime and the binning were stud-
ied. Furthermore, the behaviour of the relative error which is a measure of the deviation of
the deconvoluted image to the original source model was studied, dependent on the number
of iterations. It was concluded that the deconvolution of brighter sources lead to a better
angular resolution. A bright source with a significance of 100σ reached an 68%-radius of
0.013 deg after 200 iteration whereas a source with a significance of 20σ reached a 68%-radius
of 0.016 deg. In both cases the deconvolution resulted in a significant improvement compared
to the 68%-radius of the undeconvoluted image with 0.048 deg. The influence of the lifetime
is negligible in contrast to the significance. The difference of the 68%-radius of sources with
a significance of 60σ and lifetimes of 25 h and 100 h, respectively, after 140 iterations is less
than 0.0005 deg. A rebinning of 5 of the gamma-ray image has proven to be good to provide
a sufficient resolution and to avoid long run times.
The relative error decreases continuously with increasing number of deconvolutions. The
number of events is conserved during the convolution as required for the application of a de-
convolution algorithm.

Besides the point source, the behaviour of the relative error during the deconvolution of ex-
tended sources was studied. The relative error has a minimum after few iterations. This
minimum represents the optimal iteration number which provides the best match of the sim-
ulated image and the source model. The optimal iteration number increases with growing
significance for the Gaussian-shaped source and the ring-shaped source. If more iterations
are possible, a better match with the original model can be reached. Hence, brighter sources
can be deconvoluted better. The influence of the lifetime is negligible small in the case of
the Gaussian-shaped source. The optimal iteration number of Gaussian-shaped source with
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a significance of 60σ and dGauss=0.1 deg is around 3.3 and decreases slowly with a slope of
-0.0008±0.0004. In contrast, for the ring-shaped source of the same significance a larger life-
time results in a higher optimal iteration number. A ring-shaped source with a size defined
by rin =0.1 deg and rout=0.3 deg and a lifetime of 10 h has a optimal iteration number of 3.35,
whereas the same ring-shaped source with a lifetime of 170 h has a optimal iteration number
of 4.45. For both morphologies the size of the source has a strong influence on the results
of the deconvolution. An increasing source area leads to a smaller optimal iteration number.
Thus, less improvement is achieved via deconvolution for larger sources compared to smaller
ones.

As an application of the deconvolution, the gamma-ray image of the supernova remnant
RX J1713.7-3946 was deconvoluted. Afterwards, a correlation study of RX J1713.7-3946 was
performed. In this study the Pearson’s correlation coefficient between the X-ray image and
gamma-ray image of RX J1713.7-3946 was calculated. The calculation was made for different
bin sizes of the deconvoluted gamma-ray image as well as for the undeconvoluted gamma-ray
image. The calculation for the deconvoluted image resulted in a higher correlation factor for
bin sizes smaller than the 68%-radius of the PSF. For a bin size of 0.021 deg for example,
the correlation factor of the deconvoluted image was 1.35 times higher compared to the un-
deconvoluted one. In this way, it was shown that the application of deconvolution allows to
prove correlation between X-ray data and gamma-ray data for smaller structures. This result
underpins the leptonic scenario of the origin of gamma radiation via the process of inverse
Compton scattering.

The application example of the correlation study supports the idea that deconvolution algo-
rithms are a powerful tool to gain more insight into the acceleration processes within the
supernova remnant RX J1713.7-3946 as well as other galactic sources. Further work needs to
be done to understand the influence of deconvolution on the data in more detail. For this the
binning of the gamma-ray image and the influence of the lifetime have to be examined more
deeply. Moreover, resulting studies of the optimal iteration number in the case of extended
source morphologies can serve as look-up tables.
Furthermore, it is recommended to study the deconvolution of real sources by means of mod-
ified models different from the ideal source morphologies which were presented in this thesis.
These models could reflect the individual morphology of a real source in contrast to a idealised
morphology. The investigation of such simulations can be used to improve the application of
deconvolution algorithms on real sources, for example to choose the optimal iteration number.
In addition, an important issue is the comparison of different deconvolution algorithms. Thus,
it can be demonstrated whether different deconvolution algorithms, even if they behave quite
differently, lead to the same result. This is fundamental, because it means that deconvolution
algorithms provide real results. The results of such comparison studies could help to choose
the appropriate algorithm for a given task. The future application of deconvolution algorithms
could thereby be performed more effective.
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In conclusion it can be said that deconvolution algorithms are useful to enhance our un-
derstanding of the origin of VHE gamma-rays. Therefore, the application of deconvolution
algorithm shall be encouraged in prospective research.
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