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Abstract

ANTARES was a neutrino telescope submerged in the Mediterranean Sea and has
been operating continuously from 2008 to its end in 2022. It is a Cherenkov detector
equipped with a 3 dimensional matrix of hundreds of photosensors. Its main goal is the
detection of high-energy neutrinos from astrophysical sources.

In this thesis, an analysis is developed and presented, to search for periodic low-
energy neutrino fluxes in the photosensor counting rates of ANTARES. This switch from
reconstructed neutrino events to the pure photosensor counting rates allows to undercut
the energy threshold for the reconstruction process. The basis of this analysis is the
Fast Fourier Transformation, which transforms the counting rates from the time domain
into the frequency domain, allowing to easily identify hidden periodic signals contained
in the rates. The Fourier power is chosen as the test statistic for this analysis, and its
distribution under the assumption of only background described. Challenges posed by the
available ANTARES data set are described and suitable solutions presented. Established
techniques from pulsar astronomy are revised and included into this analysis. At the end,
a sensitivity study for the implemented analysis and a short data set is performed, and
the analysis for this blinded data set is executed.
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1 Introduction
Astronomy is a field of science studying extraterrestrial phenomena around the the
universe. It developed from the observation of the stars at the night sky with the bare
eye to modern multi-messenger astronomy. Light and electromagnetic radiation is not
anymore our solely access to studying the universe, but is nowadays expanded by the
survey of cosmic rays, neutrinos and gravitational waves. Each of these messengers
acts as carrier of unique information about its originating celestial body and/or the
intermittent medium. The jointly consideration of these messengers therefore allows
to surpass previously unattainable limits in the studying of the most extreme objects
of the universe like black holes, neutron stars, gamma-ray bursts and many more. A
recent milestone in multi-messenger astronomy is the first joint detection of a binary
neutron star merger, via gravitational waves and multiple intervals of the electromagnetic
spectrum [3].

Neutrino astronomy focuses on the neutrino messenger from astrophysical objects. Due
to its exclusively weakly interacting behaviour, neutrinos rarely interacts with matter,
unlike photons or cosmic rays. Due to this, neutrinos travel in a straight path from
their source to Earth and therefore point back to their origin. This grants access to
many astrophysical phenomena unavailable to the other messengers and allows to directly
study the astrophysical source. Many theoretical models of astrophysical objects predict
the generation of astrophysical neutrinos. However, so far the proven extraterrestrial
sources of neutrinos are limited to the Sun and the supernova 1987A, as well as IceCube’s
identification of the blazar TXS 0506+056 in 2017 as another likely source [26] or
IceCube’s detection of an extraterrestrial diffuse high-energy neutrino flux of unknown
origin [17].

The detection of neutrinos is a quite challenging task, as the neutrino only participates
in the weak interaction. It can therefore not be directly measured. Instead, the usual
detection principle works as follows. A neutrino interacting with matter, creates secondary
charged particles like muons or hadronic showers. If such charged particles traverse
a dielectric medium, like water, the medium along the path will be polarised and
subsequently emit photons when returning to its ground state. If the speed of the charged
particle surpasses the speed of light in said medium, the emitted spherical waves will
overlap and constructively interfere with each other. This leads to the characteristic
cone-shaped light emission called Cherenkov light. If the speed of the charged particle
is below the local speed of light, then no constructive interference appears, as the wave
fronts move faster, than new ones are emitted. This Cherenkov light can be detected
using light detectors like photomultiplier tubes (PMT).

Based on this detection concept, astronomical neutrinos are searched for using so-called
neutrino telescopes. These telescopes usually work by monitoring the Cherenkov light
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produced by the secondary charged particles of neutrino interactions. For this, large
amounts of PMTs observe the volume of a transparent medium. A neutrino event can
be reconstructed from coincident hits in multiple PMTs. This allows to infer the arrival
direction of the incident neutrino, and its energy. However, for a successful reconstruction
process, the neutrino needs to surpass some energy threshold, that depends on the
detector layout. Neutrinos below this threshold will not cause sufficient light emissions
for hits in multiple PMTs. Due to the very low interaction rate of the neutrino, the
observed volumes are usually huge to obtain a useful neutrino detection rate. Important
neutrino telescopes are the ANTARES [10] and KM3NeT [22] project underwater in the
Mediterranean sea, but also IceCube [20] deep in the antarctic ice or the deep underwater
the Baikal Gigaton Volume Detector in Lake Baikal located in Russia [13].

Possible other approaches to identify a neutrino signal, besides the expensive recon-
struction process of individual neutrino events, is to deduce changes of the neutrino
flux directly from the PMT counting rate. By omitting the reconstruction, no neutrinos
below the energy threshold are rejected, allowing to also detect low energy neutrino
sources. Potential detectable variations could be for example a strong increase of the
flux over a short period of time causing a short spike in the counting rate, or a periodic
flux inducing a periodic pattern in the PMT rates. As an origin for spike shaped flux
variations supernova explosions can be considered, which are with SN1987A already a
verified neutrino sources. Nevertheless this is still an intensively researches in neutrino
astronomy [6]. Pulsars have been considered by several works in literature as candidates
for neutrino emission along different energy ranges over the last decades, and these will
be the subject of this master thesis.

Sources of periodic neutrino fluxes may be pulsars, as a periodic neutrino emission
similar to their periodic electromagnetic emission is conceivable.

Figure 1.1:
Simple sketch of a pulsar showing
the characteristic emission cones
at the magnetic poles. Courtesy
NASA/JPL-Caltech.

Pulsars were first discovered in 1967 by Jocelyn
Bell Burnell [19] and belong to the most extreme
astrophysical objects. They are fast spinning neu-
tron stars, dense objects with a mass on the order
of one solar mass and a radius of about 10 km as
well as with very strong magnetic fields ranging
from 1011 G to 1015 G. Strong particle acceleration
occurs at these magnetic poles and causes the emis-
sion of strong electromagnetic radiation from these
regions. Pulsars differ from ordinary neutron stars
due to their rotational axis and magnetic field axis
being not aligned (see Figure 1.1). This causes a
rotating beam of radiation, which will be perceived
by an observer within the traversed path as a pul-
sating emission. Typical pulsar periods range from
milliseconds to hundreds of seconds.

Various models attempt to explain these violent
astrophysical objects, several also proposing the
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Figure 1.2:
The spin period distribution of known and catalogued pulsars (ATNF), high-mass
X-ray binaries (HMXRB) and low-mass X-ray Binaries (LMXRB).

emission of neutrinos. They can be divided into
two categories. First the production of low energy neutrinos in the ≈ 100 keV to ≈ 1 MeV
range due to pair-annihilation processes in the hot stellar plasma, e.g. [27], and secondly
the production of high energy TeV neutrinos in pulsar wind nebular, a nebula surrounding
the central pulsar, due to the production and subsequent decay of charged pions, e.g. [8].

So far however no neutrinos emitted from pulsars have been detected. Previous analyses
investigated correlations between the arrival direction of neutrinos and known pulsars,
e.g. [2], and the expected diffusive neutrino flux emitted from pulsar populations, e.g.
[18]. From the absence of any significant neutrino detections, upper limits about the
neutrino emissions from the examined pulsars were set.

An extensive list of known pulsars and their properties from multiple surveys is the
Australia Telescope National Facility (ATNF) Pulsar Catalogue [25, http://www.atnf.
csiro.au/research/pulsar/psrcat]. Figure 1.2 displays the spin period distribution
of the pulsars of this catalogue.

In this thesis the development of an analysis in the search of a periodic neutrino signal
in the ANTARES PMT counting rates is described. Established pulsar search tools
from radio and gamma astronomy are investigated for their possible use in neutrino
astronomy.

1.1 ANTARES Neutrino Telescope
The ANTARES neutrino telescope is located in the Mediterranean Sea, 40 km off the
coast of Toulon, France, in a depth of 2.5 km. It detects neutrinos by observing the
Cherenkov radiation produced in sea water from secondary charged leptons, originating
from the weak interaction of the neutrino with the detector medium. The Cherenkov
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light is detected with a 3 dimensional grid of photomultiplier tubes (PMT) in the deep
sea. Each node in the grid is occupied by a so-called Optical Module Frame (OMF),
containing three Optical Modules (OM), which act as containers for the PMTs, as well as
the Local Control Module (LCM), the required on site electronics. Part of the LCM are
the Analogue Ring Sampler (ARS) chips, which digitizes the analogue signal from the
PMTs. To minimize the dead time by the digitization process, each OM is equipped with
two ARS. 25 vertically aligned OMFs form a line and are connected to each other and
the seabed, from where the cables go to the shore station for further data processing. In
total there are 885 installed OMs [5]. Figure 1.3 displays the ANTARES detector layout.

The neutrino events are reconstructed from causally connected Cherenkov hits in
multiple PMTs. For a successful reconstruction process, the incoming neutrino needs to
surpass some energy threshold, which is for the ANTARES layout about 20 GeV [5]. In
Figure 1.4 the neutrino detection principle is illustrated.

Figure 1.3:
Schematic view of the ANTARES
detector. The lines are aranged in
an octagonal configuration on the
seabed.
Taken from [5].

Figure 1.4:
Detection principle of ANTARES.
A Neutrinos interacts with the
medium around the detector and
creates a muon which produces
Cherenkov light, that can be de-
tected by light sensors.
Taken from [5].

The goal of ANTARES as neutrino telescope is to detect astrophysical neutrinos. It
is therefore optimized in its layout to detect upwards going neutrinos, using the earth
as additional shielding to remove atmospheric muon contamination. The background
of the PMT counting rate is dominated by the radioactive decay of 40K and marine
bioluminescence. 40K is a radioactive potassium isotope contained within the salt of the
sea water. With a half life of 1.2 · 109 years two of its decay channels emit Cherenkov

9



radiation contribution to the background rate:

40K → 40Ca + e + ν̄e

40K → 40Ar∗ + (ν̄e) → 40Ar + γ

The contribution of 40K to the background is constant over time. Exceedings of this
constant baseline are therefore ascribed to bioluminescent activity from bacteria present
in the deep sea [11].
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2 Analysis Description

The central idea of this analysis is to apply the Fast Fourier Transformation onto the
ANTARES PMT counting rates to search for possible periodic low-energy neutrino
signals. In the following chapter, the developed analysis is described and advantages
and challenges explained. The first section reviews the utilized data set and the Fourier
power as suitable test statistic. The second section addresses issues which arise for the
computation of the FFT and the obtained Fourier spectrum and presents suited solutions.
In the third and final section further improvements to increase the sensitivity of this
analysis are proposed.

2.1 Ingredients and expected Challenges of this Analysis
The fundamental aspects of this analysis can be summed up in the following three points:

• Properties of the used ANTARES data set

• Definition of a test statistic

• Behaviour of the test statistic for only background and background with signal

They are presented below to provide the basis for the analysis.

2.1.1 ANTARES PMT Rates
The search for a periodic neutrino source in this analysis is not performed on the
reconstructed neutrino events, which are usually used in neutrino astronomy analyses,
but instead directly on the pure PMT counting rates, of the optical modules.

