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Abstract

KM3NeT/ARCA is an underwater Cherenkov detector located 100 km off-
shore Portopalo di Capo Passero on the south-eastern coast of Sicily. Its main
goal is the detection of high-energy neutrinos from astrophysical sources such
as supernova remnants. Neutrino interactions with matter are detected as
events of different topologies depending on the neutrino flavour and interac-
tion type. The Glashow resonance is a particular type of neutrino interaction
in which an electron antineutrino with an energy of about 6.3 PeV interacts
with an electron producing a W boson which can decay through different
channels. In this thesis, the use of deep learning techniques to distinguish
between hadronic and leptonic decay modes of the W boson produced in the
Glashow resonance is described.
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Chapter 1

Introduction

Neutrinos are the second most abundant particles in the universe after pho-
tons of cosmic microwave background[1], although they rarely interact with
matter. The probability to detect neutrinos is influenced by two factors: the
cross section of the neutrino interaction, which increases with neutrino en-
ergy, and the neutrino fluxes whose properties depend on the source. Most
of the known neutrino sources emit fluxes that decrease with the neutrino
energy following a power-law dependence. Looking at the spectra of the
different known neutrino sources, one can see that different sources emit
neutrinos in different energy ranges, and that the higher the neutrino en-
ergies are, the lower the flux is. Detectors of high energy neutrinos need
to compensate the low fluxes by enlarging the detection volume. Neutrino
telescopes such as IceCube or KM3NeT/ARCA are designed to cover a vol-
ume of 1km3. The IceCube neutrino detector was built in the ice at the
South Pole while the KM3NeT (km3 neutrino telescope) is currently un-
der construction in the Mediterranean Sea. These detectors implement the
"Cherenkov” technique, which is the measurement of Cherenkov radiation
induced by secondary charged particles resulting from neutrino interactions
in the vicinity of the detector. Neutrino events in neutrino telescopes have
different topologies depending on the neutrino interaction channel. The two
main topologies are shower-like (where secondary charged particles are either
hadrons or electrons) and track-like (with a muon as a secondary charged par-
ticle), see Figure1.1. In the energy range between ∼ 4 PeV and ∼ 10 PeV, the
electron antineutrino cross section is dominated by the Glashow resonance.
In this, an electron antineutrino interacts with an electron producing a W
boson on the mass shell. The subsequent decay of the W boson can take
place through different channels, and each of them could lead to a different
event topology. Km3NeT/ARCA is designed for the detection of neutrinos
in the TeV-PeV range and is therefore suited for the detection and study of
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neutrino interactions around the Glashow resonance.

Figure 1.1 – Topologies of neutrino events in KM3NeT.

In this thesis, I investigate the capabilities of the KM3NeT to discriminate
between Glashow events according to the decay of the W-boson, hadronic or
leptonic cascades. The second chapter gives an overview of neutrino interac-
tions, neutrino oscillations and their sources. The KM3NeT will be presented
in detail in the third chapter. The fourth chapter explains the theory of
the Glashow resonance. The fifth chapter introduces graph neural networks
which are used to conduct the analysis.
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Chapter 2

Neutrinos

The Standard Model of particle physics classifies elementary particles into
fermions and bosons. Fermions are matter particles which are further classi-
fied into quarks and leptons. The leptons consist of charged leptons, electron,
muon, tau, and their antiparticles, associated to each one of them an elec-
trically neutral (anti)neutrino. Neutrinos interact with matter through weak
processes. They also have a property that goes beyond the standard model,
a non-zero mass, which in comparison with that of the charged leptons is
very small. This property is needed to explain neutrino flavour oscillations
phenomena.

2.1 Neutrino Interactions
Neutrinos interact through the weak force with nucleons, electrons, or nuclei
via two interaction processes: charged current (CC) interaction, in which a
W ± boson is exchanged, neutral current (NC) interaction, mediated by the
Z0 boson. These neutrino interactions occur across various energy scales.

Figure 2.1 summarizes the CC neutrino cross section across a specific en-
ergy range. For energies below ∼ 1 GeV, the interactions are predominantly
quasielastic scattering (QE). In this, neutrinos scatter off the entire nucleon
and change into the corresponding charged lepton. If the interaction takes
place through a NC, the interacting neutrino is present in the final state,
and no charged lepton is produced. This is a consequence of charge and
lepton number conservation. As for the target, the neutron is converted to
a proton in a CC interaction. In the case of an antineutrino scattering, the
proton is converted to a neutron. At energies above ∼ 1 GeV, neutrinos
can excite the nucleon producing a baryon resonance state. This interaction
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Figure 2.1 – Charged current neutrino interaction with nucleons cross section
divided by neutrino energy as a function of energy[2]

is called Resonance production (RES), which then decays producing com-
binations of nucleons and mesons. Given enough energy, the neutrino can
actually begin to resolve the internal structure of the target (interacts with
the constituents of the nucleons), a process called deep inelastic scattering
(DIS) which dominates at neutrino energies above ∼ 10 GeV. CC and NC
processes are possible in this interaction, where hadrons are present in both
cases as final state particles[2]. Figure 2.2 shows the cross section of CC
antineutrino interactions with nucleons. At 6.32 PeV energies, the Glashow
resonance interaction dominates over DIS. This interaction will be explained
explicitly in chapter 4.
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Figure 2.2 – Charged current antineutrino interaction with nucleons cross
section divided by neutrino energy as a function of energy[2]

2.2 Neutrino Oscillations
in 1957 Pontecorvo proposed the idea of neutrino oscillations by stating that
the physical state of neutrinos produced in weak interaction processes is a
superposition of neutrino states with definite masses[3]. The mixing of the
neutrino mass eigenstates in neutrino flavours is described by a matrix, called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The idea of neutrino
mixing leads to neutrino flavor changes (neutrino oscillations). In the case
of three flavor neutrino mixing, these flavor and mass eigenstates are related
by the PMNS 3 × 3 unitary mixing matrix (U)

|να⟩ =
3
Σ

i=1
Uαi|νi⟩ (2.1)

with α = e, µ, τ . One of the parameterization of the PMNS unitary matrix U
has three mixing angles θ12, θ23, θ13 and one phase describing the CP violation
δCP [3].

