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Introduction

During the past years, the popularity of artificial intelligence in general and Deep
Learning, in particular, has grown enormously. From 2014 to 2019, the number of
search requests at Google, including “Deep Learning”, increased twenty-fold [1].
The number of Deep Learning applications is rising continuously. One reason for
this is the growth in computational power of modern hardware. Another reason
is the development of better and easier to use machine learning algorithms and
frameworks.

The use of Deep Learning also becomes more and more common in the analysis of
physical experiments. Because of the very high-dimensional and complex problems
of modern particle detectors, classical analysis methods are only possible with very
large effort. In addition, a good knowledge of the physical processes inside the
detector is crucial. For analyses using Deep Learning, the physical processes in the
experiment, are irrelevant. This is both an advantage and disadvantage of Deep
Learning. Since the exact processes in the detector are irrelevant the effort for the
analysis is much smaller. However, we do not know what the network is doing.
Trying to understand the features the network exploits is therefore important to
get an idea what the network is doing.

One application of Deep Learning in particle physics is the event reconstruction.
In the case of EXO-200, this includes the determination of the position and energy
of an interaction. EXO-200 is an experiment searching for the neutrinoless double
beta decay. Observing such a decay would answer the question whether the neutrino
is a Majorana or Dirac particle. Although the neutrinos where already postulated
by Pauli in 1930 [2] and detected by Cowan et al. in the 1950s [3], there are
still open questions and therefore subject of recent research. This includes the
neutrino mass hierarchy and the masses of the mass eigenstates, which are currently
investigated by different experiments [4, 5].

In this thesis, the potential of reconstructing events measured by the EXO-200
detector using Deep Learning methods is investigated. In chapter (1), the theoretical
background, including ββ0ν physics, Deep Learning, and the EXO-200 experiment,
is introduced. The Convolutional Neural Network used and the data sets used
within this thesis are the subjects of (2). Chapter (3) discusses the reconstruction
of Monte Carlo simulated events and chapter (4) discusses the performance of the
network on real data.
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In this chapter, the theoretical background of this thesis is outlined. This
includes the physical background i.e. the neutrino accompanied and the neutrinoless
double beta decay. It is followed by the setup of the EXO-200 detector with its
detection principle and standard event reconstruction. Furthermore, the concepts
of Deep Learning including backpropagation and convolutional neural networks are
explained.

For a more detailed introduction to the different topics see the sources given or
special literature. If you are already familiar with the covered topics feel free to
skip this chapter.
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1.1 Physical Background

In this section, the important physical fundamentals of this thesis are presented.
Based on the double beta decay, the hypothetical neutrinoless double beta decay is
explained and the implications of an existence of this decay are shown.

1.1.1 Double Beta Decay

The beta decay is a radioactive decay of an atomic nucleus A
ZX with mass number

A and atomic number Z. In this reaction, a neutron of the nucleus decays into a
proton

A
ZX →A

Z+1 Y + e− + ν̄e . (1.1)

The new nucleus Y has the same mass number A but an increased atomic number
Z + 1. Furthermore, one electron and one electron antineutrino are emitted. The
binding energy of the daughter nucleus Y is lower than the one of the mother
nucleus. Due to that, energy is released during the beta decay.

For some particles, this single beta decay is energetically forbidden. This is the
case for nuclei with larger binding energy of the hypothetical daughter nucleus.
Several of these nuclei react via a second-order decay called the double beta decay
(ββ2ν), where two electrons and two electron antineutrinos are emitted and the
atomic number of the daughter nucleus increases by two

A
ZX →A

Z+2 Y + 2e− + 2ν̄e . (1.2)

As the lepton number is preserved during this decay, it is permitted within the
Standard Model of particle physics. Figure 1.1a shows the Feynman diagram of
the double beta decay. In 1935, the double beta decay was first described by
M.Goeppert-Mayer [6] and in 1950 it was measured for the first time by M. G.
Inghram and J. H. Reynolds [7] in the nucleus 130Te via geochemical methods.
Modern measurements of the half-life are of the order of T1/2 ≈ 1018 yr− 1021 yr
[8]. This makes the double beta decay the rarest decay detected so far [8]. The
sum of the kinetic electron energy emitted during this process follows the broad
example spectrum shown in Figure 1.2.

1.1.2 Neutrinoless Double Beta Decay

In contrast to the neutrino accompanied double beta decay, the neutrinoless double
beta decay (ββ0ν) is a hypothetical decay that has not been observed yet. It
was first postulated by W. H. Furry in 1939 [10]. The Feynman diagram for the
neutrinoless double beta decay is shown in Figure 1.1b. Simplified the electron
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(a) (b)

Figure 1.1: Feynman diagram of (a) the double beta decay, where two neutrons decay
into two protons. During this process, two electron antineutrinos and two electrons
are emitted. Feynman diagram (b) shows the neutrinoless double beta decay where
in contrast only two electrons are emitted. Reprinted from [9].

Figure 1.2: Energy spectra for the two electrons of the double beta decay and the
neutrinoless double beta decay as a function of E/Q, where E is the combined energy
of the electrons and Q is the total energy released. Reprinted from [9].
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antineutrino emitted by the double beta decay at one vertex, is absorbed as an
electron neutrino at the second vertex. This leads to the following reaction equation

A
ZX →A

Z+2 Y + 2e− . (1.3)

Physically correct the process is much more complex [11], but Schechter and Valle
showed in 1982 that the conclusion ν = ν̄ is independent of the exact mechanism
[12]. This reaction is only possible if some requirements are fulfilled. First of
all, the neutrino must be a Majorana particle i. e. its own antiparticle. Another
point is that the neutrino must have mass. This enables a helicity flip from a
right-handed antineutrino to a left-handed antineutrino. Through the observation
of neutrino oscillations, at least two neutrino mass eigenstates must have a nonzero
rest mass. Since only two electrons are emitted at the neutrinoless double beta
decay the expectation is that these electrons have a sharp sum energy of E = Q.
To detect the hypothetical decay one is looking for this so-called Q value. Figure
1.2 shows the different electron energy sum spectra for the double beta decay and
the neutrinoless double beta decay.

For an experiment observing no neutrinoless double beta decay, only a lower
limit for the half-life of the decay can be given. The effective neutrino Majorana
mass mββ is defined as [8]

mββ =

∣∣∣∣∣
3∑
i=1

= mi ·
(
UMajorana
e,i

)2∣∣∣∣∣ , (1.4)

where mi is the mass of the mass eigenstates νi and UMajorana
e,i the elements of the

Majorana PMNS matrix for the electron flavor. The half-life and the effective
neutrino Majorana mass mββ are related via [13]

1

T ββ0ν1/2

= G0ν(Qββ, Z) · |M0ν |2 ·m2
ββ , (1.5)

where M0ν is the nuclear matrix element and G0ν(Qββ, Z) is the phase space factor
of the neutrinoless double beta decay. So, a lower limit on the half-life corresponds
to an upper limit on the effective neutrino Majorana mass.

If an experiment has no background close to the Q value, the upper limit on the
effective neutrino Majorana mass mββ after an exposure Mββ · t is [14]

mββ ∝ (Mββ · t)−
1
2 , (1.6)

where Mββ is the mass of the ββ nucleus of interest and t the measurement period.
One has to underline that the lower limit on the half-life scales with the square-root
of the exposure.
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For an experiment with background in the region of interest the relation to the
exposure changes to [14]

mββ ∝ (Mββ · t)−
1
4 . (1.7)

Because of this relation, it is very important to understand and minimize the
background of an experiment searching for the neutrinoless double beta decay.