These PMT rates are stored as i3-files and for this analysis first transformed into
tabular csv-files and thereafter for faster access into HDF5-files. Each of these HDF5-files
contains exactly one data taking run, and is therefore similarly indexed by the run
number. Each rate value in such a HDF5-File is identified by four ’coordinates’. The
first one is the time coordinate, which is expressed as number of frames since start of the
data taking run. Together with the unix starting time of the run, and the sampling time,
i.e. the time between two frames, tSampling = 0.104858 s, the unix time of each data point
can be inferred. The second coordinate is the LCM-ID which specifies the OMF and
therefore the node within the detector grid. The third one is the ARS-ID. As there are
two ARS per OM and three OM per OMF, it ranges from 0 to 5. The LCM-ID and the
ARS-ID therefore serve as location coordinates of each data point. The last one, specifies
the type of the rate. ’rateOff’ denotes the offshore rate, which is sampled directly at the
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Figure 2.1:
The normalized rate values in the chosen period over the days since 2010-09-10.
The right plot shows via a histogram the distribution of the rates. It can be seen,
that the rateOff extend to much higher values, than the rateOn.

anode of the PMT as an 8-bit (count) rate value up to several MHz. ’rateOn’ denotes
the onshore rate and is calculated after the data acquisition system of ANTARES dealt
for truncation and saturation effects. This reduces the possible value range, allowing
for a better sampling resolution using 8-bits. For one OM, the two ARS will output
therefore the same rateOff value, but different rateOn values. The rate of an OM for a
fixed moment in time is given by the average of its two ARS rates.

Further information stored in the header of this file, is the unix starting time of the
run, the number of samples of the run, the run number, the sampling time, as well as a
list of all available LCM-IDs and the number of active ARS.

In this analysis the whole ANTARES telescope is effectively considered as one single
photodetector. The rates over all LCMs and ARS are summed up for each moment in
time (but separately for rateOff and rateOn), removing the two location coordinates
from the data set. To consider for malfunctioning OMs or yet missing OMs due to the
(in the past) still ongoing construction process, the average rate per OM is calculated by
dividing by the number of active ARS.
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So far, this rate data has not been used in any ANTARES analysis. The data set which
is used in the later part, consists of 1531 ANTARES data taking runs from 2010-09-10 to
2011-02-06, it can be seen in Figure 2.1. This period was chosen, due to its relatively low
baseline rate. The set contains 109359135 ≈ 226.7 sample points. For the full ANTARES
lifetime of approximately 14 years, the number of sample points in the time series is
about 232 ≈ 109.6.

As this analysis makes direct usage of the PMT rates and no distinct neutrino events
are considered, instead only deviations from the background rate caused by all collective
neutrino responses for any given moment in time are investigated. An advantage of this
approach is that also neutrinos below the detectors energy threshold for the reconstruction
process contribute to the PMT rates and are therefore accessible with this analysis. This
therefore yields a new way of detecting low energy neutrinos via their periodic response in
the counting rates. One downside of putting the reconstruction process aside, is however
the loss of any information about the arrival direction of the incoming neutrinos. Hence if
a significant deviation from the background is identified, the origin of the corresponding
neutrino signal can not be pinpointed based on the rates. Moreover, as neutrino telescopes
can not be pointed in a direction of the sky, as photon based telescopes can, possible
signals from all directions will be simultaneously present in the detector and overlap in
the rates.

2.1.2 Properties of the FFT and Definition of a Test Statistic
To identify periodic signals in a time series, an often used method is the Fast Fourier
Transform (FFT) algorithm. It converts a signal from its (usually) time domain into the
frequency domain. This allows to identify periodic signals hidden by noise in the time
domain much more easily, as they tend to clearly stand out above background in the
frequency domain. A simple example of this ability is demonstrated in Figure 2.2. The
FFT is an commonly used tool in physics and engineering, well studied and understood
in literature.

First the properties of the FFT and the underlying DFT (Discrete Fourier Transform)
are described, followed by the definition of a suitable test statistic for this analysis.

2.1.2.1 Introduction to the Discrete and Fast Fourier Transform

For a uniformly spaced time series zn of length N , i.e. n ∈ [0, N − 1], the kth element of
the discrete Fourier transform is defined as

ẑk = 1√
N

N−1∑
n=0

zn · e−i2πkn/N (2.1)

with k ∈ [0, N − 1] and ẑk often called Fourier coefficient. [15] By this, a sequence in time
domain is transformed to a sequence in frequency domain of same length. This therefore
yields a way to detect periodicities in a time series, by analysing the Fourier transformed.
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Figure 2.2:
Using the FFT, periodicities unrecognizable in time domain, can often be easily
detected in frequency domain.
The top left shows a time series of pure Gaussian noise, with a mean µ and standard
deviation σ. The top right shows a time series of a sinusoidal signal with frequency
f , i.e. period T = 1/f , and amplitude AS. The bottom left shows the superposition
of the noise and signal. By bare eyes this is however indistinguishable to the
above pure noise. The bottom right shows the Fourier power spectrum of the
’noise + signal’ time series. The peak at frequency f clearly stands out above the
background. It has to be noted, that the simulated time-series is 10 times longer
than displayed here.
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The time spacing dt between two successive elements of the time series determines the
frequencies fk associated with a wave number k by

fk = k

Ndt
= k

T
(2.2)

with T the total time duration of the time series. The frequency spacing is therefore given
by df = 1/T and is therefore also the frequency resolution of the DFT. The frequency
fNy = N/(2T ) = 1/(2dt) is the so called Nyquist frequency.

The sampling theorem states, that any signal can be exactly reconstructed from a
series of uniformly spaced samples with spacing dt, if the signal contains no frequency
components above the Nyquist frequency. If the DFT is applied to the samples of a signal
with frequencies f above the Nyquist frequency, then this frequency will be projected
into the available spectrum at fa = 2fNy − f (for fNy < f < 2fNy). This is the so-called
aliasing effect. [15] [21].

In general both, the input values zn and the output values ẑk, can take complex values.
In many applications however, the input time series is only real-valued. In this case,
the Fourier coefficients are symmetric about the Nyquist frequency with ẑN−k = ẑ∗

k.
It is therefore sufficient to calculate only half of the Fourier frequencies. For k = 0,
i.e. 0 Hz, Equation 2.1 simply reduces to the sum of the time series values. As this
contains no information about any periodicities, it is usually not displayed in the graphical
representations of the Fourier coefficients. The plots of spectra therefore commonly show
the interval [df, fNy], and contains due to this only half the number of points of the time
series. [30]

The computational complexity of the DFT as defined in Equation 2.1 is given by O(N2).
The computation of any larger time series would therefore be practicable impossible. The
Fast Fourier Transform is a implementation of the DFT, that reduces the complexity to
O(N log2 N). This is done, by repeatedly splitting the time series into shorter sequences
of even and odd indices and calculating the DFTs of each. The best performance can be
achieved for time series with a length that is a power of 2 [15].

2.1.2.2 Definition of a Test Statistic

The complex valued Fourier coefficients ẑk resulting from the DFT/FFT contain infor-
mation about the strength of the corresponding signal in the form of the magnitude of
ẑk. But also information about the phase of the underlying signal is available in the
argument of the complex number.

As in many applications the phase has no important physical meaning and only takes an
arbitrary value, due to the arbitrary start time of the data taking, it is often disregarded.
Instead usually only the magnitude is used to assess the strength of a signal. Two common
ways exist for this. First by directly using the absolute value, i.e. the magnitude, |ẑk|
which is called the Fourier amplitude. The second convention, is by using the absolute
square |ẑk|2, called the Fourier power. Both approaches are in principle equivalent,
this analysis however makes use of the Fourier power, as in this case the background
distribution takes the form of the well studied χ2-distribution.
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As a periodic signal in the time series has a strong response in the Fourier powers,
distinguishable from background as can be seen in Figure 2.2, this quantity serves as a
suitable test statistic for hypothesis testing and to decide whether a signal is present or
not.

The p-value is an often used quantity in hypothesis testing. It corresponds to the
probability of observing an event at least as extreme as the one observed, under the
assumption of the so-called null hypothesis. If this probability is smaller than some
predefined significance level, then the null hypothesis is rejected [31]. In this analysis,
the null hypothesis corresponds to the absence of any periodic signal and the presence of
only background. Hence, if the p-value of a Fourier power is smaller than the significance
level α, then a periodic signal is detected.

2.1.3 Behaviour of the Fourier Power in the presence of noise and signal
To perform the hypothesis testing the distribution of the Fourier powers, under the
assumption of the null hypothesis, i.e. only background, is required. The usual approach
in particle physics to obtain an only-background scenario is to perform numerous advanced
simulations of the detector, and deriving therefrom a distribution of the test statistic.
Unfortunately, this is not possible for this analysis, as there are to many unknowns about
the data taking conditions in ANTARES during each run.

However, the distribution of the Fourier powers for hypothesis testing can be calculated
under fairly simple assumption. One of these, is the assumption of frequency independent
white noise. In the reality of ANTARES this is not the case, as colored noise is present,
causing an excess in the low frequency region. This will be taken care of later using the
Red Noise Filter described in subsection 2.2.2, which transforms the obtained frequency
dependent spectrum into a white spectrum.

In the following the derivation of the Fourier powers under the assumption of only
background, but also signal plus background is described. In literature this can be found
e.g. in [24], [30] and [32]. As they tend to be rather short and often omitting important
steps, a full description is presented here.

Signal First assume a continuous sinusoidal signal of the form

S (t) = AS · sin (2πft) (2.3)

for any time t, with the signal amplitude AS and the frequency f of the signal. However
experimental data is usually not continuously stored, but instead discretized. The discrete
signal can therefore be written in the form

Sn = AS · sin (2πfTn/N) (2.4)

where the continuous time is replaced with t = Tn/N . Here, T denotes the total recorded
time, N the total number of discrete points and n ∈ [0, N − 1] the index of a given point.

16



Noise For the noise of this model, some normal distributed noise with a probability
density function (pdf) of the form1

fN (x) = φ (x|µN, σN) = 1√
2πσN

· exp
(

−(x − µN)2

2σ2
N

)
(2.5)

is assumed, where x denotes the value of the noise. µN and σN are the mean and
the standard deviation of the underlying normal distribution. Note that the standard
deviation σN can be interpreted as the amplitude of the noise.

Noise + Signal Considering a time series of noise, distributed according to Equation 2.5,
and injecting a signal by adding Equation 2.4, the pdf of the value with index n in the
time series is given by

fSN (x, n) = φ (x|µN + Sn, σN) (2.6)

where the mean of the normal distribution is shifted by the momentary value of the
signal.

Effect of the DFT The next step is to find the corresponding probability distributions
of the complex valued Fourier coefficients.

For real valued input series, i.e. zn ∈ R, the DFT, as defined in Equation 2.1 can be
separated into the real and imaginary part:

x̂k = Re(ẑk) = 1√
N

N−1∑
n=0

zn · cos (−2πkn/N) (2.7)

ŷk = Im(ẑk) = 1√
N

N−1∑
n=0

zn · sin (−2πkn/N) (2.8)

Change of Random Variable Consider a random variable X with a pdf given by fX(x).
By multiplying X with some factor a ∈ R, one can therefore create a new random variable
Y = a · X. The pdf of the new random variable is then given by

fY (y) = 1
a

· fX

(
y

a

)
. (2.9)

Therefore, as zn is normal distributed according to Equation 2.6 the pdf of each
summation term xn,k := cn,k · zn with cn,k := cos (−2πkn/N)/

√
N in Equation 2.7 and

yn,k := sn,k · zn with sn,k := sin (−2πkn/N)/
√

N in Equation 2.8 can be written as

1To simplify the notation, we shall denote the pdf of a normal distribution with mean µ and standard
deviation σ by φ (x|µ, σ).
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fxn,k
(x) = 1

cn,k
· fSN

(
1

cn,k
· x

)
= φ (x|cn,k · (µN + Sn) , cn,k · σN) (2.10)

fyn,k
(y) = 1

sn,k
· fSN

(
1

sn,k
· y

)
= φ (y|sn,k · (µN + Sn) , sn,k · σN) . (2.11)

This means, that each summation term xn,k is distributed like a normal distribution with
shifted mean µxn,k

= cn,k · (µ + Sn) and scaled standard deviation σxn,k
= cn,k · σN, and

respectively yn,k with mean µyn,k
= sn,k ·(µ + Sn) and standard deviation σ2

yn,k
= sn,k ·σN.