U =

 c13c12 c13s12 s13e
−iδCP

−c23s12 − s13s23c12e
iδCP c23c12 − s13s23s12e

iδCP c13s23
s23s12 − s13c23c12e

iδCP −s23c12 − s13c23s12e
iδCP c13c23

 (2.2)
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where cij = cos θij, and sij = sin θij.
The probability of the flavour change for oscillations in vacuum is[3]

Pνα→νβ(L, E) = 4 Σ
i>j

(|Uαi|2|Uαj|2) sin2(
∆m2

ij

4E
L) (2.3)

where ∆m2
ij are the mass squared difference with i, j = 1, 2, 3.

Neutrino oscillations have been confirmed in several experiments, and the ob-
servation of them implies that neutrinos have masses. However, their masses
are expected to lie somewhere in the range of only a few eV[4]. The sign of
∆m2

12 has been determined to be positive via measurements of solar neutri-
nos, which are neutrinos originating from the Sun, in the Sudbury Neutrino
Observatory (SNO) experiment while the sign of ∆m2

31 is still unknown.
Therefore, two distinct ways of ordering the neutrino masses are possible,
the normal hierarchy with m1 < m2 < m3, and the inverted hierarchy with
m3 < m1 < m2. A scheme of these orderings is shown in Figure 2.3.

Figure 2.3 – Normal and inverted orderings of neutrino masses are shown,
where each mass eigenstate has different flavor composition.
∆m2

atm ∼| ∆m2
31 |∼| ∆m2

32 | and ∆m2
sol ∼ ∆m2

12 stands for the atmospheric
and the solar mass squared differences, respectively. [5].

Neutrino oscillations take place in matter as well. KM3NeT/ORCA will
be one of the experiments that will determine the neutrino mass ordering in
the next years.
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2.3 Neutrino Sources
Figure 2.4 is taken from [6], and shows the neutrino fluxes at Earth from
different sources. The neutrino energies range between µeV − EeV , and the
flux spans over 52 orders of magnitude. This section focuses on high energy
astrophysical neutrinos and atmospheric neutrinos, since they are the two
main sources of signal in the KM3NeT which is used to conduct the analysis.

Figure 2.4 – Known neutrino sources and their fluxes as a function of neutrino
energies

2.3.1 Atmospheric Neutrinos
Atmospheric neutrinos are produced by cosmic rays interacting with the
atmosphere of the Earth. There are two types of atmospheric neutrinos,
the conventional neutrinos which are produced when the secondary charged
pions or kaons decay. Muons are produced in addition to these neutrinos,
that may also decay and produce other neutrinos and antineutrinos. The
expected ratio of νe : νµ = 1 : 2, see equations (2.4, 2.6). Equation 2.5 shows
one of the most probable decay channels of the kaons.

π± → µ± + νµ(ν̄µ) (2.4)
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K± → µ± + νµ(ν̄µ) (2.5)
µ± → e± + νe(ν̄e) + νµ(ν̄µ) (2.6)

The second type is prompt neutrinos which are associated with the decay
of heavy hadrons.

Neutrino oscillations depend on the path length traveled by neutrinos
and neutrinos energies. In the case of two-flavor mixing of neutrinos, one of
which is νµ, the probability that a νµ traveling a distance L is detected as a
νµ is

Pνµ→νµ(L, E) = 1 − sin2(2θm) sin2(1.27∆m2
12

EeV

Lkm

) (2.7)

where ∆m2
12 is the squared mass differences of the two related mass eigen-

states and θm is the mixing angle between these two states. Therefore neu-
trino oscillations lead to a deviation from the expected flux of a specific
neutrino flavor as L/E varies[7].

Atmospheric neutrino flux depends on the zenith angle, where the flux is
larger closer to the horizon. This is due to the increased path length trav-
eled by secondary muons, resulting in a higher decay probability for muons.
Atmospheric neutrinos are either down-going neutrinos i.e., coming from the
atmosphere above, or up-going neutrinos, which come through the Earth and
experience oscillations in matter.

As muons traverse the medium, they lose energy through different kinds
of interactions with the surrounding matter depending on the energy of the
muon. At energies below ∼ 100 GeV, the loss is dominated by ionization
processes, which is proportional to the density of the medium (g/cm3) times
the distance traveled in centimeters. This leads to an energy loss of about
2 MeV per g/cm2. The atmospheric muons pose a significant background
to the measurement of neutrinos in KM3NeT, which is being built deep in
the Mediterranean Sea to reduce this background. The vertical depth of the
atmosphere is about 1000 g/cm2. Therefore, muons will lose ∼ 2 GeV due to
ionization before reaching the ground. At sea level, atmospheric muons arrive
with an average flux of about 1 muon per square centimeter per minute[8].
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2.3.2 Astrophysical Neutrinos
High-energy neutrinos produced in Galactic and extragalactic astrophysical
sources are known as astrophysical neutrinos. Neutrinos can escape dense
region of astrophysical sources, due to their low cross sections. They are also
unaffected by intervening electromagnetic fields along their paths towards
the Earth, since they have no electric charge[9].