As the neutrinoless double beta decay was not observed yet, one can only give a
lower limit for the half-life. The current lower limits exceed 1025−1026 yr depending
on the nucleus [15].

1.1.3 Physical Implications

The detection of the neutrinoless double beta decay implies to physics beyond the
Standard Model and answers some open questions in neutrino physics. A first
consequence of a detection is that the neutrino is a Majorana particle, i. e. its own
antiparticle. This fact could lead to a better understanding of the matter-antimatter
asymmetry problem.

Secondly, that the neutrinos have mass, which is already confirmed through
the detection of neutrino oscillations. Apart from this fact the exact masses and
the ordering of the mass eigenstates is still not known. This is due to the fact
that through neutrino oscillations only the absolute value of the squared mass
differences |∆m2

ij| between the mass eigenstates νi and νj can be measured [16].
Additionally, it is known that the mass eigenstate ν1 has a smaller mass than the
mass eigenstate ν2. Figure 1.3 shows the two possible neutrino mass hierarchies
which are the so-called normal hierarchy and the inverted hierarchy. The difference
between these hierarchies is that in the inverted hierarchy the mass eigenstate ν3
has a smaller mass than the mass eigenstates ν1 and ν2.

Through a measurement of the half-life of the neutrinoless double beta decay, it
is possible to constrain the absolute neutrino mass and the mass hierarchy.

1.2 The EXO-200 Experiment

In this section, the setup of the EXO-200 experiment and its detection principle is
explained. Furthermore, the main steps of the event reconstruction are explained.

The Enriched Xenon Observatory (EXO) is a particle experiment searching for
the neutrinoless double beta decay. It is located at the Waste Isolation Pilot Plant,
WIPP, in New Mexico, USA, which is a radioactive waste repository [18]. At WIPP,
the detector is situated at a depth of 655 m which corresponds to 1858 meters water
equivalent [19]. The reason the experiment was conducted in a location with much
overburden is to have less atmospheric background. The majority of the cosmic
rays are absorbed by the rock over the salt mine.
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Figure 1.3: Neutrino mass eigenstates ν1, ν2, and ν3 arranged in the normal (left) and
inverted (right) neutrino mass hierarchy. The composition of the mass eigenstates
through the flavour eigenstates νe, νµ, and ντ is represented by the ratio of the colored
bars. Reprinted from [17].

EXO-200 was conducted in two phases (2011 − 2014, 2016 − 2019) and is a
prototype detector to test the technology of single-phase time projection chambers
(TPCs) for a future, larger detector (nEXO). The idea is to use the xenon as both
source and detection material. The xenon used is enriched in 136Xe (80.6%) and
the active detector volume is about 110 kg of liquid xenon [20].

1.2.1 Setup

The EXO-200 detector consists of a single-phase double-sided TPC filled with
liquid xenon. Both sides of the TPC are of cylindrical shape with a height of 40 cm
and a diameter of 44 cm and share the same cathode.

Figure 1.4 sketches the TPC. The vessel consists mainly of copper and bronze,
which was degreased and etched to not contaminate the liquid xenon in the vessel
[20].

The inner shell surface of the cylinder is covered with teflon to reflect scintillation
light. To detect the scintillation light large area avalanche photodiodes (LAAPDs)
are mounted at the two bases of the cylinder. Between the two sides of the TPCs
there is a cathode biased at −8 kV for phase I and at −12 kV for phase II. The
so-called field shaping rings located at the shell surface of the cylinder provide a
homogeneous electrical field in the active volume. At both end caps of the TPC, a
shielding (V) and a charge collection (U) wire plane are located respectively. The
V-wire planes are at a voltage of −780 V [21]. The shielding, or induction, wire
planes are mounted in front of the U-wires. Each wire plane consists of 38 wire
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Figure 1.4: Sketch of the EXO-200 detector with a cutaway view to see the inner parts.
All important elements are labelled. Reprinted from [20].

triplets. The wire planes of each TPC form a hexagon together which is illustrated
in Figure (1.5).

The TPC is surrounded by a double-walled cryostat to keep the liquid xenon at
a temperature of 167 K and a pressure of 147 kPa. The cryostat again is housed
inside a 25 cm lead shielding and surrounded by cosmic-ray veto panels. These
veto panels are made of plastic scintillators and are used to identify cosmic and
atmospheric background [20].

1.2.2 Detection Principle

An event taking place in the detector leads to excited Xe atoms, Xe∗, or electron-ion
pairs, Xe+ + e−. Figure 1.6 shows possible excitation processes.

Through the energy deposit in the detector, free electrons and scintillation light
is created. The event energy deposited in the scintillation and ionization channel is
anti-correlated. Combining these two channels leads to a better energy resolution
[23].

In Figure 1.7, the process of the electron drift is shown schematically. The
created free electrons drift, due to the electric field in the TPC, towards the anode.
Because of the difference of potential between the U- and V-wires, the V-wires
are transparent for the electrons. Thus, the electrons are not collected on the
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Figure 1.5: Scheme of the end of the TPC with the wire planes. The U-wires (orange)
and the V-wires (blue) are crossed by 60° and form a hexagon. Each line illustrates a
wire triplet. The Number of wires in this sketch does not match the real number of
wires.

Figure 1.6: Scheme of the process leading from an energy deposit in liquid xenon to
scintillation light and ion electron pairs. Reprinted from [22].
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Figure 1.7: Scheme of an event taking place in the detector. The drifting electrons
pass the V-wire plane and lead to an induction signal. Afterwards the electrons are
collected at the U-wires. Reprinted from [24].

V-wires but only produce an induction signal in these wires. The electrons are
then collected by the U-wire plane. The wires in both wire planes are aligned
at an angle of 60◦ to each other. Due to this, one can measure both a U- and a
V-coordinate of an event. These coordinates are unique and can be converted to
Cartesian coordinates.

The scintillation light, created by an energy deposit in the detector is reflected by
the teflon tiles at the shell surface and measured by the LAAPDs at the respective
end of the TPC.

Using the known drift velocity, the time difference between the light signal and
the charge signal is used to determine the Z-coordinate of an event. The electron
lifetime in the liquid xenon depends on the purity of the xenon in the TPC. Due
to that, the current purity must be known to determine the deposited energy.

1.2.3 Classical Event Reconstruction

The event reconstruction can be divided into three parts. Firstly, the signal finding,
followed by the signal parameter estimation, and finally the clustering of found
signals to events. A short overview of the different parts is given in this section.
For a more detailed explanation of the event reconstruction see [25].

To find a signal in the constant data stream a matched filter is applied to the
APDs, U-, and V-wires. A signal is found if the response to the matched filter
exceeds a certain threshold. This threshold is not at a fixed value but depends on
the root mean square of the noise in order to be sensitive to noise variations. After
the matched filter stage an “unshaping” algorithm is applied, which disentangles
possible multiple signals which are temporally close to each other.
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Figure 1.8: Example waveforms of a signal on a U-wire (a) and a V-wire (b). The red
curve shows the signal template fitted to data. The peak of the V-wire signal is earlier
in time than the peak in the U-wire signal. Reprinted from [25].

For the U, V, and APD channels appropriate signal templates are fitted to the
data to obtain the signal parameters. Figure 1.8 shows an example signal on the
U- and V-wires with a fit of the respective signal template.

The last part of the event reconstruction is the event clustering. Firstly, the
signals from the same event of the channels of the same type are bundled together.
By combining the U- and V-wire information, a 2D position of a charge cluster is
determined. After that, the same event bundles of the U, V, and APD channels
are clustered together to get the full 3D position of the charge cluster, in which
one scintillation cluster can contain many charge clusters.