Sum of Random Variables Both, real and imaginary part of a complex Fourier coefficient
are therefore just the sum of N normal distributed random variables with varying mean
and variance. The pdf of a random variable, that is constructed as a sum of N normal
distributed random variables, is still a normal distribution. The mean of this new pdf is
simply the sum of the means, and the variance similarly simply the sum of the variances
[29].

A similar conclusion can be drawn from the central limit theorem (CLT), that states that
the distribution of the sum of N random variables with finite mean and finite standard
deviation converges towards a normal distribution for N → ∞. These calculations
therefor also hold for any non-normal distributed noise, that meets the requirements of
the CLT, like for example uniformly distributed noise [29].

The means and variances for the pdfs of the real coefficient x̂k and the imaginary
coefficient ŷk can therefore be easily obtained. For the full calculation see subsection 5.3.2.

Distribution of the Fourier Coefficients The real and imaginary part of the Fourier
coefficients are again normally distributed. The pdf of the complex valued Fourier
coefficient can therefore be interpreted as a 2-dimensional normal distribution in the
complex plane. For frequency bins that contain only background, i.e. fT − k ̸= 0
⇒ Mŷk

= 0, the complex normal distribution is centered around the origin. If a sinusoidal
signal is present, i.e. fT − k = 0, then the complex normal distribution is shifted
downwards on the imaginary axis. Figure 2.3 illustrates these resulting distributions.
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Mx̂k
=

N−1∑
n=0

µxn,k
= 0 (2.12)

Mŷk
=

N−1∑
n=0

µyn,k
=
{

−1
2 · AS ·

√
N if [fT − k] = 0

0 if [fT − k] ∈ [1, N − 1]
(2.13)

S2
x̂k

=
N−1∑
n=0

σ2
xn,k

= 1
2σ2

N (2.14)

S2
ŷk

=
N−1∑
n=0

σ2
yn,k

= 1
2σ2

N = S2
x̂k

= S2 (2.15)

⇒ fx̂k
(x) = φ (x|0, S) (2.16)

⇒ fŷk
(y) = φ (y|Mŷk

, S) (2.17)
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The FFT of some simulated white noise is calcu-
lated, and the resulting complex valued Fourier
coefficients plotted on the complex plane. Due
to the pure noise they are distributed accord-
ing to a complex normal distribution centered
around the origin.
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Figure 2.3:
The complex normal distributions of the complex valued Fourier coefficients. The
contour circles indicate the regions 1, 2 and 3 standard deviations.
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Distribution of the Fourier Spectrum The complex valued Fourier coefficients are
usually displayed by calculating the absolute square and plotting this over the frequency
to obtain a spectrum of Fourier powers. The absolute square is given by

|ẑk|2 = x̂2
k + ŷ2

k. (2.18)

Hence, |ẑk|2 is just the sum of the square of two normal random variables.
In general, a random variable that is constructed as the sum of the square of ν normally

distributed random variables with zero mean and unit variance is distributed according
to a chi-squared distribution with ν degrees of freedom, also denoted as χ2

ν [29]. Similarly,
a random variable that is constructed as the sum of the square of ν normally distributed
random variables with varying mean and unit variance is distributed according to a
noncentral χ2

ν distribution with ν degrees of freedom [28]. Therefore in this case a
(noncentral) χ2-distribution with 2 degrees of freedom is obtained. As the variance of
x̂k and ŷk is in general ̸= 1, they first need to be normalized, by dividing them by S.
This introduces the additional scale parameter s in the (noncentral) χ2-distribution,
that takes the value s = S2. For further information about the central and noncentral
χ2-distribution see section 5.1 and section 5.2.

For those frequency bins where fT − k ̸= 0, i.e. no signal is contained, the normal
distribution of both the real and imaginary part each have a mean of 0. Therefore the
pdf of this pure noise is given by the ’central’ χ2

2-distribution with the pdf:

fχ2
2
(x|S2) = 1

2S2 e−x/(2S2). (2.19)

For the frequency bin fT − k = 0 that contains a sinusoidal signal, the normal
distribution of the imaginary part has a non-zero mean. Therefore the pdf of |ẑk|2 is
described by the more general noncentral χ2

2-distribution. Its pdf is given by

fNCχ2
2
(x|λ, S2) = 1

2S2 e−(x/S2+λ)/2 · I0

(√
λx/S2

)
, (2.20)

with λ the so-called noncentrality parameter defined as λ = (Mŷk
/S)2 and the modified

Bessel function I0. Figure 2.4 displays the pdfs of the two kinds of χ2-distributions.

Conclusion The χ2-distribution describes the Fourier response of pure noise, and can
therefore be used to model the background of the frequency spectrum. This allows for
hypothesis testing, as the probability of a power value being larger or equal to some value
x is given by the complementary cumulative distribution function (ccdf):

F̄χ2
2
(x|S2) = e−x/(2S2) (2.21)

The noncentral χ2-distribution describes the frequency response of a sinusoidal signal
plus noise. The expected frequency response of a signal is therefore given by the expected
value of the noncentral χ2-distribution:

ENCχ2
2

= (2 + λ) S2 (2.22)
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Figure 2.4:
Distribution of the Fourier powers of some simulated white noise and the probability
density functions of the ’central’ and noncentral χ2-distribution. It can be seen,
that the expected Fourier response of a (sufficiently strong) signal clearly deviates
from only noise distribution.

This expected value of the Fourier response therefore allows to analytically calculate the
expected outcome of further analysis steps and estimate their influence on the detection
sensitivity.

Annotations

• To calculate the p-value of an expected Fourier response, it is in general sufficient
to calculate

p = F̄χ2
ν

(ν + λ) (2.23)
as possible location and scale parameters present in ENCχ2

ν
cancel the location and

scale parameters of the ccdf F̄χ2
ν
. ν denotes the degrees of freedom of the underlying

χ2-distribution and λ the noncentrality parameter of the signal.

• As the experimental data is usually some quantity derived counting numbers of
events, negative values bear no physical meaning. Therefore one would need to
add a constant offset of AS to the signals in Equation 2.3 and Equation 2.4, such
that the signal is always ≥ 0. This constant offset however is canceled out in the
calculation of Mx̂k

and Mŷk
. See subsection 5.3.2. Similarly also for the description

of the normal distributed noise, the parameters µ and σ need to be chosen such
that no negative values appear.

• For an injected cosine wave, Mx̂k
will instead take the value 1

2AS
√

N . If both a sine
and a cosine wave of the same frequency are present, Mx̂k

and Mŷk
will take the

corresponding values, and both contribute to the noncentrality parameter λ. As
any real valued signal can be written as a sum of sine and cosine waves, its Fourier
series, the derivation of the noncentral χ2 distribution holds for any periodic signal.
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• If [fT − k] ∈ R/Z, i.e. is not an integer, then Mŷk
> 0 ∀k. This is the so-called

scalloping effect, that appears if a signal frequency f doesn’t exactly match with a
discrete bin frequency fk sampled by the DFT. If this happens, the power of the
signal will be spread over the whole spectrum, as Pk = P0 sinc2 [π (k − fT )],2 where
P0 is the corresponding Fourier power of the signal in the integer case, and Pk the
contributing power to the kth bin. While the sinc function still keeps most of the
power in the bin closest to the frequency, some power is lost to the neighbouring
bins, and therefore some loss of sensitivity appears. In the worst caste, were the
signal frequency lies exactly between two bin frequencies, nearly 60% signal power
is lost, and on average ≈ 23% are lost [24] [30].

• Another common way to display the Fourier coefficients is to calculate the abso-
lute value instead of the absolute square. This will then result in the so-called
(noncentral) chi distribution, that is closely related to the (noncentral) chi-squared
distribution and shares many properties. As however the chi-squared distribution
is usually better known, it is used here instead.

2.2 Additional Issues and Solutions
The description of the analysis so far made use of some assumptions, which are however
not true in reality. This ranges from the actual spectrum containing non-white noise,
as well as a discontinuous time series due to breaks in the data taking process. A
further issue appears, if the analysis presented in this thesis is re-performed on the full
ANTARES data set due to the sheer size of the data volume. Further descriptions and
handy solutions to these issues will be given in the following section.

2.2.1 Averaging Spectra
The analysis performed at the end of this thesis consists of 227 data points. This is
short enough to compute the FFT within a reasonable time and the available memory.
However the data set for the full lifetime of ANTARES will contain approximately 232

data points. This exceeds the available computing resources for a simple application of
the FFT algorithm.

The proposed approach to to perform the analysis with the full data set, is to split the
full time series into NAvg smaller equally sized time series of suitable size. One can then
calculate the power spectra of all sub data sets and average them into one final spectrum.
Setting the number of points for the small FFTs to N0, the total number of points N is
determined by N = NAvg · N0.

The complexity of the FFT is given by O(N log2 N). For the averaging FFTs, the
complexity can therefore be written as O([N0 log2 N0] · NAvg) = O(N log2 N0). Hence for
a fixed N0, the complexity only grows linearly with N , i.e. O(N), instead of N log2 N .

2The sinc function is here defined as sinc(x) = sin(x)/x.
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On top of the increased computational effort, changes in the data taking conditions
are another reason to split up the available data set. Certain properties like for example
the background due to bio-luminescent activity or the PMT efficiencies are required to
stay approximately constant. As however some of these change over time, it might be
preferable to split the full data set into segments of approximately constant detector and
environmental properties.

The averaging procedure changes the previously derived background statistic of a
χ2-distribution with 2 degrees of freedom, as each bin is not anymore the the sum of two
normal distributed random variables but instead 2NAvg, i.e.

|ẑk|2 = 1
NAvg

NAvg−1∑
n=0

x̂2
k,i + ŷ2

k,i. (2.24)

This simply results in a χ2-distribution with ν = 2NAvg degrees of freedom, i.e. a
χ2

2NAvg
-distribution. Also due to the averaging, the scaling parameter, i.e. the variance of

the underlying normal distribution, changes and instead takes the value S2 = 1
2σ2

N/NAvg.
The noncentrality parameter is then given by the sum over all means Mx̂k,i

and Mŷk,i

λ =
NAvg∑

i

M2
x̂k,i

+ M2
ŷk,i

S2 =
NAvg∑

i

(
1
2AS

√
N0
)2

S2 = 1
2

(
AS
σN

)2
N. (2.25)

For the case of equal sized sub time series, this sum collapses again, to the same value,
as the λ for the non averaging.

The complementary cumulative distribution function F̄ and other quantities of interest
for the case with averaging can be simply derived from the general forms of the χ2-
distribution in section 5.1 and noncentral χ2-distribution in section 5.2.