The measured flux of astrophysical neutrinos is described by a power law
energy distribution (∝ Eγ, with some spectral index γ) ranging between ∼10
TeV- PeV energies, but its origin remains unresolved[10].

The IceCube neutrino telescope first observed a diffuse flux (an isotropic
diffuse flux generated by extragalactic sources) of high energy astrophysical
neutrinos in 2013. Since then, the measurement of a diffuse extragalactic neu-
trino flux has been confirmed in several detection channels such as cascades
and tracks. The atmospheric neutrinos together with atmospheric muons
form the background in the search for astrophysical neutrinos[11]. These
backgrounds have distinctive spectral, directional, and flavor characteristics
that allow their separation from an astrophysical signal. This will be ex-
plained in more detail in section 3.2.

The main postulated production models for astrophysical neutrinos are[12]:

1. protons from cosmic accelerators collisions with the ambient matter
(π± mode)

p + N → π±, π0 + X (2.8)
π± → µ± + νµ(ν̄µ) (2.9)

µ± → e± + νe(ν̄e) + νµ(ν̄µ) (2.10)
The initial neutrino flavour ratio νe : νµ : ντ =1:2:0, which then oscil-
lates over a very long distance into approximately νe : νµ : ντ =1:1:1 at
Earth.

2. protons from cosmic accelerators collisions with radiation fields (π+

mode)
p + γ → ∆+ → π0(π+) + p(n) (2.11)

π+ → µ+ + νµ (2.12)
µ+ → e+ + νe + ν̄µ (2.13)
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In this case, we have different production rates of neutrino and an-
tineutrino, with initial flavour ratios of νe : νµ : ντ =1:1:0 and ν̄e :
ν̄µ : ν̄τ =0:1:0 which then become at Earth νe : νµ : ντ =14:11:11 and
ν̄e : ν̄µ : ν̄τ =4:7:7.

The presence of magnetic fields leads to the deflection of muons before
they decay. Which then changes the initial flavour ratio for each sce-
nario. In the case of damped π± mode the neutrino ratio for νe : νµ : ντ

changes from 0:1:0 to 4:7:7 at Earth. In the damped π+ mode antineu-
trinos disappear completely.
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Chapter 3

KM3NeT

Muons produced in the muon neutrino CC interactions propagate long dis-
tances without experiencing energy loses, and the hit pattern along their
path follows a track-like signature. On the other hand, the mean free path
for electrons and taus is too short compared to the typical distance between
optical modules. While electrons experience radiative energy losses leading
to photons which in turn produce electron-positron pairs, tau leptons decay.
In both cases, a cascade of particles is produced, which lead to a more ho-
mogeneous light distribution in the detector. Hadrons produced in the NC
neutrino interactions also produce showers. The different event topologies
are summarised in Figure 3.1.

Figure 3.1 – The topologies of different neutrino events[13].
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The KM3NeT collaboration is currently building two water Cherenkov
neutrino detectors in the Mediterranean Sea. Each detector consists of a
three-dimensional array of light sensor modules distributed over large vol-
umes. Such sensor modules are also referred to as Digital Optical Modules
(DOMs). These are arranged into vertical structures called detection units
(DU) or strings, each of which contains 18 equally spaced DOMs. Each
string is kept in a vertical position with the help of a buoy. The ARCA (As-
troparticle Research with Cosmics in the Abyss) detector is currently being
built 100 km off-shore of Portopalo di Capo Passero on the south-eastern
coast of Sicily, Italy at a depth of 3500m. The volume of KM3NeT/ARCA
is ∼ 1km3 and it is optimized for the measurement of neutrinos from as-
trophysical sources with energies between ∼ 100 GeV and PeV. ARCA will
consist of 2 so-called building blocks, each of which will consist of 115 strings.
The ORCA (Oscillation Research with Cosmics in the Abyss) detector is be-
ing deployed 40 km from the southern coast of France off-shore the city of
Toulon[14]. It will consist of a single building block of 115 strings and it’s
purpose is to measure neutrino oscillation parameters as well as to determine
the neutrino mass ordering. For this, ORCA will use atmospheric neutrinos
in the range between ∼ 1GeV and 100 GeV. The geometries of ARCA and
ORCA have been optimised for the detection of neutrinos in different energy
ranges. The DOMs are placed closer to each other in ORCA than in ARCA.
The characteristic distances for each detector are summarised in table 3.1.

Blocks String spacing (m) DOM spacing (m) Depth (m) Instrumented mass (Mton) Building blocks
ORCA 23 9 2470 8 1
ARCA 90 36 3400 500*2 2

Table 3.1 – The characteristic of both ARCA and ORCA detectors

3.1 Detection Principle
The KM3NeT optical modules detect the Cherenkov radiation induced by the
charged particles produced in neutrino interactions. The charged particle
moving inside a polarizable medium with molecules excites the molecules,
which then de-excite by emitting electromagnetic radiation. These waves
move out spherically at the phase velocity of the medium. For particles
with speed less than the speed of light in the medium, the radiated waves
bunch up in the direction of motion without overlapping. However, if the
particle moves faster than the light speed in the medium, the emitted waves
interfere and add up constructively leading to a coherent radiation which

12



is the Cherenkov radiation emitted at an angle with respect to the particle
direction. This angle is called Cherenkov angle, which is calculated by

cos(θCh) = 1
βn

(3.1)

where n is the refractive index of the medium and β is the velocity of the
particle with respect to the speed of light in vacuum. Due to the Cherenkov
angle, a light cone is defined around the track of the moving charged particle
as shown in Figure 3.2.