The EXO-200 standard analysis distinguishes between single-site (SS) and multi-
site (MS) events. Single-site events are defined as events with one charge cluster,
where only one or two U-wires collect charge. Multi-site events are all events
that are not single-site events. This classification is physically motivated by the
classification of background and signal as MS events are background-like and SS
events are signal-like.

1.3 Deep Learning

In this section, the basic principles of Deep Learning are explained. Deep Learning
methods can be divided into three different types. One type is supervised learning,
in which the networks receive the correctly assigned output label for each input
during training. Another one is unsupervised learning, where the network does
not get the correctly assigned output label but e. g. tries to find patterns in data



1.3 Deep Learning 13

to cluster them. The third type is reinforcement learning where an agent reacts
to its environment and is rewarded depending on its action. This can be used to
control robots or to solve games. As in this thesis only supervised Deep learning
techniques are applied, this section focuses particularly on this type.

1.3.1 Basics of Deep Learning

A Deep Neural Network consists of many neurons usually arranged in layers,
whereby each neuron applies the following operation to its inputs xi

f(x1, x2, ..., xN) = ϕ

(
N∑
i=1

xiwi + Θ

)
, (1.8)

where wi is the corresponding weight to the input xi from the previous layer, Θ is
the bias, and ϕ is the activation function. The latter introduces a nonlinearity to
the network. Currently, the most popular activation function is the rectified linear
unit (ReLu) which is defined as

ϕ(x) = max(0, x) . (1.9)

Figure 1.9 shows a simple neural network with four input neurons and two output
neurons. All layers between the input and output layer are called hidden layers.
If every neuron of one layer is connected to every neuron of the following layer,
the layer is called a fully connected layer. A feedforward network is a network,
where the connections do not form a cycle, but point in the same direction. The
information in a feedforward network always moves in one direction.

It is proven that a feedforward network with only one hidden layer and a sufficient
number of neurons in this hidden layer can approximate any continuous function
on a compact subset of Rn [27]. But this is not feasible in practice, as an enormous
number of neurons would be needed, which can be reduced by arranging the neurons
in many layers.

1.3.2 Backpropagation

By minimizing an error function and adapting the weights of the neurons, networks
learn according to the value of the loss function. For regression tasks, the mean
absolute error or the mean squared error are typically used as an error function.
The minimization of the loss function is done using the so-called backpropagation
which is shortly introduced in this section and is adapted from [28].

Using the chain rule, the gradient of a loss function E with respect to a certain
weight wji can be written as

∂E

∂wji
=
∂E

∂aj

∂aj
∂wji

= δjzi , (1.10)
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Figure 1.9: Scheme of a fully connected feed forward network with four input neurons
and two output neurons. The network has one hidden layer consisting of five neurons.
Each of the connecting lines illustrates a weight wi. Reprinted from [26].

where zi = ϕ(ai) is the activation of neuron i, with ai the weighted sum of the
inputs as in equation (1.8), and δj is the “error”. From equation 1.10 it can be seen
that the derivative of the error function E can be calculated by multiplying the
value of δ at the output end of the connection by the value of z on the input end.

With ϕ′ = ∂ϕ
∂a

, the “error” of the output neurons can be calculated as

δk ≡
∂E

∂ak
= ϕ′(ak)

∂E

∂yk
. (1.11)

The “error” of the hidden neurons can be calculated using the chain rule as well
and by summing over all neurons k to which neuron j sends its output

δj = ϕ′(aj)
∑
k

wkjδk . (1.12)

With this back-propagation formula, the derivative of the loss function with respect
to the weights is calculated during training. These weights are then updated using
the gradient descent technique

wnew
ji = wold

ji + ∆wji . (1.13)

In practice batch training is very common. This means that the weights are not
updated after each input but after a batch of inputs. So, the change of the weight



1.3 Deep Learning 15

Figure 1.10: Convolution of a 4x4 input image with a 3x3 kernel resulting in a 2x2
output. The 3x3 kernel consists of nine weights. No padding and stride 1 is applied.
Reprinted from [29].

wji can be written as:

∆wji = −η
∑
n

δnj x
n
i , (1.14)

where the sum contains all inputs xn of a batch and η is the learning rate, which is
used as a hyper parameter during training.

1.3.3 Convolutional Neural Networks

Convolutional neural networks are a class of neural networks very common for
image recognition tasks.

A Convolutional neural network typically consists of convolutional layers followed
by fully connected layers. In a convolutional layer, the input image is convolved
with different kernels. This descriptively corresponds to the kernels being shifted
over the input image and a weighted sum of the input image in the receptive
field of the kernel and its weights is computed. Each kernel has different weights
and for each kernel another output, the so-called feature map is obtained. Figure
1.10 depicts the procedure of a convolution. The different kernels are looking for
different features in the input image. The first convolutional layers usually are
sensitive to simple features like edges and the deeper layers to more abstract and
complex features.

The stride of a convolution is the number of pixels the kernel is shifted during
the convolution. To conserve the size of the input layer during convolution padding
can be applied. Zeros are added around the input image so that the output shape
is equal to the previous input shape.

Between two convolutional layers, a max-pooling layer is used often. This layer
outputs the maximum response value over a receptive field. This is done to reduce
the dimension of the feature maps and to have fewer weights, which reduces
computational cost.



16 1. Theoretical Background

The advantage of a convolutional layer in comparison to a fully connected layer is
that the number of weights is much smaller. Another advantage is that the network
can exploit translational invariance which means that it can recognize patterns
e. g. in images independent of the location in the image. This is why convolutional
neural networks are the standard architecture for image recognition.
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In this chapter, the data production using a Monte Carlo simulation and the
data set properties are outlined. Furthermore, the architecture and the training of
the neural networks used to reconstruct the events in the EXO-200 detector are
introduced.

2.1 Monte Carlo Data

The data used to train the neural network is generated in a GEANT4 [30] based
Monte Carlo simulation of the EXO-200 detector. Using the simulation, labeled
events are generated, which is necessary for supervised training of a deep neural
network (DNN). The functionality of the Monte Carlo simulation is described in
the next subsection. The simulation generates raw signals of the wires in the U-
and V-wire planes. These are then preprocessed and finally used as an input for
the network. In the preprocessing step, the individual gain factors of the detection
wires are corrected. This is done by dividing the simulated signals of each channel
according to the channel-specific measured gain factor.

Figure (2.1) shows an example of the simulated measurement of the U- and
V-wire planes. The signal, in the two left wire planes of the figure, clearly stands
out from the noise. The transparent part in the figure is cropped, as this part only
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Figure 2.1: Signal of the V-wires (top) and the U-wires (bottom) of the two sides of
the TPC (right/left). The signals are shifted by an offset to visualize all wires. Before
the image is used as an input for the network, the signals are gain-corrected and the
transparent area is cropped as it only contains noise.

contains noise and no information about the event. This can be done because in
the Monte Carlo simulation the signal is always in the same range after the trigger.
Hence, fixed values (1000 µs− 1400 µs) for the cropping can be used.