This approach of the analysis by averaging, however introduces as a downside a loss of
sensitivity due to the changed background statistics. A comparison of the p-value of the
expecte Fourier response, as well as simulated p-values can be seen in Figure 2.5. There
it can be observed, that the averaging process causes a drastic loss of sensitivity, but by
increasing the total data set in size, the sensitivity can still be improved. Furthermore
it can be noted, that the theoretical values describe the simulated values very well.
It can therefore be concluded, that the expected values derived from the (noncentral)
χ2-distribution are a suitable way to analyse the behaviour of the FFT on signal and
noise.
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Figure 2.5:
Comparison of a single FFT to the averaged FFTs. A time series of N points
is generated with Gaussian noise and a sinusoidal signal, with a signal to noise
ratio of 2.5 · 10−2. This time series is then split up into NAvg smaller time series
of size N0 = 210, the power spectrum of each calculated and then these spectra
averaged. Next the p-value of the power in the bin containing the signal frequency
is calculated. The power spectrum and p-value are also obtained, for a FFT of the
whole single time series. This process is repeated for increasing N and the resulting
simulated p-values plotted. Furthermore, the expected values of the p-values are
displayed, with the shaded areas being the region of ±2 standard deviations around
the expected value of the Fourier power. Increasing the total number of points N ,
increases according to this procedure for the averaged FFTs only the number of
averaged spectra NAvg, not the number of point of the underlying short time series.
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The loss of sensitivity due to this averaging process can be estimated by calculating
the the p-value of the expected Fourier response for the single case pS and the averaged
case pAvg. The p-value is obtained using the complementary cumulative distribution
function (ccdf) F̄χ2

ν
. The ratio pS/pAvg serves then as a measure for the loss of sensitivity,

as a value close to 1 indicates no significant loss, while a value close to 0 indicated a
strong loss. This ratio can be written as

pS
pAvg

=
F̄χ2

2

(
2 + 1

2 ·
(

AS
σN

)2
· N

)
F̄χ2

2NAvg

(
2NAvg + 1

2 ·
(

AS
σN

)2
· N

) (2.26)

and depends only on the signal to noise ration AS/σN, the total number of points N
and the number of averaged spectra NAvg. (This equation can not be reasonably further
simplified, as NAvg appears within F̄χ2

2NAvg
in the upper limit of a sum, as well as in the

terms of this sum, see section 5.1 Equation 5.5.)
Figure 2.6a shows the p-values corresponding to the expected Fourier response for

the full ANTARES analysis as a function of the signal to noise ratio (SNR), with sub
data sets of the size N0 = 227. It can be seen, that up to a SNR of ≈ 10−5 the single
FFT won’t be able to differentiate a signal from background. For the averaged FFT, this
detectability is slightly delayed. Hence there will be a SNR interval that is lost due to the
averaging. In Figure 2.6b the ratio of the p-values (Equation 2.26) for the full ANTARES
analysis is displayed. There it can be seen, that a significant loss of sensitivity occurs for
SNR larger than ≈ 10−5. This coincides with the beginning of the detectability for the
single FFT in Figure 2.6a. This indicates, that the averaging FFT will always have a
significant loss of sensitivity, compared to the single FFT. This however tends to be in
regions, where the p-value is already so low, that this loss of sensitivity wouldn’t affect
the claim of a discovery. The loss of sensitivity for lower SNRs is effectively irrelevant
because both FFT approaches are unable to differentiate between signal and noise. It
can be therefore concluded from Figure 2.6, that it is of great importance, to choose the
size N0 of the to-average FFTs as large as possible, to minimize the inevitable loss of
sensitivity introduced by averaging.
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p-value of the expected Fourier response in de-
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top, is the same plot in log-log-scale.
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Figure 2.6:
p-values and loss of sensitivity over the signal to noise ratio for the full ANTARES
analysis N ≈ 232, with N0 = 227 the size of the to-average FFTs and NAvg = 22
the number of averaged spectra.

2.2.2 Red Noise Filter
2.2.2.1 Description of the Red Noise Filter

The Red Noise Filter is one of the most important steps of this analysis, as it allows to
transform the ANTARES background into a white spectrum, which in turn allows to
estimate the sensitivity without the need to perform complicated simulations.

The assumptions for the noise in the previous derivation of the χ2-distribution are
not fulfilled in real experimental data. Actual experimental spectra are usually not only
filled with white noise (no frequency dependence), but instead with some colored noise
showing a frequency dependence. An example for ANTARES PMT rates can be seen in
Figure 2.7. The frequency dependent behaviour can be clearly seen. In the plot with
linear x-axis, a steep decline below ≈ 1 Hz is visible. The double logarithmic plot reveals,
that a change in the slope occurs at ≈ 0.1 Hz. This dominance of lower frequencies is
sometimes called ’red noise’. Therefore as the spectrum is filled with non-white noise,
the background can not be anymore simply described by a χ2-distribution.

The standard approach followed in particle physics to search for signal within a
background dominated dataset is to compare the observed data with the expectations in
the case that an equivalent dataset was only composed by background. More specifically,
a test statistic is derived from observable quantities, and its value is compared with the
corresponding distribution for the background only case. Normally experimental data
are very difficult to represent by means of a simple mathematical model, and such a
distribution has to be derived by performing simulations. This is however rather difficult
for this analysis as the detector is very complex and many necessary parameters of the
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Figure 2.7:
Fourier power spectrum in log-lin scale and log-log scale of the ANTARES run
051870. Changing frequency dependencies can be seen over the spectrum.

data taking runs are not available.
The standard procedure in pulsar searches is instead a Red Noise Filter, also called

Whitening Algorithm. It allows to transform the frequency dependent spectrum into
a frequency independent white spectrum [24]. Applying this to the ANTARES data
set would allow to perform the sensitivity study in an analytical way and overcome the
obstacle of performing simulations.

The Red Noise Filter is applied after the FFT is performed. It works by splitting
the frequency spectrum into smaller segments. For each segment, the empirical mean
µ and empirical standard deviation σ are calculated, and then the segment normalized
according to

X ′
k = Xk − µ

σ
(2.27)

with Xk and X ′
k the value of the kth frequency bin before and after normalization. The

normalized segments therefore have zero mean and unit standard deviation. If this is
done properly for all segments, the complete spectrum loses (in good approximation) any
frequency dependence and can be considered as a white spectrum.

These segments can either be all equal sized, or instead of variable size. The segments
in low frequency regions usually need to rather small to obtain a white spectrum, due to
the rather strong frequency dependence. Towards higher frequencies, larger segments in
the already rather flat regions are preferable to avoid statistical fluctuations.

By construction, the whitened noise is not anymore described by a standard χ2-
distribution, but instead by an accordingly shifted and scaled version. The pdf can be
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Figure 2.8:
Fourier power spectrum after the application of the Red Noise Filter of the
ANTARES run 051870. The red lines indicate the borders of the segments. The
frequency independence of the whole spectrum can be clearly seen.

given as

fRNF (x, ν, lRNF, sRNF) = fχ2
ν
(x, lRNF, sRNF) (2.28)

with lRNF = −
√

ν

2 and sRNF = 1√
2ν

. (2.29)

fχ2
ν

denotes the pdf of the χ2-distribution with ν degrees of freedom (see section 5.1).
lRNF and sRNF are the location and the scale parameter of this new Red Noise Filter
distribution and depend only on ν of the underlying χ2-distribution. They can be directly
derived from the mean and variance of the χ2-distribution (see section 5.1), by setting
these to to the normalized values (0 and 1) and solving for l and s. For the case without
averaging, ν = 2 and they take the values lRNF = −1 and sRNF = 1/2.

Figure 2.8 shows the successful applied Red Noise Filter on the previous spectrum
displayed in Figure 2.7. The spectrum is now white and shows no frequency dependence.

2.2.2.2 Verification of a successful normalization

To check that the Red Noise Filter works as intended, it is applied individually to all
available runs, with the run number ending by 0. The resulting distributions are then
fitted in the location and scale parameter to a χ2

2-distribution using the Method of
Moments. The resulting fit parameters are in good accordance with the theoretical
expected values, as can be seen in Figure 2.9.

Further in Figure 2.10 the combined histogram of all normalized segments of one run
is displayed, together with an additional fit on this combined distribution, as well as
the theoretical curve. Both curves describe the distribution very well. Some outliers are
visible in the unsupported region < lRNF. These can occur if a segment has to many or
large outliers disturbing the normalization process.
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Figure 2.9:
The relative deviation of the fit parameters of the χ2

2-distribution from the theoret-
ical expectation over the run numbers. As this error is always close to one, it can
be concluded, that the resulting spectra are in fact distributed like Equation 2.29.
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Figure 2.10:
Histogram of the Fourier powers after the application of the Red Noise Filter of
the ANTARES run 051870. The left plot is in linear scale and the right plot in
logarithmic. It can be clearly seen, that the theory of the shifted χ2-distribution
describes the whitened distribution very good, as well, as the fitted χ2-distribution.
Some powers below the theoretical limit lRNF can be seen in the right plot. The
arise if a segment has to large outliers.
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As for this test each run was processed individually, the frequency spacing df becomes
rather large and therefore the segments in the very low frequency regions only very
sparsely populated. For the actual analysis all prepared runs are combined into one large
time series. Therefore df is much smaller in the later performed analysis, improving the
statistics of the segments.

Performing a goodness of fit test to verify the successful normalization turns out to
be rather difficult. Attempts were done using the Kolmogorov–Smirnov test and the
chi-squared test, but both failed to verify the χ2-distribution of the whitened spectrum.
Further a least square fit was executed with the resulting reduced chi-square being
≪ 1. As a good fit yields a reduced chi-square close to 1, this also failed to quantify
the goodness of the theoretical derived fit. The reason why these test failed, might be
explained by the fact, that the underlying distribution of the whitened spectrum is not
an actual χ2-distribution, but only resembles it. Especially outliers in the unsupported
regions < lRNF seem to obstruct this testing. Despite these failures, this analysis idealized
the normalized background to be χ2-distributed, as it is assumed to still be a useful
approximation to reality.

2.2.2.3 Decrease of sensitivity

Similar to the previously discusses outliers, a very strong signal has the potential to
disturb the normalization process in a segment if the empirical mean µ and standard
deviation σ differ to much from their ideal values.

To investigate the performance of the Red Noise Filter and a potential loss of sensitivity
the noncentral χ2-distribution can be used to model a signal and the ’central’ χ2-
distribution to model the background. This allows to calculate the expected value of µ
and σ in Equation 2.27 with a signal is present in the segment.

To do so, assume a segment containing NSeg points, of which one, the signal, is
distributed according to a noncentral χ2

ν-distribution with noncentrality parameter λ
and the rest according to a χ2

ν-distribution. The location and scale parameters l and s
take arbitrary values, describing the segment before its normalization.

The expected values are calculated to be (see section 5.4 for the full calculations):

E[µ] = νs + l + 1
NSeg

λs (2.30)

E[σ2] = 2νs2 + 1
NSeg

4λs2 + NSeg − 1
N2

Seg
λ2s2 (2.31)

Putting these values into Equation 2.27 and setting Xi to the expected value of the
noncentral χ2-distribution, i.e. Xi = νs + l + λs, one can calculate the expected real
response of the Red Noise Filter for the assumed signal peak.

ENCχ2
ν

− E[µ]√
E[σ2]

= (1 − 1/NSeg)λ√
2ν + 4λ/NSeg + 2λ2(NSeg − 1)/N2

Seg

(2.32)
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A perfect normalization can be modeled by setting λ = 0 in E[µ] and E[σ2], describing
the case, where the signal does not influence the normalization process. This simply
replaces E[µ] and E[σ2] by the mean Eχ2

ν
= νs + l and variance Varχ2

ν
= 2νs2 of the

χ2
ν-distribution. Putting these values in Equation 2.27 and again setting Xi to the

expected value of the noncentral χ2-distribution, the ideal expected response can be
calculated.

ENCχ2
ν

− Eχ2
ν√

Varχ2
ν

= λ√
2ν

(2.33)

This allows to calculate the p-value of the expected real and ideal Red Noise Filter
response, using the ccdf of the underlying χ2-distribution.

pRNF = F̄χ2
ν

(
ENCχ2

ν
− E[µ]√

E[σ2]

∣∣∣ lRNF, sRNF

)
(2.34)

pideal = F̄χ2
ν

ENCχ2
ν

− Eχ2
ν√

Varχ2
ν

∣∣∣ lRNF, sRNF

 (2.35)

Figure 2.11 shows the resulting p-values over the signal to noise ration AS/σN (note
λ = (AS/σN)2 · N/2 with N the length of the underlying time series), while Figure 2.12
displays the ration between the ideal and real case. It can be seen, that for strong signals,
the real p-value will eventually diverge from the ideal p-value and converge towards some
constant value as lim(AS/σN)→∞ pRNF = F̄χ2

ν

(√
(NSeg − 1)/2

)
. However for sufficiently

large segments, this effect can be delayed towards acceptable small p-values. It can
be concluded that, segments as large as possible are preferable to reduce the loss of
sensitivity of potential signal.