Figure 3.2 – Visualization of the Km3net building block with 115 strings,
each of which contains 18 DOMs.

For particles with β ≈ 1 propagating in sea water, the Cherenkov angle
is θCh ≈ 42◦. Photons reaching the PMTs produce the so-called hits. A
hit contains the position and time of the photon detection. When a set of
causally connected hits is detected, the detector triggers an event and the hit
positions and times are fitted to models for particle propagation that allow to
infer the direction of the incoming neutrino. On the other hand, the amount
of hits allow to estimate the neutrino energy.
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3.2 Signal and Background in KM3NeT
As previously mentioned, the main scientific objective of KM3NeT/ARCA
is the detection of high-energy neutrinos of cosmic origin, which then could
point back to the astrophysical objects in which cosmic rays are accelerated.
KM3NeT/ARCA is sensitive to energy range of ∼ 100 GeV-PeV. The signal
produced by astrophysical neutrinos in this detector can be masked by back-
ground sources which are atmospheric neutrinos and atmospheric muons.
The atmospheric muon background, which is a background source in both
ORCA and ARCA detectors, can be significantly reduced by considering
only up-going events since only neutrinos can traverse the Earth without be-
ing absorbed. Due to this, the KM3NeT/ARCA is more sensitive to Galactic
sources (where most potential Galactic sources are in the Southern sky) than
the IceCube detector located at the South Pole in the energy range where
the signal is expected (a few TeV to a few tens of 10 TeV)[14].

The discrimination between atmospheric and astrophysical neutrinos could
be achieved by analysing the spectral distribution of the measured sample.
Where at higher energies, a diffuse cosmic neutrino emission is likely to pro-
duce an excess of events. This is due to softer atmospheric neutrino spectrum
(E−3.7 ) compared to the spectrum expected from cosmic neutrinos (typi-
cally E−2). The astrophysical neutrinos can also be identified by searching
for coincidences between its signal and the signal from other astrophysical
messengers[15].

The optical background sources in KM3NeT are: bioluminescence, which
is the emission of light by bioluminescent organisms present in the deep-sea,
and hits from 40K decays, where 40K is a radioactive isotope that decays
into 40Ca. This process then emits electrons with very high energy, which
can emit Cherenkov radiation that is detected by the PMTs[16].
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3.3 Simulation
KM3NeT performs scientific analyses by comparing the distributions of recorded
events to reference distributions which correspond to different scientific sce-
narios. Such reference distributions contain information about the physics
model under test, as well as about all the detector performance details. It
is therefore not trivial to obtain them, and instead of deriving them analyt-
ically, they are obtained from complex simulations that represent as much
as possible the data taking conditions. The simulation (Monte Carlo MC)
chain is split into the three following main parts:

1. Event generation:
In which the generation of particle fluxes (neutrino signal and the at-
mospheric muon background) incident on the can is done with the con-
sideration of the detector geometry and deep underwater environment.
The can is defined as the instrumented volume (volume of a building
block) extended by ∼ 3 photon absorption lengths, which is also known
as Cherenkov sensitive volume. Astrophysical and atmospheric fluxes
of (anti-)neutrinos of all three flavours are simulated where neutrinos
are propagated through the Earth and their interactions are generated
in rock and sea water. For reactions outside the can, long-range inter-
action products (muons) are propagated to the can.
Both NC and CC reactions are simulated. The deep inelastic scattering
(DIS) and the Glashow resonance interactions are simulated since they
are relevant in the energy regime at which the KM3NeT operates. The
propagation of muons in rock and water is performed taking into ac-
count both radiative and ionization energy losses, as well as the decay
probability of the particle. The average distance travelled by a particle
before interacting or decaying is called the range, which depends on
the energy of the particle. Figure 3.3 shows this range for all charged
leptons in both rock and water. If the atmospheric muons have an
energy in the TeV range or above at sea level, they can penetrate the
detector. Therefore, they highly contribute to the background which
is simulated using MUPAGE[17]. In KM3Net/ARCA gSeaGen is used
to generate high energy neutrino interactions[14].

The particles produced by event generation correspond to neutrino in-
teractions which energy spectrum follows a power law with a spectral
index γ defined by the user. The chosen input parameters determine
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the number of simulated interactions in a given solid angle Ω, and
volume V .i.e., This generated sample doesn’t necessarily represent a
realistic neutrino flux. To obtain a sample of particles that represents
the arrival to the Earth of a certain neutrino flux, weights to each of
the events need to be assigned to finally obtain the correct distribution
in energy, time, volume and solid angle. This weight is calculated by

W = VgenIEIΩEγρNAσ(E)PEarth(Eν , θ)tgen

Ngen

(3.2)

where IE =
∫ Emin

Emax
Eγ dE, IΩ =

∫ θmin
θmax

Eγ dΩ, NA is the Avogadro num-
ber, ρ is the mass density per unit volume, σ(E) is the cross section
of the neutrino-nucleon interactions, PEarth is the probability that neu-
trinos propagate through the Earth, tgen is the (arbitrary) time repre-
sented by the simulation, and Ngen is the number of events generated
in the simulation.