2.1.1 Monte Carlo Simulation

The simulation procedure for EXO-200 is run in two separated steps. In the first
step, the geometry of the detector is modeled in GEANT4. GEANT4 is a toolkit
to simulate particle physics interactions with matter [30]. Using this toolkit, the
energy depositions of physical interactions in the liquid xenon are simulated and
sampled in pixelated charge deposits (PCDs) of cubic voxels with an edge length
of 0.2 µm.
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In the second part of the simulation, the electronic signal from the PCDs is
generated. The deposited energy leads to free electrons and scintillation light.
The free electrons are drifted in the electric field within the detector. During the
timestep ∆t, a PCD, combining these free electrons, moves ∆~x in the opposite
direction of the electric field ~E

∆~x = −vD ·∆t ·
~E

| ~E|
. (2.1)

The drift velocity vD is constant and determined from measurements. The diffusion
of the electrons, during the drift, is also included in the simulation. Additionally,
the electron lifetime in the liquid xenon can be adjusted in the simulation, to
simulate different xenon purities.

Using the Shockley-Ramo theorem, the induction on the detection wires from
the drifting electrons is determined [25, 32, 31]

i = Ev · q · |~v| , (2.2)

where i is the current induced, Ev is the electric field in the direction of ~v, q is
the charge of the moving particle, and ~v its velocity. After this step, the transfer
function of the electronics is applied to the signal. Finally, real noise, recorded
with the detector, is added [33].

2.1.2 Training Data

For training the DNN, a data set of 208,000 events, produced with the Monte
Carlo simulation, is used. It is simulated with a uniform distribution in energy
and in position in the detector. After considering energy dependent cross sections
and applying some event selection cuts, the uniformity is slightly degraded. The
true position label is calculated as the energy-weighted mean position of the PCDs.
The uniform distribution is chosen, that the network learns to reconstruct all
events without introducing a bias, independent of the energy and position of the
event. The events are simulated for the measuring phase I of EXO-200 which has a
different electric field as phase II and only SS events are used. Figure (2.2) shows the
correlation matrix of the later target parameters U, V, Z, and E of the training data.
On the diagonal plots, the distributions of the four parameters are shown. Because
of the hexagonal shape of the wire planes, the U- and V-coordinate are correlated
and not uniformly distributed, even if the events have a uniform distribution in the
detector volume. The off-diagonal elements contain two-dimensional distributions
with every combination of the parameters. Except for the correlation between the
U- and V-coordinate, the parameters are not correlated.
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Figure 2.2: Correlation matrix of the training data set. The diagonal elements show
distributions of the target parameters, whereas the off-diagonal elements show the
parameters as a function of another parameter. Apart from the correlation of the
U- and V-coordinate, due to the hexagonal shape, the remaining parameters are
uncorrelated.
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Source location nominal position true position
(x, y, z)[mm] (x, y, z)[mm]

S2 (0, 0,−29.5) (−2.54, 0.23,−29.2)
S5 (25.5, 0, 0) (25.5, 0.39,−3.0)
S8 (0, 0, 29.5) (3.5, 0, 29.5)

Table 2.1: Coordinates of different calibration source positions. The true positions differ
from their nominal values. Values from [18].

The training data is simulated with an infinite electron lifetime, i. e. no impurities
within the liquid xenon. In reality, the electron lifetime is finite and depends on the
xenon purity. An infinite electron lifetime was chosen for the training data because
the purity of the xenon is not constant over time. When applying the network to
data with finite electron lifetime, the reconstructed energy has to be corrected.

The training set consists of gamma events. Furthermore, the following selection
cuts are applied to the training data. Firstly, the total energy deposited by an event
in the liquid xenon must be between 700 keV and 3000 keV. Secondly, the distance
between the active PCDs of an event must be smaller than 5 mm. Active means in
this context that the energy deposited in the liquid xenon is also deposited on one
of the detection channels and not lost in some inactive detector component.

2.1.3 Test Data

To validate the performance of the network, Monte Carlo simulated events of
ββ0ν decays and of calibration sources at different positions are used. As a calib-
ration source 228Th with its prominent peak of 208Tl at E = 2614.5 keV near the
Q-value is used. Table (2.1) and Figure (2.3) show the coordinates of the different
positions. The real positions of the calibration sources differ slightly from their
nominal values. The MC simulation uses the true positions of the calibration
sources. Unlike the training data, the calibration data sets are not uniformly
distributed, but have real physical spectra in energy and position. The ββ0ν data
set has a uniform distribution in space but a sharp peak at E = 2458 keV.

Apart from the simulated Monte Carlo Data, real calibration data is used to
validate the network’s performance. Both, simulated and real events, are from
measuring phase I of EXO-200 and are only SS events.

Since in reality, the secondary electrons in the xenon have a finite lifetime, the
simulated calibration source data was also simulated with a finite electron lifetime
of τ = 4500 µs which matches the average lifetime measured in phase I. This is done
to have a better comparison of the networks’ performance on real and simulated
data.
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Figure 2.3: Different calibration source positions used for validation of the network.
Reprinted from [18].

Because the electron lifetime affects the energy reconstruction, the predicted
energy EDNN must be corrected using the formula [25]

Ecorrected
DNN = EDNN · exp

(
tdrift
τ

)
, (2.3)

where Ecorrected
DNN is the purity corrected energy, tdrift is the drift time of the electrons

and τ is the lifetime of the electrons in the liquid xenon. The drift time tdrift
depends on the z coordinate of the event and is calculated by

tdrift =
dC→APD − dAPD→U − dU→V − |zpred|

vdrift
+ tcollection , (2.4)

where dC→APD ≈ 204.4 mm is the distance between the cathode and the APD
plane, dAPD→U = 6.0 mm the distance between the APDs and the U-wire plane,
dU→V = 6.0 mm the distance between the U- and V-wire plane, zpred the z-position
predicted by the reconstruction method, vdrift = 0.00171 mm

ns
the drift velocity of

the secondary electrons and tcollection = 2940.0 ns the collection time. The collection
time is the drift time of the secondary electrons from the V- to the U-wire plane.

2.2 Network Architecture

Convolutional neural networks are state-of-the-art networks to analyze images. The
measurement data from the induction and collection wires of the EXO-200 detector
can be interpreted as a grayscale image. Because of this, a convolutional neural
network is used to reconstruct the events in the EXO-200 detector. Figure 2.4
shows a sketch of the setup of the network. All layers in the network use ReLu
as activation function and are implemented in Keras [34] using Tensorflow [35]
backend.
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Figure 2.4: Sketch of the convolutional neural network. The four input images are the
U- and V-wire signals of both sides of the TPC. The Network branches, illustrated in
the same color, share their weights.
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As an input, the cropped and gain-corrected waveforms of both V-wire and
both U-wire planes are used. Each consists of 38 wire channels and is cropped to
400 samples. Eight convolutional layers are applied to each of the input images.
Whereby the kernels applied to the U-wires share their weights and the kernels
applied to the V-wires share their weights. This is done to have less training
parameters, which corresponds to less computational cost. It is physically motivated,
as both sides of the TPC have the same geometry. Network branches with shared
weights are represented by the same colors in the sketch of the network. After four
convolutional layers, a max pooling layer is applied to the U- and V-wire branch.
The reason for this layer is also to save computational cost. After the convolutional
layers, the feature maps of the wire planes of the respective side of the TPC are
separately concatenated and flattened. Due to this, for each side of the TPC, the
stack of two-dimensional feature maps becomes a one-dimensional array. To each
of the one-dimensional arrays, two fully connected layers are applied. The neurons
of the fully connected layers for both sides of the TPC share their weights. The
outputs of the last dense layer are concatenated and used as an input for the output
neuron.

A DNN with this architecture is used for each of the four parameters, the U-, V-,
and Z-coordinate as well as the energy. The network is trained for each parameter
individually to get the best results possible with this architecture.