Another implementation of the Red Noise Filter is possible, by replacing the mean
in the normalization process with the median, as well as a ’standard deviation’ that is
calculated with respect to the median instead of the mean. The advantage of this is,
that the empirical median is more stable with respect to outliers than the empirical
mean. However for large outliers the ’standard deviation’ will still take a to large value,
and therefore disturb the normalization. One possible way of reducing the influence
of strong signal outliers, for both mean and median implementation, could be to omit
the maximum value of each segment in the calculation of the empirical normalization
parameters. Keep in mind, that due to the scalloping effect, a signal can cause more
than one outlier in a segment, (see annotations in subsection 2.1.3).
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Figure 2.11:
p-value of the normalized signal peak over the signal to noise ratio, for varying
segment sizes NSeg. The length of the corresponding time series is set to 227. For
sufficiently strong signals, the normalization process eventually fails. Increasing
the segment size postpones this breakdown of the Red Noise Filter. The segment
sizes used in the later analysis are NSeg = 219 and NSeg = 220.
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Figure 2.12:
Ratio of the ideal p-value to the real p-value over the signal to noise ratio, for
varying segment sizes NSeg. The length of the corresponding time series is set to
227. A ratio close to 1, indicates a successful normalization, while values much
smaller 1 indicate a loss of sensitivity. Strong signals will cause a loss of sensitivity
as the real p-value deviates from the ideal p-value. Increasing the segment size
reduces this loss of sensitivity.
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2.2.3 Data-Padding and Resampling
The definition of the Discrete Fourier Transform assumes a uniformly spaced input series.
Experimental data is however not necessarily available in this uniformly spaced structure.
This section will first discuss the issues of the time series structure of ANTARES and
propose suitable solutions. In the following these solutions are further discussed and
their implementation in this analysis presented.

The ANTARES data taking is performed in so-called runs of several hours, but
with irregular recording time. Within a run, the data points are evenly spaced with
dt = tSampling = 0.104858 s. This allows to properly calculate the Fourier spectrum of
each individual run. As an input series as long as possible is desirable to increase the
sensitivity, this is not the implemented approach. Averaging the spectra as described
in subsection 2.2.1 (taking the variable data set length into account) would be possible,
however causes the average some undesired loss of sensitivity.

The performed approach is instead to connect multiple successive runs into one suitably
long time series. However, the data taking runs of ANTARES do not connect seamlessly
to each other. This (or also missing runs) causes gaps in the created time series, resulting
in a non uniformly spaced dataset. By padding the data, i.e. introducing replacement
values in these gaps, an evenly spaced time series can be constructed [24].

Regarding this, the implementation of the data taking of ANTARES presents one
additional difficulty. Since the time difference between two consecutive runs is not
necessarily an integer multiple of dt, data padding alone is therefore unable to create
a perfect uniformly spaced input series series. It needs to be additionally resampled to
obtain an evenly spaced time series.

Data-Padding Padding usually describes in FFT analyses the technique of appending a
large number of artificial data point at the end of the datas set, to smoothen the spectrum.
The two common procedures for this are the so called zero-padding and mean-padding.
The first one appends data points of value zero, while the second one instead appends
data points with value equivalent to the mean of the raw data set. Mean padding is in
general preferable as zero-padding introduces low-frequency noise in the spectrum [30].
Figure 2.13 shows a simple example of this effect. Data-padding can also be used to fill
gaps in the input data to obtain a evenly spaced time series [24].

Increasing the size of the data set by padding, does not increase the frequency resolution,
despite the fact, that the padded spectrum has a narrower frequency spacing. Padding in
the time domain merely interpolates the spectrum in the Fourier domain [16]. Moreover,
as padding does not increase the power of the signal, the padded values need to be
excluded from the sensitivity studies. Only the number of actual recorded data points
needs to be considered [30].

Resampling The resampling procedure used in this analysis works as follows. First the
start time of the first run and the end time of the last run are obtained and the number
of uniform bins calculated by dividing their difference with the sampling time dt. A new
uniform time series with NBins and time spacing dt is created. A bin in this empty time
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Figure 2.13:
A comparison of the effects zero-padding and mean-padding. It can be clearly seen,
in the spectrum, that low frequency powers appear for zero padding.

series is then filled, with the value of the bin in the runs, that lies closest to it in time.
In the next step, all remaining zero values are replaced by the mean of the input data.
Therefore not only the padded values are set to the mean, but also the faulty zero-values
present in the data, that can be seen in Figure 2.1. For the analysis performed in the
later part of this thesis, the resampled time series was then mean-padded a second time
to 227 points.

2.3 Improving Sensitivity for more complex Scenarios
The described ingredients and tools so far are sufficient to perform an FFT analysis of the
ANTARES PMT rates. Nevertheless the application of further techniques is desirable to
increase the sensitivity for more complex scenarios. Two such procedures are presented
in the following section, which deal with realistic signal shaped and additional correction
of the time series.

2.3.1 Non sinusoidal Signals and Harmonic Summation
So far in the description of this analysis only pure sinusoidal signals are considered.
This is however a rather unlikely model for many periodic sources. Instead they usually
emit some pulse train, i.e. a periodic reappearance of some pulse. In the following the
properties of non-sinusoidal signals are discussed, and a commonly used pulse model
presented. Afterwards the Harmonic Summation is investigated, a tool to increase the
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sensitivity of pulsed signals.

2.3.1.1 Non sinusoidal Signals

To describe non-sinusoidal periodic signals, many mathematical tools can be utilized.
The following description of these is based on [15]. The continuous function of a pulse
train with frequency f can be written as a sum of the underlying pulse shifted in time:

fPulseTrain (t) =
∞∑

n=−∞
fPulse

(
t − n

f

)
(2.36)

= ш1/f (t) ∗ fPulse (t) (2.37)

It is often a handy way to write pulse trains by using the convolution between two functions
(f ∗ g)(t) :=

∫∞
−∞ f(τ)g(t − τ) dτ and the Dirac comb шT (t) := ∑∞

n=−∞ δ(t − nT ) with
period T .

Using this notation is rather simple to calculate the Fourier transform of such a pulse
train. Let F(f)(y) =

∫
R f(x) · e−i2πy·x dx denote the continuous Fourier transformation,

and the convolution theorem stating that F (f ∗ g) = F(f) · F(g).

F(fPulseTrain) = F
(
ш1/f ∗ fPulse

)
(2.38)

= F
(
ш1/f

)
· F (fPulse) (2.39)

= шf · F (fPulse) (2.40)

Note that the Fourier transform of the Dirac comb is also a Dirac comb, F (шT ) = ш1/T .
Therefore the Fourier transform of a periodic non-sinusoidal signal is a series of δ-peaks
with spacing f , enveloped by the Fourier transform of the underlying pulse. In a
spectrum, the frequency f is often called fundamental frequency, and its integer multiple
the harmonics of higher order.

An often used pulse shape for estimation purposes, is the rectangular function rect(t)
3, as it is the simplest pulse model, being either on or off. Its Fourier Transform is the
sinc function sinc(t). For a pulse train of rectangular pulses with frequency f , the power
spectrum will contain harmonic peaks at integer multiples of f , following a sinc2.

The term duty cycle denotes for pulse trains, the faction of a period in which a pulse is
present. For a binary pulse train based on rect this is a straight forward definition. For
other pulse shapes, such as a continuous Gaussian pulse, the width of the pulse needs to
be defined separately. A common approach is the full width at half maximum (FWHM)
[30].

Another important property of the Fourier transform is time scaling, sometimes also
called similarity theorem. Scaling a function f in time according to f

(
t
a

)
, its Fourier

3rect(t) =


0, if |t| > 1

2
1, if |t| < 1

2
1
2 , if |t| = 1

2

Varying definitions exist for the case |t| = 1
2 .
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transform is |a| · F(f)(a · y). From this follows, that compressing a pulse in time, i.e.
0 < a < 1, the envelop of the harmonics is stretched, and vice versa [15].

Due to this, pulse trains with narrow pulses compared to their pulse period, i.e. a low
duty cycle, have a larger number of harmonics with relevant amplitude. The Harmonic
Summing is a procedure that incorporate these harmonics of higher order into the
candidate identification process of periodic signals [30].

2.3.1.2 Pulse Model: modified von Mises distribution

A frequently used pulse models in pulsar analyses is based on a modified von Mises
distribution (MVMD): [30]

fMVMD(t, κ) = a
eκ cos (2πft) − e−κ

I0 (κ) − e−κ
(2.41)

with the continuous time t, the frequency f and the shape parameter κ. I0 denotes the
Bessel function of zeroth order. κ determines the width of the pulses. For κ → 0, it
converges towards a sinusoid, and for κ → ∞ the pulses converges towards a Gaussian
pulse, where 1/κ corresponds to σ2, the variance of the underlying normal distribution.
The maximum value is

max
MVMD

= 2a sinh (κ)
I0 (κ) − e−κ

(2.42)

and the full width at half-maximum (FWHM) as a fraction of a pulse is 4

FWHMMVMD = π−1 arccos
(
κ−1 ln

(
sinh (κ) + e−κ)). (2.43)

As this FWHM is already normalized with respect to the pulse period, Equation 2.43
describes the duty cycle of this pulse train.

The advantage of the pulse profile in Equation 2.41 is, that it can be easily given in
another form

fMVMD(t, κ) = a + 2a
∑∞

h=1 Ih (κ) cos (2πhft)
I0 (κ) − e−κ

(2.44)

using the relation ex cos (θ) = I0(x) + 2∑∞
h=1 Ih(x) cos (hθ), with Ih, the modified Bessel

function of order h. Hence fMVMD can be represented as a sum cosine waves, its Fourier
series.

This makes it easy to calculate its Fourier response. In subsection 2.1.3 the noncentral
χ2-distribution is derived under the assumption of a single sinusoid. Its frequency only
determines the index of the output bin in the spectra, but not the power distribution
itself. This therefore allows now to consider each cosinusoid independently. Each response
is therefore again a noncentral χ2-distribution, only the signal amplitude AS of each
cosinusoid depends on the index h as AS(h, κ) = 2aIh(κ)

I0(κ)−e−κ .

4Note, that the values given in [30] for Equation 2.42 and Equation 2.43 are incorrect.
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Fourier power spectrum of a MVMD pulse train.
For narrow peaks the number of significant har-
monics of higher order increases.

Figure 2.14:
Properties of a pulse train based on the modified von Mises distribution as described
in Equation 2.41 for different shape parameters κ.

2.3.1.3 Harmonic Summation

As stated earlier, the number of relevant harmonic peaks increases for narrow pules. It
is therefore of great interest, to take them into consideration for the identification of a
potential periodic signal.

The way this is usually done in pulsar search analysis is the so-called Harmonic
Summation [24]. It is applied on the white spectrum after the Red Noise Filter and is
given by the equation

XHS(k) =
H∑

h=1
x(hk) (2.45)

where H is the total number of harmonics summed, x a value of the discrete power
spectrum and k the frequency bin index. This sum is usually calculated multiple times
for varying H as the number of relevant harmonics depends on the duty cycle of the
signal [4]. Note that the output spectrum of the Harmonic Sum is truncated, to the
interval (0, ⌊fNy/H⌋], due to the fact that for higher frequencies not all corresponding
harmonics lie within the available spectrum below the Nyquist frequency fNy.