Figure 3.3 – Ranges of all three charged leptons in rock and water[15].
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2. Light generation:
The simulation contains information about the positions of all PMTs
in a three dimensional space. The Cherenkov radiation emitted along
the propagation of the particle is simulated, which then generates hits
in PMTs. This is done for the low energy case using the KM3Sim light
simulator[18]. For the high energy case, it would require too much
computational power. Instead, the probability of a photon arriving at
each of the PMTs in the detector is calculated for any particle traveling
through the can using JSirene light simulator[19].

3. Detector response simulation:
KM3NeT PMT hits are recorded using the start time and the duration
of the signal above a predefined threshold called time-over-threshold
(ToT). The PMT analog signal above this threshold is digitised into a
hit.

The expected background signal from bioluminescence, dark current
and 40K decay present in the sea water is simulated by the Trigger
Efficiency code which adds background photons to the output of the
previous step. Trigger Efficiency also simulates the detector response to
the generated light and produces events that look like the observed ones
by simulating the effects of the electronics and applying the different
triggers[14].

All of this is shown in Figure 3.4. Finally, the events are reconstructed.
This reconstruction is achieved by separate algorithms optimized for each
event type, Aashowerfit for reconstruction of shower events, and JGandalf for
reconstruction of track events. Reconstruction is not a part of the simulation
and can be applied on the data in the same way as on MC in the processing
chain.

Figure 3.4 – Simulation chain scheme
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Chapter 4

Glashow Resonance

Glashow resonance was predicted by Sheldon Glashow in 1959[20]. The the-
ory states that an electron antineutrino interacts with an electron producing
a W boson on the mass shell, which can then decay either hadronically or
into leptons. See Figure 4.1.

Figure 4.1 – Feynamn diagram of the Glashow resonance interaction

The total cross section for the Glashow Resonance is

σGR
tot (Eν) = (3 + 6.3415) ∗

G2
F M4

W (m2
e − m2

µ + 2meEν)2

3meEν(Γ2
W M2

W + 2π(M2
W − 2meEν)2) (4.1)

where GF is Fermi constant, me is electron mass, mµ is muon mass, MW

is the W boson mass, and ΓW is W boson width. The factor 3 comes from
approximately equal cross sections for the leptonic decays. The factor 6.3415
corresponds to the relation between hadronic and leptonic branching ratio of
the W boson decay.

As previously stated, the neutrino-electron cross section is usually smaller
than the neutrino-nucleon by orders of magnitude. However, the scattering
of ν̄e with electrons is enhanced in the energy range of 4 PeV-10 PeV, where
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it exceeds that of DIS by more than two orders of magnitude. This is shown
in Figure 4.2.

Assuming the electron is at rest, the antineutrino energy at which the
cross section of the Glashow resonance reaches its maximum value is

Eν = M2
W − m2

e

2me

≈ 6.32PeV (4.2)

Figure 4.2 – Cross sections of neutrino scattering on a nucleon or an electron.
The red curve represents the Glashow resonance interaction. The solid curves
are for neutrinos and dashed ones for antineutrinos. The blue curves signify
the NC deep inelastic scattering interaction for all neutrino flavors. The CC
DIS interactions for νµ/νe is indicated by purple curves and for ντ by orange
curves [21].

Neutrinos from atmospheric sources tend to have lower fluxes in compar-
ison to astrophysical neutrinos in the energy range where the Glashow reso-
nance dominates. These astrophysical neutrinos provide the energy needed
to produce a W − boson. The decay of the W boson produces either hadronic
showers with deposited energy around 6.3 PeV (branching ratio of ∼ 67% ),
or leptons directly with a lower deposited energy (branching ratio of∼ 11%
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for each flavor). In the case of electron presence in the final state, an electro-
magnetic shower is produced. Meanwhile, the produced muon will survive as
a long track, and the tau with a lifetime of 2.9 ∗ 10−13 s decays. A leptonic
event is defined as an event where the W boson produced by the Glashow
resonance interaction decays into either an electron, a muon or a tau along
with their corresponding antineutrinos. In this type of event, neutrinos es-
cape with most of the energy, unlike the hadronic scenario.

The event rate expected from the Glashow resonance in the KM3NeT/ARCA
detector within one year is calculated from

Rate = Φσnd (4.3)

where Φ is the integrated anti-neutrino flux in a given time period, σ is
the cross section of ν̄e, n is the number density of the medium, and d is the
path length of an interacting particle. According to [22], the result is 0.42
event/year.

IceCube has detected one event with a visible energy of 6.05 ± 0.72PeV .
Based on its energy and direction, it is classified as an astrophysical neu-
trino at the 5σ confidence level. Features consistent with the production
of secondary muons in the particle shower indicate the hadronic decay of a
resonant W boson[23].
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Chapter 5

Analysing KM3NeT/ARCA
Data Using Graph Neural
Networks

The reconstruction of the properties of a particle based on the data that was
measured by the KM3NeT can be achieved using deep learning techniques.
This prediction is an approximation of the real value of the property. The
deep Learning techniques applied in this thesis are based on artificial neural
networks (ANN), more specifically graph neural networks (GNN), which is a
class of artificial neural networks where the processed data are represented
by graphs. This chapter will give a brief overview of artificial neural net-
works, shortly present graph neural networks, and explain how to analyze
KM3NeT/ARCA data using deep learning techniques.