2.3 Network Training

The training of the networks is done on a graphics processing unit (GPU) at the
Regionales Rechenzentrum Erlangen (RRZE) using the Adam optimizer [36].

During training, the training data introduced in subsection (2.1.2) is split into
a training and a validation set. The training set consists of 90% of the data and
the validation set of the remaining 10%. The network does not see the validation
data during the training. This is done to check with an independent data set if the
network is overfitting the training data. A network is overfitting the training data
if it is too adapted to the training data and therefore becomes worse in generalizing
to new data.

The mean squared error (commonly known as L2-loss) is used as a loss function.
As an example Figure (2.5) shows the loss function as a function of the training time
for the network reconstructing the V coordinate. The value of the loss function
for the training data set (blue) and validation data set (green) is, apart from
statistical fluctuations, identical, which implies, that the network is not overfitting
the training data.
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Figure 2.5: Loss plotted as a function of time in epochs during training on the V-
coordinate both for training data (blue) and validation data (green). The learning
rate has been decreased by a factor of ten after epoch 20, 35 and 50. This leads to
the jumps in the loss.
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Starting with a learning rate of 10−3, the learning rate is decreased by a factor
of ten after epoch 20, 35 and 50. This results in jumps in the loss function. The
learning rate is reduced in order to reach the minimum of the parameter space.

For too large values of the learning rate, the network jumps over the minima
of the parameter space but does not reach them. For too small learning rates the
training takes very long and gets stuck in local minima.
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In this chapter, the performance of the trained convolutional neural networks
in reconstructing the energy and position of simulated single-site (SS) events
is investigated and compared to the classical analysis of EXO-200. For this
purpose approximately 60,000 ββ0ν SS events, uniformly distributed within the
detector, are simulated using the EXO-200 Monte Carlo simulation. The uniform
event distribution in the detector corresponds to the real position distribution of
ββ0ν events.

For comparing both methods, the reconstruction performance is investigated
using the residual, which is defined as

r = xprediction − xtrue , (3.1)

where xprediction is the value predicted by the reconstruction method, which is either
the DNN or the EXO-200 standard analysis, and xtrue the true Monte Carlo label
of the event.

In this thesis, the standard deviation σ of the residual r of a variable x is used
as a measure for the resolution

σ =

√√√√ 1

N

N∑
i=1

(ri − µ)2 , (3.2)
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where N is the number of events in the data set and µ the mean value of the data
set for the residual of the variable x.

Apart from this, the correlation of the residuals of both methods, the DNN and
the EXO-200 standard analysis, with respect to the MC true label is investigated.
To do this, the Pearson correlation coefficient ρ is used. For two random variables
X, Y it is defined as

ρX,Y =
E[(X − µX)(Y − µY )]

σX · σY
, (3.3)

where E is the expectation, µA the mean of A and σA the standard deviation of
A. For ρ = +1, the two variables X and Y are totally positive linearly correlated,
ρ = 0 means no correlation and ρ = −1 is a total negative linear correlation.

3.1 Position Reconstruction

In this section, the position reconstruction of the DNN and the classical event
reconstruction is investigated and compared. Firstly, the reconstruction of the
single coordinates (U, V, Z) is analyzed. After that, the reconstruction of the full
three-dimensional position is investigated.

The event position in low background experiments is important and is used as a
measure to distinguish signal from background events. The inner detection volume
is categorized as a fiducial volume because the MC simulation near the walls of
the TPC does not model the electric field correctly [24]. With a better position
reconstruction, more fiducial events are correctly categorized as fiducial events and
vice versa. This reduces the systematic uncertainties introduced by the fiducial
volume definition.

3.1.1 U-Coordinate

Firstly, the reconstruction of the U-coordinate is investigated. Figure (3.1) shows
the U-coordinate reconstructed by the DNN for simulated ββ0ν SS events. In the
upper plot, the reconstructed U-coordinate is plotted as a function of the true
label which is known in the MC. Apart from some single outliers, all reconstructed
events are close to the diagonal. This shows that the DNN can reconstruct the
U-coordinate with high precision.

In the lower plot, the residual of the reconstructed U-coordinate is plotted as a
function of the true MC label. The residual is independent of the U-position and
fluctuates around zero. This shows that no bias of the U-coordinate is introduced
for different positions. Both plots use a logarithmic color scale for the number of
occurrences in the bins.
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Figure 3.1: The upper plot shows the U-coordinate reconstructed by the DNN as a
function of the true MC U-coordinate. The lower plot shows the residual of both values.
Both plots use a logarithmic color scale to visualize the counts in each hexagonal bin.
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Figure 3.2: Distributions of the residual of the predicted U-coordinate for the DNN
(blue) and the classical event reconstruction (beige). The distribution is shown for
ββ0ν SS events.

To get an estimation of the accuracy of the DNN’s reconstruction, the performance
of the network is compared with the classical event reconstruction. The distributions
of the residual for the reconstruction of the U-coordinate are shown in Figure (3.2).
The residual of the classical event reconstruction is centered around µ = 0.00 mm
with a standard deviation of σ = 1.73 mm. The residual of the DNN is normally
distributed. The distribution is centered around µ = 0.03 mm with a standard
deviation of σ = 0.43 mm. The residuals of both methods are symmetrical and not
biased. Looking at the standard deviations, we see that the DNN clearly outperforms
the standard analysis in reconstructing the U-coordinate. The resolution of the
DNN is about four times better than the classical event reconstruction.

Considering the fact, that the U-wire triplets have a distance of 9 mm to each
other, it is questionable whether the DNN can achieve such a good resolution.

To better understand, because of the intrinsic fluctuation the best U-resolution
possible is limited through the distance between adjacent U-wire channels. Naively,
the best U-coordinate resolution possible for uniformly distributed events where
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Figure 3.3: Distributions of events that are collected on one U-wire generated using a
simple Monte Carlo simulation. Accounting different aspects in the MC and the drift
of the secondary electrons, different event distributions are generated.

only one U-wire collects charge (one-wire event) is

σbest =
wirepitch√

12
=

9 mm√
12
≈ 2.60 mm . (3.4)

The model is valid for uniformly distributed point-shaped events, where charge
is only collected on one U-wire. The U-resolution of the network for ββ0ν SS
one-wire events uniformly distributed in the detector is σ = 0.37 mm. Since this
is significantly better than 2.60 mm, further examinations on the U-coordinate
resolution are carried out.

Using a toy Monte Carlo simulation the theoretically possible best U-coordinate
resolution for different models can be approximately determined. In Figure (3.3),
the distributions for the different models are plotted. Only ββ0ν SS events that
deposit less than 50 keV in a neighboring channel and thus are only detected in
one channel are used. For this simulation, it is assumed, that only signals above
this energy threshold can be reconstructed.

Since this very simple model does not fully cover the reality, the model has to be
refined. Firstly, the simple model of point-like energy deposits does not correspond
to reality. As an extended event would lead to a charge collection signal on the
neighboring wire if the event is sufficiently large and centered between two U-wires
the size of the event must be considered. Using ββ0ν events and accounting for
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Figure 3.4: Residual of the DNN (left) and the classical event reconstruction (right)
as a function of the amplitude on the neighbouring wire. As an estimator for the
induction, the maximum of the neighboring channel in a temporal range of 50 µs
around the maximum of the charge collection signal was used. The error on the
U-coordinate reconstruction of the standard analysis gets larger with larger induction
signal. The colormap is on a logarithmic scale.

the real distribution of event sizes, the best U-coordinate resolution possible is
σ = 2.27 mm. Since during the drift the size of the events is increased through
diffusion, this also has to be taken into account in the model. Accounting phase I
diffusion parameters for the diffusion of the events during the drift, the best possible
U-coordinate resolution is found to be σ = 1.67 mm. Since the toy Monte Carlo
simulation determining this value is rather simple, this value is not the quantitative
true value, but a qualitative estimator.