This summation process also changes the distribution of the test statistic under the
background-only hypthesis. It is not anymore described by a χ2-distribution with ν
degrees of freedom, but instead a χ2-distribution with ν · H degrees of freedom. This is
simply due to the additive property of the χ2-distribution, that a sum of χ2-distributed
random numbers is still χ2-distributed, where the new degree of freedom is the sum
of the contributing degrees of freedom. Note that also the location parameter of the
background distribution changes. Its new value is the sum of all location parameters of
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the contributing distributions, hence lHS = H · lRNF, and for the standard case of ν = 2
therefore lHS = −H. The scale parameter keeps unchanged under the Harmonic Sum, i.e.
sHS = sRNF. After the application of the Red Noise Filter and the Harmonic Summing,
the pdf of the background can be written as

fHS(x, νH, lHS, sHS) = fχ2
νH

(x, lHS, sHS) (2.46)

with lHS = −H

√
ν

2 and sHS = 1√
2ν

. (2.47)

Note, that if the signal frequency f doesn’t exactly match a bin frequency fk, i.e.
f · h ̸= fk · h, a drift in the harmonics can occur. Peaks of higher order, then lie next to
their supposed position and therefore do not contribute to the calculation of the harmonic
sum according to Equation 2.45. More elaborated algorithms exist, that try to capture
this problem [4].
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The Red Noise Filtered power spectrum of
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PulseTrain (not RNF-normalized). The signal
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monic can be seen, despite the presence of noise.
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therefore lost.
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(b)
Spectrum of the Harmonic Sum for H = 4 and
H = 1 (corresponds to not applying Harmonic
Sum). It can be clearly seen, that due to the
summing, the power at the signal frequency
significantly increased, however also the back-
ground also increased.
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(c)
If the frequency of a signal lies within a fre-
quency bin with even index k, then false peaks
can appear in the Harmonic Sum spectrum, as
this frequency bin is then contained in the Har-
monic Sum of lower frequencies.

Figure 2.15:
Some white Gaussian noise with variance 1 was created and a MVMD-PulseTrain
injected with frequency f ≈ 0.5 Hz, κ = 10, a = 4.5 · 10−3. For Figure 2.15a and
Figure 2.15b, the frequency was chosen to have an odd frequency index k, for
Figure 2.15c the frequency was slightly changed to have an even frequency index k.
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Loss and Gain of Sensitivity To investigate the potential impact on the sensitivity
of the Harmonic Sum, the noncentral χ2-distribution can be used to model the signal
response. This allows to calculate the expected value of the Harmonic Sum XHS.

First assume a time series containing N points, filled with normally distributed noise
with standard deviation σN and a MVMD signal with amplitude a and shape parameter
κ. The MVMD signal can be easily written as a series of cosinusoidal signal with
amplitude AS(h, κ). The expected Fourier response (after the application of an ideal Red
Noise Filter) of the h’th harmonic order peak is given by the mean of the noncentral
χ2-distribution as

ENCχ2
ν
(h) = ν · sRNF + λ(h) · sRNF + lRNF (2.48)

with

λ(h) =
(

AS(h, κ)
σN

)2
· N

2 (2.49)

=
(

a

σN

)2
·
(

Ih (κ)
I0 (κ) − e−κ

)2
N. (2.50)

By using the linearity of the expected value, the expectation of the Harmonic Sum XHS
up to order H is given by

E [XHS] (H) =
H∑

h=1
ENCχ2

ν
(h) = νHsRNF +

H∑
h=1

λ(h) · sRNF + HlRNF. (2.51)

This allows th calculate the p-value of the expected Harmonic Sum, by using the ccdf of
the underlying χ2-distribution.

pHS(H) = F̄χ2
νH

(
E [XHS] (H)

∣∣ lHS, sHS
)

(2.52)

To quantify the loss and gain of sensitivity, the ratio of p-values pHS(1)/pHS(H) can
be used. pHS(1) denotes the the p-value if no Harmonic Sum is applied, i.e. H = 1 in
Equation 2.52, and pHS(H) the p-value for the Harmonic Sum up to order H. Figure 2.16
shows this ratio in dependence of the duty cycle of the MVMD (see Equation 2.43) for
varying highest orders H. Ratios smaller than 1 indicate a loss of sensitivity, while ratios
larger than 1 indicate a gain of sensitivity. It can be seen, that towards shorter duty cycles,
as more and more harmonics of relevant size arise in the spectrum, the Harmonic Sum
for increasing highest order H increases the sensitivity. From this is can be concluded,
that the harmonic sum for multiply H should be calculated and individually investigated,
to obtain the maximum sensitivity for each duty cycle interval.

2.3.2 Barycentric Correction
For the FFT analysis of long time series, the rotation of the Earth and its motion around
the Sun can not be neglected anymore. The relative motion between observer and target
introduces a Doppler shift. This causes a continuous change of the signal frequency with
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Figure 2.16:
Ratio of the p-value without summation to the p-value with Harmonic Sum over the
duty cycle for varying highest harmonic order H. The length of the corresponding
time series is set to N = 1027 and the signal to noise ratio to a/σN = 2 · 10−4. The
largest ratio of each interval indicates the best gain of sensitivity.

time. A changing frequency causes the peak in the Fourier spectrum to broaden over its
neighbouring bins, causing a decrease of the sensitivity.

The established solution to this issue in pulsar analysis is the so called barycentric
correction. It transforms the (topocentric) data of the telescope to the solar system
barycenter, which is to a very good approximation an inertial reference frame. [24]

To perform this transformation the arrival time of each data point at the solar system
barycenter needs to be calculated. As the relative motion is continually changing, the
resulting time series is therefore not anymore uniformly spaced and needs to be resampled.
The barycentric correction is therefore executed before the data-padding and resampling
described in subsection 2.2.3.

This correction requires the observation time of each sample, and also the coordinates
of the observing telescope itself, as well as the coordinates of the observation target.

The observer is approximated by the center of the ANTARES telescope with the
coordinates (42◦48N, 6◦10E, −2201 m). [5]

The coordinates of the observation target can be any coordinates on the sky, such as
coordinates of already known possible sources, like pulsars.

In this analysis distinct neutrino events are not considered, and instead only deviations
of the background rate, caused by all collective neutrino responses for a given moment
in time, are investigated. Therefore no information about the arrival direction of the
incident neutrinos is available in the PMT rates. Hence if a significant deviation from
the background is identified, the origin of the corresponding neutrino signal can not be
pinpointed based on the rates. Moreover, as neutrino telescopes can not be pointed in a
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direction of the sky, as photon based telescopes can, possible signals from all directions
will be simultaneously present in the detector and overlap in the rates.

The barycentric correction could therefore maybe used as a tool, to look at specific
direction in the sky. This can be reasoned by the assumption, that only a signal from
the corrected direction will be successfully restored and all possible signals from other
directions sufficiently suppressed. However more investigation of this technique is required
to estimate its influence and capabilities.

In this analysis, the calculation of the arrival time at the solar system barycenter is
done using astropy’s [12] ’Time’ datatype and ’light_travel_time’ method [1].
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3 Analysis

In this chapter the previously described analysis will be performed on the data set
introduced in subsection 2.1.1. The Harmonic Summing procedure and the barycentric
correction depend on properties of the observation target. In the following first the
selection criteria for the possible targets are described and the selected ones presented.
Afterwards the sensitivity study is performed and a blinded analysis presented.

3.1 Selected Pulsars
Due to a general shortage of models describing the the neutrino emission pattern of
pulsars, one can make the naive assumption that the neutrino emission properties, such
as frequency and pulse width, are essentially identical to the catalogued photon emission
properties.

Based on this assumption, the following selection criteria are applied to the ATNF
catalogue:

• Pulsar frequency within the spectrum: The pulsars known frequency f0 must
be below the Nyquist frequency fNyquist = 4.76834 Hz of the ANTARES PMT rates.
This is done to avoid aliasing effects of a potential signal peak to lower frequencies.

• Exclude binary pulsars: Binary pulsars are excluded from this analysis as their
orbital motion causes an apparent change of their spin frequency over the course of
the observation (similar to the motion of the earth and the barycentric correction).
Their detection requires additional correction on the time series to take care of this
continuous frequency change [30] [9].

• Pulsars within a distance of 5 kpc: According to the inverse-square law, for a
fixed flux at the earth the required flux at the source grows with the distance squared.
Therefore only pulsars close to earth, within 5 kpc are take into consideration. Most
of the selected are however within 2 kpc.

• Suitably frequency and duty cycle combination for Harmonic Summation:
From the catalogued period and pulse width of a known pulsar, the duty cycle can
be estimated. To test the Harmonic Summing procedure for narrow peaks up to
the order H, the given pulsar frequency needs to be sufficiently low, such that the
higher harmonics lie within the available spectrum.

The first two criteria are hard cuts of the analysis. They are based on the current
capabilities of the used analysis tools. To lift these restriction the implementation of
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further techniques is required which appropriately handle these cases. The later two
criteria are soft cuts and have no intrinsic meaning. They are merely required to limit
the wast number of pulsars to a suitably small number that can be processed in this test
analysis.

Based on these criteria 5 pulsars are chosen to use in this exemplary analysis. They
have a variety of different frequencies and duty cycles, allowing to perform the Harmonic
Summation procedure for different parameters. Table 3.1 shows the final observation
targets and their properties relevant for this analysis.

PSRJ RAJD DECJD F0 DIST Duty Cycle
(deg) (deg) (Hz) (kpc)

J1704-6016 256.06166667 -60.28166667 3.264528 1.589 0.2938075
J0820-4114 125.06441667 -41.24311111 1.833364 0.571 0.2585043
J0750-6846 117.64937500 -68.77605833 1.092638 0.338 0.2059624
J2325+6316 351.30549833 63.28121167 0.696229 4.855 0.09134521
J0828-3417 127.06927293 -34.28529102 0.540857 0.354 0.0611168

Table 3.1:
List of the selected Pulsars, that will be used in this analysis. Taken from the
ATNF Pulsar catalog.
The first column gives the name of the pulsar based on J2000 coordinate. The
abbreviation ’PSR’ meaning ’pulsating source of radio emission’.
The second and third column give the Right ascension and Declination in J2000
coordinates. The next two columns contain the barycentric rotation frequency and
the best estimates of the distance. The duty cycle in the last column is obtained as
the quotient of the catalogued width of pulse at 50% of peak and the barycentric
period of the pulsar.

3.2 Sensitivity Study
The previous chapter has described how to calculate the sensitivity of the FFT analysis
for a data set composed of white noise and a signal of a given amplitude. This can now be
used to estimate the discovery potential of this analysis applied to the ANTARES data.
For this, the magnitude of the background in the used data set is required. Moreover the
magnitude of a potential signal emitted by a pulsar needs to be evaluated.

The time series of the PMT rates and the distribution of the rates are shown in
Figure 2.1. Table 3.2 lists important statistical properties of this sample distribution. The
amplitude of the noise AN is equivalent to the standard deviation σN of the distribution,
and can be read off in Table 3.2.