Figure 5.1 summarizes the implementation of GNNs for analysing KM3NeT/
ARCA data to perform event identification. KM3NeT/ARCA MC events are
represented by graphs, which are then the inputs of the network (GNN). The
datasets are split into two sets, training and validation. One would train only
over the training set, then the model has learned. After that, the performance
of the model is checked with the validation set, where for this model it is done
after every epoch. The number of epochs is a hyperparameter that defines
how many times the model will loop over the entire training dataset. This
training is done over a number of epochs to ensure that the model converges
(i.e., model’s loss or error moving towards a minimum), where the loss and
the accuracy are calculated for both training and validation files.
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Figure 5.1 – Implementation of GNNs for Analysing KM3NeT Data

5.1 Artificial Neural Networks
An artificial neural network consists of connected artificial neurons (nodes)
which can be arranged in layers. The stacking of multiple hidden lay-
ers (which are the layers between the input and the output) can enhance
the network’s ability to reproduce desired values, this method is known as
deep learning. Each neuron usually applies the following operation to its N
inputs[24]

f(x1, .., x1=N) = Θ(
N

Σ
j=1

wjxj + b) (5.1)

which is a sum over every input (xj), each weighted with a real number wj,
then adding the bias b (a constant), and after that we apply the activation
function Θ. This is an arbitrary function (non-linear function) applied to
the inputs, which affects the ability of the network to approximate target
functions[25], where the target function is an approximation function that is
defined by its free parameters, the weights w and biases b of all the layers
in the network. These free parameters need to be chosen to ensure that the
output values are as close as possible to the real values of the desired prop-
erties, such closeness is defined in terms of some specific metric. To achieve
this, we adjust the weights and the biases of the network repeatedly until the
difference between the actual output of the network and the desired output
reaches a minimum, this procedure is called back-propagation[26].
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The difference between the outputs is defined by a cost function, which
quantifies the error between predicted and actual outputs. The free parame-
ters are changed in the direction of the negative gradient of the cost function,
which is called gradient descent method (see equation 5.2). A cost function
therefore measures how well the network approximates the desired output.
The purpose of the training process is finding a set of parameters that mini-
mizes the cost function for the whole training dataset

p → p − η
∂C

∂p
(5.2)

where p are the free parameters (w, b), η is the learning rate, which is the
step size of the descent, and C is the cost function.

The sigmoid function is an example of an activation function (see equation
5.3). It is a differentiable function that ranges between 0-1. For very large
or very small x values, the derivative of this function becomes very small
(very close to zero) leading to gradient vanishing in deep networks. This is a
disadvantage of the function because the derivative of the cost function with
respect to a certain parameter (p), that is calculated through the chain rule
shown in equation 5.4, depends on the derivative of the output of the network
(F ) with respect to that same parameter (p). Therefore, the parameters
update (see equation 5.2) will be very small, which in turn slows the training
of deep networks.

Θ(x) = 1
1 + e−x

(5.3)

∂C

∂p
= ∂C

∂F

∂F

∂p
(5.4)

Another activation function is the rectified linear unit (ReLU), which is
the most used activation function nowadays. This function f(x) is zero when
x < 0, and f(x) is equal to x for x ≥ 0. But the issue with this function is that
at negative values it becomes zero. The neuron would not receive updates
to its weights anymore, and would be stuck in this state. Thus, decreasing
the ability of the model to train properly. To overcome this problem, some
modifications have been done to the ReLU, like leaky ReLU. See [27] for
more details.
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Neurons from different layers can be connected in multiple ways. When
the input to a specific layer consists only of neurons from the previous layer,
it is called a feed-forward network[24]. Figure 5.2 shows a multilayer feed-
forward neural network.

Figure 5.2 – A multilayer feed-forward neural network[28], where Xi are the
inputs, wij are the weights, Hj are the hidden layers, and Ok are the outputs.

The quality of the network’s prediction can be assessed on a small sample,
called validation dataset. The choice of cost (loss) function is task specific. In
the case of a classification task (which is done in this thesis), the categorical
cross entropy loss function is chosen, which is defined as

C(y⃗ true, y⃗ predict) = −
n

Σ
i=1

y⃗ true
i ln(y⃗ predict

i ) (5.5)

where for n different categories, y⃗ true is the desired output, and y⃗ predis the
prediction of the network. The categorical cross entropy loss function is often
used together with the softmax activation function , which is a generalized
sigmoid function for multiple neurons and is used exclusively in the last layer
of classification networks. The outputs of softmax function are between zero
and one[24].
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5.2 Graph Neural Networks (GNNs)
Graphs are a type of data structure which defines a set of objects (nodes) and
their relationships (edges)[29]. Graph neural networks working principle is
based on recursive neighborhood aggregation (or message passing procedure),
in which the new feature vector of a certain node is computed by aggregating
feature vectors of its neighbors. Then after k (which is the chosen number
of neighbors) iterations of aggregation, the node is represented by a vector
which contains the structural information within its neighborhood of radius
k. The representation of the whole graph can then be obtained through
pooling, which is an operation that summarizes values of each channel of the
input data independently into a single one. It plays a crucial role in reducing
the size and complexity of deep learning models while preserving important
features and relationships in the input data [30].

Graph neural networks are chosen for the architecture of the network for
KM3NeT because the KM3NeT data closely resembles point clouds (discrete
set of data points in space)[31]. To encode the information of an event as a
graph, each hit is represented by a node, where each node has its features
and is connected to its k nearest neighbours in terms of a chosen distance,
see Figure 5.3. The features of the node are the coordinates of the hit it
represents (time and x, y, z-position of the PMTs, and PMTs pointing direc-
tion). The hits of an event are then fed to classification and reconstruction
algorithms.