Since the U-coordinate resolution of the network is still significantly better, there
are other features the network is using to improve the resolution. One possible
feature might be an induction signal on the neighboring U-wires. The network
could use the induction signal to determine an amplitude weighted mean position
and thereby improve the resolution of the U-coordinate.

To check this, the residual as a function of the induction signal on the neighboring
U-wires is investigated. As an estimator for the induction signal, the maximum
value of both neighboring U-wires in a temporal range around the charge collection
signal is used. The temporal range was t = ±25 µs around the maximum of the
charge collection signal.
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Figure (3.4) demonstrates the dependence between the amplitude of the neigh-
boring channel and the residual for both reconstruction methods. There is a strong
correlation between the induction signal and the residual of the EXO-200 standard
analysis. For larger induction signals the absolute value of the residual of the
standard analysis is rising linearly. This means that the U-coordinate reconstruc-
tion is worse with a larger induction signal. For the DNN the residual is at least
constant with increasing induction signal. A larger induction signal corresponds
to an event farther from the charge collecting U-wire i. e. closer to the U-wire
measuring the induction signal. The EXO-200 standard analysis does not exploit
the induction signal on U-wires. Because of this, it does not have the information
about the relative position between the U-wires. The only information the standard
analysis can use is the signal of the charge collecting U-wire. This leads to the
worse U-coordinate reconstruction for increasing induction signal.

The fact, that the classical event reconstruction becomes worse but the network
is unaffected with increasing induction signal, is a very good hint that the network
uses this to determine the U-wire position more precisely. Using the induction
signal the DNN gets a better U-coordinate resolution as the theoretically best
possible value without an induction signal.

To prove, that the network uses the induction signal on the neighboring wires in
order to improve the resolution in the U-coordinate beyond the limit from the toy
MC, the neighboring wires of the charge collection wire are set to zero. By doing
so, the network cannot use the induction as additional information.

Figure (3.5) shows the U-coordinate resolution for the standard analysis and the
DNN for both, signal with induction and without induction. The beige distributions
are the residual of the classical event reconstruction and the blue distributions
the one of the DNN. For a better interpretation of the distributions, box plots
are shown. The boxes show the lower and upper quartile of a distribution, which
correspond to 25% and 75% of the cumulative distribution. The notch with the
orange line in the box indicates the median. Inside the whiskers, 95% of the data
are contained. The box and whisker plot does not consider the actual distribution
of the data, but the ratios of the data.

Starting from the top, the first two boxes and distributions show the residual of
the EXO-200 standard reconstruction and of the prediction of the network. The
bottom row shows the residual of the reconstruction of the ββ0ν SS one-wire events
without induction signals on the neighboring U-wires. This only affects the residual
of the DNN, since the classical event reconstruction does not use the induction
signal on U-wires. The significantly better U-coordinate reconstruction of the DNN
in the case of one-wire events with an induction signal can be seen clearly in the
illustration. Without the induction signal, the DNN is approximately as good as
the standard event reconstruction. This is evidence that the network exploits the
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Figure 3.5: Box and violin plot of the residuals of the classical event reconstruction
(beige) and the DNN (blue). The residuals are shown for ββ0ν SS one-wire events
with (a) and without (b) an induction signal on the neighbouring U-wires.
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Figure 3.6: Box and violin plot of the residual of the classical event reconstruction
(beige) and the DNN (blue). The residuals are shown for all ββ0ν SS events (a), for
ββ0ν SS one-wire events (b), and for ββ0ν SS two-wire events (c).

induction signal on the neighboring U-wires. Without the induction signal, the
DNN residual has a standard deviation of 1.56 mm, which is close to the theoretical
limit from the simplified Monte Carlo simulation.

As with no induction signal used by the network, the U-resolution is larger than
the theoretical limit, the U-coordinate resolution of the DNN is consistent with the
toy MC.

Figure (3.6) shows a box and violin plot for the residual of the U-coordinate
for different subsets of ββ0ν SS events. In the upper row, the distributions of the
residual of all SS ββ0ν events is shown. The middle row visualizes the residual for
one-wire events and the third row for two-wire events.

The distributions of the residual of the DNN are approximately unchanged for
all three event selections. For the two-wire events, the box is as large as for the
one-wire case but with broader whiskers i. e. half of the events are reconstructed as
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Figure 3.7: Distribution of the residual of the predicted V-coordinate for the DNN
(blue) and the classical event reconstruction (beige). The distributions are shown
for ββ0ν SS events.

good as the one-wire case but the other half is reconstructed worse. The EXO-200
standard analysis has a very broad distribution for SS one-wire events while for
the two-wire events it has two peaks at about ±2.25 mm. The behavior for the
two-wire events is strange and should be further investigated but is not within the
scope of this thesis. Comparing the DNN and the classical event reconstruction we
find that the DNN is not only better for the different event selections but also has
an unchanged symmetrical distribution.

3.1.2 V-Coordinate

Since the V-wires measure the charge induction signal, even for SS events, many
wires measure a signal. Because of this, a better resolution than the one for
the U-coordinate is expected as the position can be determined by an amplitude
weighted mean position.

In Figure (3.7), the residual of the V-coordinate reconstruction is shown. The
distribution of the residual of the network is unbiased, i. e. µ = 0.00 mm, and has
a Gaussian shape with a standard deviation of σ = 0.23 mm. The residual of the
classical event reconstruction is unbiased, i. e. µ = −0.01 mm, and has a standard



3.1 Position Reconstruction 37

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Residual Z-coordinate [mm]

0

1

2

3

4

Pr
ob

ab
ili

ty
 d

en
si

ty
EXO:

= 0.00
= 0.36

DNN:
= 0.01
= 0.10

Figure 3.8: Distribution of the residual of the predicted Z-coordinate for the DNN
(blue) and the classical event reconstruction (beige). The distributions are shown
for ββ0ν SS events.

deviation of σ = 0.98 mm. The DNN has a by a fourfold better V-coordinate
resolution. As expected, the V-coordinate resolution is clearly better than the
U-coordinate resolution.

3.1.3 Z-Coordinate

The Z-coordinate is determined by the time difference between the prompt scintil-
lation light signals of the LAAPDs and the induction and charge collection signals
on the wire planes. This means that the Z-coordinate reconstruction is only limited
by the drift velocity of 0.171 cm

µs and the sampling rate. Because of this, a better
resolution in Z is expected than for the U- and V- coordinates.

Figure (3.8) shows the residual of both, the EXO-200 standard analysis and the
DNN, for the reconstruction of the Z-coordinate. Both distributions of the residual
have Gaussian shapes and are unbiased, i. e. µ = 0.0 mm. The residual of the
classical event reconstruction has a standard deviation of σ = 0.36 mm while the
DNN has a Z-coordinate resolution of σ = 0.10 mm. As expected, the resolution in
Z is better than that in U and V for both reconstruction methods. The resolution
in Z of the network is almost by a fourfold better than the standard analysis.
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Figure 3.9: Distributions of the distance of the three-dimensional reconstructed position
from the true MC position. The blue distribution is for the DNN and the beige
distribution for the classical event reconstruction.