The amplitude of the signal is determined by the response of the ANTARES detector
to an incoming neutrino flux. In absence of models for neutrino emission in the energy
range from ≈ 10 MeV to ≈ 10 GeV the response of ANTARES to a flux consisting of a
mono-energetic neutrino beam is evaluated. The following section explains the calculation
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rateOff [kHz] rateOn [kHz]
Mean 62.46 32.96

Median 47.31 31.76
Standard Deviation 38.89 5.62

Table 3.2:
Sample statistics of the PMT rates of the used data set.

of the detactability of ANTARES for a neutrino flux of a fixed energy.
The signal amplitude can be calculated by assuming a neutrino flux Fν(E) that reaches

the detector periodically and evaluating the detector response to this flux. This can be
done by multiplying the incoming flux with the probability of an incoming neutrino to
interact in the detector medium and by the probability that a neutrino interaction will
produce a detection.This can be expressed mathematically by the following equation.

nν(E) = Fν(E) · σ(E) · NA · ρ · Veff(E) · ϵ. (3.1)

where Fν is the incoming neutrino flux, σ the neutrino cross section, NA is the Avogadro
constant and ρ is the water density. The term Veff is the so-called effective volume, and it
is defined as the considered volume surrounding the detector multiplied by the probability
that a neutrino interacting in this volume will produce hits on an ideal detector. The
detector efficiency is taken into consideration as ϵ.

The calculation of the effective volume is based on simulations, where a certain number
of neutrino interactions are generated in a spherical volume centered around an optical
module. The final state particles are propagated through the water and the Cherenkov
light emission is simulated. The generation volume is then multiplied by the ratio of
events producing at least one hit on the PMT to the total number of generated events.
Calculating the effective volume for ANTARES optical modules was due to software
related issues not possible and remains to be done. For this analysis the ANTARES
effective volume is estimated by using the KM3NeT effective volume. The main difference
between the two optical modules is the photocathode area, with KM3NeT’s being larger
by a factor around 3.

Additional software issues didn’t allow to produce the simulations for a hydrogen
target and the effective volume of a KM3NeT optical module, shown in Figure 3.1a,
corresponds to the electron neutrino charged current interactions with oxyen. Solving
these issues is a task beyond the scope of this thesis and the subsequent calculations
should be updated with the ANTARES effective volume once these issues are solved.
Similarly to the effective volume, the interaction cross section σ is an energy dependent
quantity. It is also obtained by extensive simulations. See Figure 3.1b for resulting values.

The PMT efficiency ϵ corresponds to the probability of an incident photon at the
PMT to be detected. This is a property of the detector and changes over time. It is
obtained by measuring the 40K coincidence rate and is available for each OM in periods
of ≈ 6 days. The combined detector efficiency ϵ used here, is obtained by averaging the
efficiencies over all OMs. Figure 3.2 displays this detector efficiency over the selected
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Figure 3.1:
The effective volume and interaction cross section as function of the neutrino
energy.

period. A significant jump in the PMT efficiency is visible at the start of November
2010. This was possibly caused by a re-calibration of the detector. This jump discourages
to perform a single FFT analysis on the entire available data set. This is because the
required sensitivity estimations would be rather inaccurate by approximating the PMT
efficiency by its total mean. Instead only the analysis for the second period with a PMT
efficiency of about ϵ = 0.87 is performed. This set starts at 2010-11-01 00:00:00 and ends
at 2011-02-07 01:04:31.279 and contains N = 72066798 ≈ 226.1 data points. The analysis
of the averaged spectra of these two periods is desirable, however to include the varying
PMT efficiency into the sensitivity estimations, more work needs to be done.

The signal amplitude AS at which the sensitivity reaches 5σ and a discovery can be
claimed needs to be estimated. The p-value is calculated as

p = F̄χ2
2

(
2 + 1

2

(
AS
σN

)2
· N

)
(3.2)

and is shown in Figure 3.3 for the ANTARES telescope using as noise amplitude σN
the standard deviations given in Table 3.2. The Fourier spectrum will contain N/2
independent power values. This is a large enough number of points, such that even under
the assumption of only background, a small number of power values will surpass the 5σ
threshold just by chance. This is the so-called look-elsewhere effect. A simple approach
to prevent erratic discoveries, is to multiply the p-value with the number of independent
trials [14] or equivalently divide the significance levels by by the number of independent
trials. The later one is used in this analysis.
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ANTARES PMT efficiencies over time for the selected period. To sub periods can
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Figure 3.3 shows the discovery potential of ANTARES as a function of the signal
amplitude for the data set equivalent to the one described in subsection 2.1.1. The
signal amplitude can be related to physical parameters of the source of this signal. In
particular, the signal amplitude depends on the incoming neutrino flux and on the energy
of the interacting neutrinos. We can therefore show a more detailed figure to describe
the ANTARES discovery potential as a function of these two parameters. This is shown
in Figure 3.4 for the different sources described in Table 3.1. The color scale in these
plots indicates the neutrino detection rate. Knowing the distance between the source
and Earth, the flux can be extrapolated to the flux at the source by applying the inverse
square law.
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Figure 3.4:
Sensitivity plots for ANTARES of the used data set. A periodic flux located in a region above the
contours should be detectable with a sensitivity of 5σ.
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3.3 Blinded Analysis
After having calculated the discovery potential of the ANTARES telescope to the signal
of interest, the next step in the analysis procedure is to apply the described analysis
techniques to the ANTARES data set. Nevertheless, permission to look into the data
should be granted by the ANTARES collaboration after a review of all the work presented
above, and after solving the issues with the effective volume described in section 3.2. It
is still valuable before analysing the data and looking at the results, to verify that the
ANTARES data and the described procedure do not contain any undesired incompatibility
problem. In order to do this, a blinding policy is followed where the real data are modified
in a way that any possible signal like the one that the analysis is intended to find, is
removed. In this case, the blinding is achieved by randomly shuffling the rate values in
the time series. The result after applying the analysis to this data set should be a non
detection and the power spectrum should be distributed as expected from background
only.

The execution of the analysis starts with the selection of the data set. As described
in the previous section, the period from 2010-11-01 00:00:00 to 2011-02-07 01:04:31.279
is selected. The first step is to perform the barycentric correction on the data points
for the selected pulsar. The corrected time series is subsequently resampled and padded
up to a length of 227 points. The FFT is applied onto the rate values and the natural
unnormalized spectrum obtained. The Red Noise Filter is applied in the next step. The
spectrum is chosen to be partitioned into 16 segments of size 219 in the low frequency
region, and 56 segments of size 220. The resulting spectra are thereby sufficiently whitened.
If possible for the candidate, the harmonic sum is performed for the highest harmonic
orders H = 2, 4, 8. The resulting spectra are then plotted for further investigation.
Additionally peaks surpassing a predefined significance level α are written into a text file
for closer inspection.

Figure 3.5 shows the performed analysis on the blinded data set without barycen-
tric correction. This corresponds to the uncorrected spectrum directly present in the
ANTARES detector. Figure 3.6 shows exemplary the resulting spectra plot for one of
the selected pulsar candidates. A red line indicates the known pulsar frequency. In both
figures, the first line shows the natural Fourier spectrum directly calculated from the
available rates. In an unblinded analysis, the colored noise in the low frequency regions
would be visible and open to investigations. Figure 3.5 additionally shows in its second
line the natural spectrum in a double logarithmic representation, to make possible power
laws in this colored noise visible. The next line shows the normalized spectrum, obtained
after the application of the Red Noise Filter. If in range, the right y-axis is marked with
the σ significance levels. Additionally the tick E = 1 marks the area, above which the
expected number of points, assuming only background, is 1. The experience with the
unblinded test runs, with run number ending in 0, showed that the normalization process
in the very first segment usually fails, as the power values tend to differ by several order
of magnitude (as can be seen in Figure 2.7). Therefore in the following normalized plots
only the spectrum starting with the second Red Noise Filter segment is shown. The
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following lines show the spectra of the Harmonic Sum for increasing H. If the pulsar
frequency is not anymore contained for a given H, then the resulting plot is omitted.

As the data is sufficiently blinded, no signal of significant strength is present. Moreover,
the blinding process destroys the colored background and replaces it by an effectively
white background.
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Figure 3.5:
Blinded analysis of the selected data set without applied barycentric correction.
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Figure 3.6:
Blinded analysis of the selected data set for the pulsar J0828-3417.

53



4 Summary and Outlook

In this thesis, an analysis was developed to search for periodic low-energy neutrinos sources
with the ANTARES neutrino telescope. The investigation of periodicities directly in the
PMT counting rates is performed by the application of the Fast Fourier Transformation.

Using an FFT, it is possible to perform an analytic calculation of the discovery potential
of the ANTARES telescope to a periodic signal, which can be related to an incoming
neutrino flux from a periodic source. This analysis presents a few challenges that have
been covered in this work.

In particular, analysing a data set with arbitrary length, with discontinuities and with
a non reproducibe background poses three challenges, which were tackled by methods like
averaging, padding, resampling and by applying transformation algorithms as described
in chapter 2.

Established techniques from pulsar astronomy were presented and their capabilities
investigated. Properties of non-sinusoidal signals and a realistic pulse model for pulsars
were presented. Using the Harmonic Summing increases the detection sensitivity of
such signals. With the barycentric correction, the influence of the Earth’s motion on a
periodic signal can be counteracted, and possibly information about the direction of a
signal acquired.

Possible observation targets for the assembled analysis were suggested and their
detection sensitivity on the available test data set estimated. Finally, the implemented
analysis was performed on the blinded test data set.

During the development of this work, some issues were encountered with the software
required to calculate the ANTARES OM response to an incomming low energy neutrino
flux. These issues remain to be solved and in the meantime an approximation based on
the equivalent calculations for the KM3NeT DOM was used.

After the blinding policy of ANTARES for this proposed analysis is lifted, it can be
performed on the suggested and additional candidates.

This analysis has the potential to be further improved and expanded, as numerous
additional techniques were developed in the long history of pulsar surveys in radio
astronomy.
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5 Appendix

5.1 chi-Squared Distribution
The chi-squared distribution, also χ2-distribution, is a reoccurring probability distribution
in this analysis and shall therefore here be described. [29]

Let X1, X2, . . . , Xν be ν independent and identically distributed random variables each
following a normal distribution with zero mean and unit variance. Then X2 = ∑ν

i=0 X2
i

is said to follow the χ2-distribution with ν degrees of freedom (DOF), also denoted as
χ2

ν-distribution
The probability density function (pdf) is given by

fχ2
ν
(x) = 1

2ν/2Γ(ν/2)
xν/2−1e−x/2 (5.1)

for x > 0 with ν ∈ N 1 and the gamma function Γ(x) =
∫∞

0 tx−1e−t dt.
This is the standardized form of the χ2-distribution, as it appears in most text books.

However, this analysis frequently requires a more general form, that incorporates the
location parameter l and scale parameter s. The corresponding pdf can be written as

fχ2
ν
(x|l, s) = 1

s
· fχ2

ν
(y) with y = x − l

s
. (5.2)

The location parameter considers a constant contribution in the above sum of random
numbers. The scale parameter s corresponds to the variance of the underlying normal
distribution. Hence for l = 0 and s = 1 the standardized form is restored.

The mean of this distribution is given by

Eχ2
ν

= νs + l (5.3)

and the variance by
Varχ2

ν
= 2νs2. (5.4)

The complementary cumulative distribution function (ccdf), also survival function, yields
the probability of observing an event at least as extreme as the one observed. It can be
written as

F̄χ2
ν
(x|l, s) = 1 −

γ
(

ν
2 , y

2
)

Γ (ν/2)
for=

even ν
e−y/2

ν/2−1∑
k=0

(y/2)k

k! (5.5)

1For the derivation of the distribution ν is usually considered to be an integer, hence the name ’degrees
of freedom’. However, the distribution also holds for any positive real value of ν.
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with the lower incomplete gamma function γ(s, x) =
∫ x

0 ts−1e−t dt. 2

It follows from the definition of the χ2-distribution, that the sum of χ2-distributed
random variables Xi with νi DOF, is still a χ2-distributed random variable with ∑i νi

DOF. Furthermore it can be noted, that for large ν the χ2-distribution converges towards
a normal distribution.