Figure 5.3 – Graph representation of a random event, where each node repre-
sents a hit, and each node is connected to its eight nearest neighbors by edges
in terms of the euclidean distance in x, y, z and t. The arrows are pointing
away from the neighbors, and towards the central node[24].
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The model architecture (the design of the model) of the GNN used in
this thesis is based on the ParticleNet model[32]. As seen in Figure 5.4a,
it consists of three edge convolutional blocks (cf. below for an explanation)
followed by a channel-wise global average pooling operation, which aggre-
gates the learned features over all nodes. After that, a fully connected layer
with 256 units (the number of nodes in a dense layer) and the ReLU activa-
tion function are added. Another fully connected layer but with two units is
applied, then a softmax function, which generates an output for the binary
classification task is used. The original model was changed for the work in
this thesis by removing the dropout in the first layer after the pooling.

The first edge convolutional block (EdgeConv block) of ParticleNet ar-
chitecture finds the k nearest neighboring nodes for each node, where it uses
the coordinates of each node to compute the distances. Then, edge features
are constructed from the features input using the indices of k nearest neigh-
boring nodes. These features are time and x, y, z-positions of the PMTs, and
PMTs pointing directions. Given two nodes n⃗i, n⃗j with a number of features,
the edge features e⃗ij going from node i to node j are defined as

e⃗ij = (n⃗i, n⃗j − n⃗i) (5.6)

Each edge features vector is then fed to a multilayer perceptron (MLP),
which consists of three layers with a constant number of neurons per layer.
The MLP returns an update vector as output, the weights of this MLP are
shared among all nodes in the graph. The number of neurons in the last layer
of the MLP determines the number of output features. The updated node
features are calculated by taking a mean over the update vectors. This MLP
is then followed by a batch normalization, and a ReLU. The batch size is a
hyperparameter defined as the the number of training samples to go through
before updating the model’s internal parameter (weights and biases), where
training data are sampled in batches. During training, the parameters of a
certain layer keep changing, which leads to a change in the output distribu-
tions. The subsequent layers use this output as their input, and therefore
must keep adapting to this change. This causes the network training to slow
down. The purpose of batch normalization is to speed up the training pro-
cess, which is achieved by setting the mean of each feature over the whole
batch to zero and the variance to one[33].

The EdgeConv operation consists of three layers, where each one of them
contains the multilayer described above, the batch normalization, and the
ReLU. An EdgeConv block is defined by two hyperparameters, the number
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of neighbors k, and the number of channels C = (C1, C2, C3), where C1,
C2, C3 are the number of nodes in each linear transformation layer. All
of this is shown in Figure 5.4a, where k=16 for all three blocks, and C for
the EdgeConv blocks are (64, 64, 64), (128, 128, 128), and (256, 256, 256),
respectively[32]. In parallel to the EdgeConv operation, the input features
are passed directly to the end of the EdgeConv. These features are then
added to updated features, which are the outputs of the three layers in the
EdgeConv.

a The architectures of the Parti-
cleNet

b The Edge Conv block structure

Figure 5.4
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5.3 Deep Learning Software in KM3NeT
An open software was developed to facilitate the use of deep learning tech-
niques in KM3NeT. This software is split into two Python packages:

OrcaSong 1, which is used for pre-processing KM3NeT files into a format
suitable for machine learning use. This is done in two main steps:

•First, generation of hdf5 DL files: originally we have root files from
which we extract hdf5 files, then we produce hdf5 DL files. DL files consist
of two datasets, the samples x (in our case the full hit information for graphs
generation), and the labels y contains labels and other event information.
The configuration files define the kind of information in these datasets.

•Second, splitting the files into training and validation files: this is done
according to the configuration file used. The validation set ,which is used
to evaluate the performance of models with different hyperparameter values,
is smaller than the training set. The training and validation files are then
concatenated and shuffled to make sure that the order of events in the files
is as random as possible.

OrcaNet 2, which does the training of the networks. At first, we construct
the model from the configuration files, then we train the model. Three con-
figuration files can be used to set up OrcaNet:

1. list.toml: Contains paths of training and validation DL (shuffled)
files which were created in the previous step by OrcaSong.

2. config.toml: This file includes hyperparameters of the network, which
will be used during the training, like the learning rate or the batchsize.

3. model.toml: Defines the architecture of the model. As mentioned in
the previous section, the ParticleNet model is used.

The training is done over a number of epochs. After that, the prediction of the
network can be saved to an hdf5 file, where the network with the lowest vali-
dation loss across the entire training history will be loaded automatically[24].

1https://git.km3net.de/ml/OrcaSong
2https://git.km3net.de/ml/OrcaNet
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Chapter 6

Analysis and Results

In this thesis, KM3NeT/ARCA files are used to try to discriminate between
Glashow events according to the decay of the W boson, hadronic or lep-
tonic channels. This chapter reports on the details of how the analysis was
conducted and shows the results of this analysis.

6.1 Analysis
As mentioned in chapter 5, the analysis is conducted using deep learning
techniques. The deep learning software that was developed in KM3NeT con-
sists of the OrcaSong and OrcaNet python packages that are used to extract
the files, build and train the network which then would be able to predict
the desired quantities (the type of the events). All of this is summarized in
Figure 6.1.

Figure 6.1 – The steps that need to be done to finally have a network that
can classify the events, starting from the root files up to saving the prediction
of the network.
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The extraction of hdf5 files from the KM3NeT root files is done on the
trigger or reconstruction level since at these levels hits have been triggered.
Therefore, the data can be represented by graphs, which are then the inputs
of our network. The output files (hdf5) are saved to the indicated output
path.