3.1.4 3D Position

Using three separately trained neural networks where each predicts either the U-, V-,
or Z-coordinate, the three-dimensional position of an event can be predicted. Since
the DNN outperforms the classical event reconstruction in all single coordinates,
it is expected to also outperform the EXO-200 standard reconstruction in the
three-dimensional position reconstruction.

To determine the euclidean distance between the true MC position and the
predicted position, the reconstructed U- and V-coordinates are transformed to X-
and Y-coordinates. The X-coordinate can be calculated using

x =

{
v − u, z > 0

u− v, z < 0
(3.5)

and the Y-coordinate

y =
u+ v√

3
. (3.6)

In Figure (3.9), the distance of the reconstructed three-dimensional position
from the true MC position is visualized. The mean distance of the DNN predicted
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position to the true MC position is µ = 0.5± 0.4 mm. For the standard analysis,
the mean distance to the true MC position is µ = 2.1± 1.0 mm.

As expected, the DNN has a significantly better position reconstruction. The
spatial resolution of the DNN is fourfold better than the EXO-200 standard analysis.

Apart from the mean of the spatial resolution, the spatial resolution should not
depend on the location in the detector. Figure (3.10) shows the spatial resolution as
a function of the position in the detector. The left plots show the spatial resolution
for the DNN and the right plots for the classical event reconstruction. The top row
shows a projection to the XZ-plane and the bottom row to the XY-plane. Only
events inside the fiducial volume determined by the standard analysis are considered.
Apart from statistical fluctuations and some outliers, the spatial resolution of the
DNN is constant over the detector volume. For the position reconstructed by the
standard analysis the spatial resolution in the middle of the detector is better than
towards the walls. This can be seen in both the XY- and the XZ-plane.

As mentioned at the beginning of the section, the position reconstruction is
important to distinguish fiducial events from not-fiducial events. The DNN has a
fourfold better spatial resolution and its resolution is uniform over the detector. This
does not fully apply to the EXO-200 reconstruction which shows worse resolution
towards the walls. These two reasons are important for the experiment in order to
categorize not-fiducial events correctly and to neglected them.

3.2 Energy Reconstruction

The energy resolution for low background experiments like EXO-200 is funda-
mentally important. A possible definition of the Region of interest (ROI) is two
standard deviations from the theoretical Q-value of the ββ0ν decay. A better energy
resolution thus leads to a smaller region of interest and to less background in the
ROI. Therefore energy reconstruction is further investigated in this section.

The energy scale reconstructed by the standard analysis E is calibrated using
the Q-value of the 208Tl peak of the 228Th calibration source

Ecorr = E · Q

µpeak
, (3.7)

where Ecorr is the calibrated energy and µpeak the fitted position of the reconstructed
208Tl peak. This means the reconstructed energy spectrum is scaled in a way that
the reconstructed peak is at the position of the true peak.

Figure (3.11) shows the residual of the energy reconstruction for both the
EXO-200 standard analysis and the DNN with respect to the MC true label. The
upper plot of the figure is a histogram of the energy residual of the classical
event reconstruction. The part to the right of the peak has a Gaussian-like shape.



40 3. Reconstruction of Simulated Events

150

100

50

0

50

100

150

Z 
[m

m
]

DNN EXO

100 0 100
X [mm]

150

100

50

0

50

100

150

Y 
[m

m
]

100 0 100
X [mm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sp
at

ia
l r

es
ol

ut
io

n

Figure 3.10: Resolution of the three-dimensional position for the DNN (left) and the
standard event reconstruction of EXO-200 (right). The top row shows the position
resolution projected to the XZ-plane and the bottom row to the XY-plane.
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Figure 3.11: Colormap of the residual of the DNN reconstructed energy as a function
of the residual of the EXO-200 standard analysis (middle) with respect to the MC
true label. The colormap is on a logarithmic scale. The respective projection of the
distribution of the residual of the DNN (right) and the standard analysis (top) is
shown with its mean and standard deviation.
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Whereas the part to the left of the peak has a flatter sloping flank. This means the
classical event reconstruction tends to underestimate the energy of some events by
failing to disentangle mixed induction and collection signals. The mean value of
this method is µ = −11.7 keV and has a standard deviation of σ = 32.4 keV. On
the right-hand side, the distribution for the DNN is shown. It has a Gaussian
shape centered around µ = 0.2 keV and a standard deviation of σ = 17.9 keV. The
resolution of the DNN is not only better but also the distribution of the residual is
much more symmetric which means that it equally under- and overestimates the
energy deposits.

The middle part of the figure shows the residual of the DNN as a function of the
residual of the classical event reconstruction with respect to the MC true label. The
colormap has a logarithmic scale. One can see that there is a positive correlation
between both residuals since both methods tend to underestimate the energy of
the same events and there are only very few events for which the one methods
underestimates and the other one overestimates the energy or vice versa. This
can also be seen looking at the Pearson correlation coefficient, which is ρ = 0.37.
One interpretation of the correlation is that some events with the same energy
deposit have a higher or lower amplitude because of the fluctuating noise level.
Both reconstruction methods see these fake energy deposits and therefore tend to
over- or underestimate the energy of the same events.

Not only the energy resolution is important but also it has to be uniform over the
whole detector. To investigate this the energy resolution is plotted as a function
of the position which is shown in Figure (3.12). The upper plots show the energy
resolution in the XZ-plane and the lower plots in the XY-plane. On the right-hand
side, the energy resolution of the standard analysis is visualized and on the left-
hand side, the energy resolution of the DNN. Apart from fluctuations, the energy
resolution is uniform over the detector volume for both reconstruction methods,
which is desirable.

As mentioned at the beginning of the section the energy resolution is fundamental
for low background experiments. Using the DNN to reconstruct the energy instead
of the standard analysis would lead to a smaller ROI hence to less background in
the ROI and better sensitivity of the experiment. Apart from this, a better energy
resolution is very important to fit the probability density functions of the different
components to the measurements. Additionally, the more symmetric residual of
the DNN has the advantage that the background of the 208Tl peak of the 228Th
spectrum does not leak into the ROI.
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Figure 3.12: Resolution of the reconstructed energy for the DNN (left) and the standard
event reconstruction (right). The top row shows a projection of the energy resolution
to the XZ-plane and the bottom row to the XY-plane.
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Figure 3.13: Distribution of the residual of the energy for the network trained on U-
and V-wire planes (blue), a network trained on only U-wires (green) and one trained
on only V-wires (purple).

3.3 Impact of U- and V-Wire Input

In this section, the impact of using both, U- and V-wire planes, compared to
using only either the U- or V-wire planes as an input for the neural network is
investigated. As both wire planes contain information about the energy of an event
this might be redundant information that does not improve the energy resolution
or might improve it because of two independent measurements with independent
noise impact. For this purpose, two networks with very similar architecture as
the one described in section (2.2) were trained, whereby one network only has the
U-wire planes as an input and the other one only the V-wire planes. The difference
to the previously used network is that the network branches with the wire planes
not used are omitted.

Figure (3.13) shows the residual of the reconstructed energy for the three different
networks. The residual of all three networks have Gaussian shapes centered around
zero. The network using only the U-wires as an input has a significantly better
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energy resolution of σ = 18.2 keV as the one having only the V-wires as an input, i. e.
σ = 34.7 keV. The DNN using both U- and V-wire planes as an input outperforms
both networks, i. e. σ = 17.4 keV. The difference between the network with U-
and V-wire input compared to the one with only U-wire input is quite small.
Nevertheless, the additional V-wire input improves the energy resolution and
therefore should not be neglected especially as the energy resolution is so important.
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In this section, the performance on real data of the four networks for the U-, V-,
Z-coordinate, and the energy, trained on MC simulated data, is evaluated. Since
there are no true labels for the event position and the energy of real events, it is
only possible to compare the performance of the DNN with the performance of the
EXO-200 standard analysis. Additionally, it is possible to compare the performance
of both on real data with their performance on MC data. For validation, single-
site (SS) events of a 228Th calibration source at position S5 are used. The secondary
electrons, in reality, have a finite electron lifetime, due to impurities in the liquid
xenon. In order to account for this, the reconstructed energy is corrected as
explained in section (2.1.3).