5.2 Noncentral chi-Squared Distribution
The noncentral chi-squared distribution, also noncentral χ2-distribution, is a generaliza-
tion of the chi-squared distribution. [28]

Let X1, X2, . . . , Xν be ν independent distributed random variables, each following a
normal distribution with mean µi and unit variance. Then X2 = ∑ν

i=0 X2
i is said to

follow the noncentral χ2-distribution with ν degrees of freedom and the noncentrality
parameter λ, defined as

λ =
ν∑

i=1
µ2

i . (5.6)

The probability density function (pdf) is given by

fNCχ2
ν
(x|λ) = 1

2e−(x+λ)/2
(

x

λ

)(ν/2−1)/2
I(ν/2−1)

(√
λx
)

(5.7)

for x > 0 with λ > 0 and ν ∈ N.3 With the modified Bessel function of the first kind
Iα(x) = ∑∞

k=0
1

k!Γ(k+α+1)
(

x
2
)2k+α.

This is the standardized form of the noncentral χ2-distribution, as it appears in
most text book. However, this analysis frequently requires a more general form, that
incorporates the location parameter l and scale parameter s. The corresponding pdf can
be written as

fNCχ2
ν
(x|λ, l, s) = 1

s
· fNCχ2

ν
(y, λ) with y = x − l

s
(5.8)

and λ =
ν∑

i=1

µ2
i

s2 . (5.9)

The location parameter considers a constant contribution in the above sum of random
numbers. The scale parameter s corresponds to the variance of the underlying normal
distribution. Hence for l = 0 and s = 1 the standardized form is restored.

The mean of this distribution is given by

ENCχ2
ν

= νs + l + λs (5.10)

and the variance by
VarNCχ2

ν
= 2νs2 + 4λs2 (5.11)

2Here we also used the identity γ (n + 1, z) = n!
(

1 − e−z
∑n

k=0
zk

k!

)
3See footnote 1.
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Furthermore, for large ν or large λ the noncentral χ2-distribution converges towards a
normal distribution.

5.3 Derivation of the Distribution of Fourier Powers
5.3.1 Sum or normal random variables
Let Xn be N independent random variables that are normally distributed, then their
sum is also normally distributed [23], i.e.

Xn ∼ N
(
µn, σ2

n

)
Y =

N∑
n=1

Xn

⇒ Y ∼ N
(

N∑
n=1

µn,
N∑

n=1
σ2

n

)
.

5.3.2 Calculation of the Means and Variances of the real and imaginary parts
of the Fourier coefficients

The real and and imaginary Fourier coefficients x̂k and ŷk in subsection 2.1.3 are the
sum of N normal distributed random variables with varying mean µxn,k

and variance
σ2

xn,k
, and respectively µyn,k

and σ2
yn,k

.
Using subsection 5.3.1 the means and variances of the normal distributions for the real

and imaginary parts of the Fourier coefficients, given by Equation 2.10 and Equation 2.11
can be calculated as follows:

Means

µxn,k
= κ · cos

(
−2πk

n

N

)
· (µN + Sn) Sn = AS · sin

(
2πfT

n

N

)
µyn,k

= κ · sin
(

−2πk
n

N

)
· (µN + Sn)

The DFT defined as in Equation 2.1 used the so-called orthogonal normalization,
meaning that the DFT and the inverse DFT are both normalized by the factor 1/

√
N.

Other used normalizations are the forward and backward normalizations, meaning, that
the factor 1/N only appears in the DFT or respectively the inverse DFT. For the sake
of generality, the normalization factor κ is used that can be either κ = 1/

√
N, κ = 1/N,

κ = 1.
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Mx̂k
=

N−1∑
n=0

µxn,k

=
N−1∑
n=0

κ · cos
(

−2πk
n

N

)
·
[
µN + AS · sin

(
2πfT

n

N

)]

= κµN

N−1∑
n=0

cos
(

−2πk
n

N

)
+ κAS

N−1∑
n=0

cos
(

−2πk
n

N

)
· sin

(
2πfT

n

N

)
(5.12)

= κAS
2

N−1∑
n=0

sin
(

2π
n

N
[fT + k]

)
+ sin

(
2π

n

N
[fT − k]

)
= 0 ∀[fT − k] ∈ Z

Mŷk
=

N−1∑
n=0

µyn,k

=
N−1∑
n=0

κ · sin
(

−2πk
n

N

)
·
[
µN + AS · sin

(
2πfT

n

N

)]

= κAS

N−1∑
n=0

sin
(

−2πk
n

N

)
· sin

(
2πfT

n

N

)
(5.13)

= κAS
2

N−1∑
n=0

cos
(

2π
n

N
[fT + k]

)
− cos

(
2π

n

N
[fT − k]

)

=
{

−1
2 · κ · AS · N if [fT − k] = 0

0 if [fT − k] ∈ Z/{0}

Here the identities

2 sin(u) sin(v) = cos (u − v) − cos (u + v)
2 sin(u) cos(v) = sin (u − v) + sin (u + v)

N−1∑
n=0

sin (2π · kn/N) = 0 ∀k ∈ Z
N−1∑
n=0

cos (2π · kn/N) = 0 ∀k ∈ Z/{0} (5.14)

are used together with the well known zero values sin (0) = 0 and cos (0) = 1. The
summation identities can be derived from Lagrange’s Trigonometric Identities [7]

N∑
n=0

sin (nθ) = cos (θ/2)
2 sin (θ/2) −

cos
((

N + 1
2

)
θ
)

2 sin (θ/2) (5.15)

N∑
n=0

cos (nθ) = 1
2 +

sin
((

N + 1
2

)
θ
)

2 sin (θ/2) . (5.16)
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Additionaly, using Lagrange’s trigonometric identity Mŷk
can be written in a more

general form, that holds also for arbitrate non-integer [fT − k] ∈ R, namely

Mŷk
= κAS

2

1 +
sin
(
2π N−1

N [fT − k]
)

2 sin
(
2π 1

N [fT − k]
) +

sin
(
2π N−1

N [fT + k]
)

2 sin
(
2π 1

N [fT + k]
)
 . (5.17)

For [fT − k] ∈ Z Equation 5.17 collapses as described above. However if [fT − k] ∈ R/Z,
then Mŷk

≠ 0 ∀k, i.e. if the signal frequency is not exactly sampled by the DFT, all
frequency bins k experience a light shift on the imaginary axis, and not only the supposed
frequency bin. This is the so-called scalloping effect.

Changing the signal from a sine to a cosine Mx̂k
will be shifted on the real axis towards

Mx̂k
= +1

2 · κ · AS · N , while Mŷk
will remain at the origin. A combination of sine and

cosine waves of same frequency, would therefore shift both means by the given values
away from the origin. The noncentrality parameter of the noncentral χ2-distribution
would therefore be calculated as λ = (M2

x̂k
+ M2

ŷk
)/S2.

Furthermore, in Equation 5.12 and Equation 5.13 it can be clearly seen, that any
constant contribution to a signal would be canceled similarly as µN, the mean of the
background noise.

Variances

σ2
xn,k

= κ2 · cos2
(

2πk
n

N

)
· σ2

N σ2
yn,k

= κ2 · sin2
(

2πk
n

N

)
· σ2

N

S2
x =

N−1∑
n=0

σ2
xn,k

= κ2 · σ2
SN

N−1∑
n=0

cos2
(

2πk
n

N

)
= κ2 · σ2

N · N

2 (5.18)

S2
y =

N−1∑
n=0

σ2
yn,k

= κ2 · σ2
SN

N−1∑
n=0

sin2
(

2πk
n

N

)
= κ2 · σ2

N · N

2 (5.19)

Here the trigonometric identities

sin2 (x) = 1
2 (1 − cos (2x))

cos2 (x) = 1
2 (1 + cos (2x))

were used to transform the series of sine-squared into a series of sine as in Equation 5.14
and respectively for cosine.

The normalization factor κ of the DFT now gives some freedom about the exact form
of the means and variances. In this analysis the symmetric orthogonal normalization
(κ = 1/

√
N) is chosen, as then the χ2 distribution for the background model is independent

of the number of points N , as the variance S2 also becomes independent of N . Note, that
for this normalization the noncentrality parameter λ of the noncentral χ2-distribution
still depends on N . Note, that the chosen normalization factor is in practice however
irrelevant, as due to the Red Noise Filter all χ2-distributions will be normalized to zero
mean and unit variance.
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5.4 Expected Mean and Standard Deviation in the Red Noise
Filter

Strong outliers have the potential to disturb the normalization process of the Red Noise
Filter described in subsection 2.2.2. Using the properties of the noncentral χ2-distribution
to model a signal in a normalization segment, the response of the Red Noise Filter in
dependence of the signal-to-noise ratio can be estimated. In the following the calculations
to obtain the expected empirical mean and standard deviation are shown. To simplify
the notation, the number of points in a segment is denoted by N instead of NSeg.

Assumptions Assume N − 1 points {X1, . . . , XN }/{Xj} distributed according to a
χ2

ν-distribution with arbitrary location parameter l and scale parameter s. Furthermore
assume one point Xj distributed according to a noncentral χ2

ν-distribution with the same
arbitrary l and s, as well as with the noncentrality parameter λ.

Empirical Mean The expected value of the of the empirical mean µRNF of these N
points can be calculated. For this, the linearity of the expected value and the known
means of the ’central’ and noncentral χ2-distributions are used.

E [µRNF] = E
[

1
N

N∑
i=1

Xi

]
= 1

N

N∑
i=1

E [Xi] (5.20)

= 1
N

N∑
i=1,i ̸=j

E [Xi] + 1
N

E [Xj ]

= N − 1
N

Eχ2
ν

+ 1
N

ENCχ2
ν

= Eχ2
ν

+ 1
N

λs

Empirical Standard Deviation The expected value of the empirical standard deviation
σRNF of these N points is calculated in a similar manner, by first calculating the
corresponding variance.
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E
[
σ2

RNF

]
= E

[
1
N

N∑
i=1

(Xi − E [µRNF])2
]

(5.21)

= 1
N

N∑
i=1,i ̸=j

E
[
(Xi − E [µRNF])2

]
+ 1

N
E
[
(Xj − E [µRNF])2

]

= 1
N

N∑
i=1,i ̸=j

E
[(

Xi − Eχ2
ν

)2
]

+ 1
N

N∑
i=1,i ̸=j

E
[(

Eχ2
ν

− E [µRNF]
)2
]

+ 1
N

E
[(

Xj − ENCχ2
ν

)2
]

+ 1
N

E
[(

ENCχ2
ν

− E [µRNF]
)2
]

= N − 1
N

Varχ2
ν

+ N − 1
N

(
Eχ2

ν
− E [µRNF]

)2

+ 1
N

VarNCχ2
ν

+ 1
N

(
ENCχ2

ν
− E [µRNF]

)2

= Varχ2
ν

+ 1
N

4λs2 + N − 1
N

(
− 1

N
λs

)2
+ 1

N

((
1 − 1

N

)
λs

)2

= Varχ2
ν

+ 1
N

4λs2 + N − 1
N2 λ2s2

Here additionally the following relation was used to decompose the variance,

E
[
(Xi − E [µRNF])2

]
= E

[((
Xi − Eχ2

ν

)
+
(
Eχ2

ν
− E [µRNF]

))2
]

(5.22)

= E
[(

Xi − Eχ2
ν

)2
]

+ E
[(

Eχ2
ν

− E [µRNF]
)2
]

+ E
[(

Xi − Eχ2
ν

)]
︸ ︷︷ ︸

=0

(
Eχ2

ν
− E [µRNF]

)

and similarly for Xj .
The expected value of the empirical standard deviation can then be simply obtained

by taking the square root of E
[
σ2

RNF
]
.
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