4.1 Position Reconstruction

Firstly, the performance on real data of the networks reconstructing the event
position is investigated. As in the previous chapter, the single coordinates are
analyzed separately. In contrast to the previous chapter the three-dimensional
position is not analyzed. This is due to the fact that without a true position label
of the three-dimensional position a reasonable statement about the reconstruction
is not possible.
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Figure 4.1: The upper plot shows the distributions of the difference between the DNN’s
and standard analysis’ reconstructed U-coordinate. The difference is shown for real
data (black points) and MC simulated data (green). The lower plot shows the
discrepancies between MC and real data.

4.1.1 U-Coordinate

Beginning with the reconstruction of the U-coordinate, the difference between
the network’s and standard analysis’ predicted U-coordinate is investigated. The
distribution of the difference is shown in Figure (4.1). Looking at the upper plot
we see that for MC and real data the DNN predicts an unbiased U-coordinate
µ = 0.1 mm apart from the standard analysis’ value. The standard deviation of the
distribution states, that the difference between the reconstruction methods is in
the mean σ = 1.6 mm for real data and σ = 1.7 mm for MC data. In the lower plot,
the discrepancy between the performance on MC and on real data is shown. Apart
from the bins with low statistics, the difference between the DNN and classical
event reconstruction is almost the same for MC and real data. But there is a
symmetric trend that with an increasing absolute value of the difference between
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Figure 4.2: The upper plot shows the distributions of the difference between the DNN’s
and standard analysis’ reconstructed V-coordinate. The difference is shown for real
data (black points) and MC simulated data (green). The lower plot shows the
discrepancies between MC and real data.

the DNN and the classical event reconstruction the discrepancy between MC data
and real data is growing.

In general, the DNN performs comparably to the standard analysis. Applying
DNNs trained on MC data to real data is not always working well. A quantitative
statement about the U-coordinate resolution of the DNN is not possible.

4.1.2 V-Coordinate

For the V-coordinate again the difference between the reconstruction of the DNN and
the standard analysis is investigated. The difference between the two reconstruction
methods is shown in Figure (4.2) for both MC and real data. Looking at the
upper plot, the mean prediction for real data only differs by µ = −0.1 mm with a
deviation of σ = 1.2 mm. Comparing this with the mean difference on MC events,
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Figure 4.3: The upper plot shows the distribution of the reconstructed Z-coordinate for
the DNN (blue) and the standard analysis (beige). In the lower plot the difference
between both reconstruction methods is shown.

both distributions agree. There is no mean difference between the DNN and the
standard analysis for MC events, i. e. µ = 0.0 mm.

The lower plot shows the difference between the reconstruction difference between
MC and real data. Apart from the very left point with low statistics, MC and real
data agree within 25%. This is an indication that the differences in the performance
of the DNN and the standard analysis on real data are similarly as the differences
on MC data. This is not a proof but since there is no true label a quantitative
statement is not possible.

4.1.3 Z-Coordinate

For the reconstruction of the Z-coordinate, the spectrum of the Z-coordinate is
investigated. Figure (4.3) shows the reconstructed spectrum of the DNN and
the classical event reconstruction. First of all, we see that the distributions for
both reconstruction methods are very similar. The largest discrepancy is near the
cathode around Z = ±10 mm. Since the fiducial cut is made on the reconstructed
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Figure 4.4: Spectrum of the reconstructed energy of the DNN (blue) and the standard
analysis (beige). For both spectra a Gaussian is fitted to the 208Tl peak.

position of the standard analysis, there are no events with |Z| < 10 mm for the
standard analysis. However, the DNN reconstructs some events outside the fiducial
volume. These events can be seen in the first bin inside the fiducial volume for the
classical event reconstruction. To have as fewer events labeled falsely as possible
is why the good spatial resolution is so important. Apart from this, because of
the unsymmetrical shape of the spectrum, we can see that the real position of the
228Th calibration source is not equal to the nominal position Z = 0 mm.

4.2 Energy Reconstruction

In this section, the network’s performance on reconstructing the energy of real
data is compared to the performance of the standard analysis. We compare the
reconstructed spectra of the 228Th calibration source at position S5. Figure (4.4)
shows the spectra for both reconstruction methods. In general, both spectra look
very similar. To investigate which reconstruction method performs better, we fit
a Gaussian to the 208Tl peak at 2614.5 keV. The DNN has a standard deviation
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at the peak of σDNN = (3.54± 0.07) % and the classical event reconstruction of
σEXO = (3.47± 0.08) %. So the classical event reconstruction has a slightly better
energy resolution. This is surprising as the DNN has a significantly better energy
resolution on MC events. The big difference between the two scenarios is that the
real events have a finite electron lifetime and the anti-correlation between light and
charge for real data. The impact of the finite electron lifetime is corrected for real
data but this correction might not have worked perfectly. Apart from this, it is a
great result that the DNN works comparably to the standard analysis on real data.



Conclusion

As demonstrated in this thesis, applying Deep Learning methods can improve
the analysis of physical experiments as shown for EXO-200. Comparing the
performance of the network with the performance of the standard analysis of
EXO-200 on simulated MC events, the DNN clearly outperforms the classical event
reconstruction for all spatial coordinates and the energy. The spatial resolution can
be improved by a factor of four using the DNN as it exploits the full information
available in the raw signals. This includes the collection signal which is also used
by the EXO-200 standard analysis but also the induction signal which improves
the U-coordinate resolution significantly. The energy resolution can be improved
by a factor of two compared to the classical event reconstruction. Additionally, the
use of U- and V-wire planes as an input compared to only U- or V-wire planes was
motivated as this improves the energy resolution.

Although there are known differences between MC simulated events and real
events, the reconstruction of real events using DNNs also works well. The missing
true label for real events complicates the comparison between different reconstruc-
tion methods.

A big problem for most DNN based approaches are the discrepancies between
MC and real data. Having a perfect MC would solve the problem of not having
a true label for real data. Minimizing this discrepancies by a better physical
understanding and modelling of the detector is very hard and involves a great deal
of effort.

Apart from this, new Deep Learning based ansätze are emerging. Generative
Adversarial Networks (GANs) have shown to be able to refine MC events [37] or
even generate MC events from scratch [38]. This is done by comparing the existing
Monte Carlo data with real data and refining the MC to be indistinguishable
from real data. This ansatz is currently investigated by Federico Bontempo in the
EXO-200 Erlangen group.

One of the next steps is to reconstruct all energy deposits individually for
MS events. Some investigations have already been done on this topic. Using a
recurrent network, that is both a classifier and regressor is one possible option.
The classification part predicts the number of separated energy deposits (charge
clusters) in the detector, whereas the recurrent regression part predicts the energy
and position of each charge cluster individually. Afterward, the information of the
regression and classification part is combined and the number of clusters predicted
by the classifier is kept.
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Another interesting further step is using a network, that not only predicts the
energy and position, but also the uncertainty of the network’s prediction on the
respective variable. This is possible using a specific loss function. Using this would
be very useful as we would also get an estimation of how reliable a prediction is.
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