OrcaSong is then used to extract hdf5 DL files from these hdf5 files.
This is done by searching for hdf5 files in the input directory, and then run-
ning orcasong on each of them producing an hdf5 DL file. The output files
are stored in the indicated output path. The OrcaSong configuration file is
passed as one of the command line inputs. This configuration file specifies
the mode, which is "graph" in our case, since GNNs are being used, and
the extractor which indicates the function that extracts information from an
event (information contained in x and y) in the h5 files. These functions are
defined in OrcaSong 1(OrcaSong/orcasong/extractors/ neutrino_chain.py).
For our analysis, an additional function "get neutrino mc info extr glashow
(input_file)" was defined. This function classifies Glashow resonance events
according to the decay of the W boson, hadronic or leptonic indicating the
decay mode for each one of them. In MC truth the particles produced by
each event are defined in an array where the first particle is the primary
neutrino, the second particle is the target and so on. For Glashow resonance
events the 5th particle is the W boson which then decays. If the 6th particle
which is the result of this decay is an electron, a muon or a tau then the event
is classified as leptonic event, otherwise it is identified as a hadronic event.
The OrcaSong configuration file can also contain additional information such
as the maximum number of hits (=2000). This is defined as the limit for the
number of hits that can be supplied for each event, which is due to compu-
tational limitation where reducing the number of hits per graph reduces the
memory burden. If the number of hits in events exceeds the maximum, they
are randomly removed until the threshold is reached, where the number of
hits that need to be removed on average depends on the number of hits in
each event. In order to reduce the number of hits, a time cut is applied. In
our case, hits outside the time window of [-1000,5500] ns are removed since
according to previous studies, most of signal hits coming from Glashow reso-
nance decay modes are inside this interval. This time window is also defined
in the configuration file.

1https://git.km3net.de/ml/OrcaSong
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The hdf5 DL files are split into training and validation files. This is
achieved by defining another configuration file which splits the datasets, and
then running the command orcasong make_data_split config.toml. Af-
ter that, the training and validation files are concatenated and shuffled to
ensure that the order of events is as random as possible. The shuffling is
only necessary for training files since the order of events in the validation
files, where the weights are constant, is not important.

OrcaNet is used to build and train the network, then the prediction of
the fully trained network can be saved to an hdf5 file. In order to start the
training of a new model, an OrcaNet directory is created in which the three
following configuration files are defined:

1. list.toml: Contains paths of training and validation DL (shuffled)
files created in the previous step by OrcaSong.

2. config.toml: Defines the hyperparameters of the network. For the
model used in this study, batchsize = 32 and learning rate = [0.025,0.02],
which were optimized in previous studies. In Classification tasks the
label is required to be in one-hot encoding, which is a technique used
to represent categorical data as vectors of zero elements except for one
element, which is set to 1. For example, the classes {1, 2, 3} need to
be encoded as vectors (1, 0, 0), (0, 1, 0), (0, 0, 1). This is done in
OrcaNet by using user-defined functions known as modifiers. The one-
hot encoding function is already implemented in OrcaNet and can be
used by specifying it as a string in the config.toml file, where the corre-
sponding string is "ClassificationLabels"[24]. The classes are class1 =
0 corresponding to hadronic decays, and class2 = 1 which corresponds
to leptonic decays.

3. model.toml: Defines the architecture of the model which is based here
on the ParticleNet model. For this network, the EdgeConv block is
defined by k nearest neighbors=10 for all three blocks, and the number
of channels C for the EdgeConv blocks, which is defined in section 5.2,
is (64, 64, 64), (128, 128, 128), and (256, 256, 256), respectively. Batch
normalization and pooling are applied.
The optimizer that is used in our model is ’adam’ optimizer, which
aims to speed up the convergence of network training by varying the
step size, where it adapts to the current situation of convergence, and
allows different free parameters to have different effective step sizes.
The cost function applied here is categorical cross entropy since it’s a
classification task.
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Running the command line tool "orcanet train name of directory"
will by default train for an unlimited number of epochs, unless the number
of epochs is indicated (- -to_epoch number of epochs). If the training is
interrupted it can resume from the last auto-generated checkpoint by running
the "orcanet train name of directory" command again. The prediction
of the network then can be saved to an hdf5 file by running the command
"orcanet predict name of directory", then the network with the lowest
validation loss across the entire training history will be loaded automatically.
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6.2 Results
In the analysis, 48 root files were used with a total number of events of
142908 (weighted total number of events is ∼ 42046). The energy distribu-
tion of these events, which is the energy of primary antineutrinos for the
Glashow resonance interaction, ranges between 105 − 108 GeV and is shown
in Figure 6.2. One can see that both event classes have almost equal en-
ergy distributions, and the Glashow resonance is visible around 6.3 PeV (as
expected), this resonance leads to asymmetric distributions.

Figure 6.2 – The energy for both leptonic and hadronic events.

These files are then split into training files (80%) and validation files
(20%). The network is trained, and its prediction is saved. The loss of this
network for both training and validation, which assesses how well the net-
work is working, is shown in Figure 6.3. This network was trained for 45
epochs and validation was applied after every epoch. As seen in this Figure,
the value of the loss is decreasing towards a minimum loss as the network
trains for more epochs. After 36 epochs the loss value is hardly changing
indicating that the network converges. The minimum training set size of
GNNs is not a fixed value, it depends on many factors like the complexity of
the problem and the chosen algorithm. However, it is concluded that this is
sufficient data for a meaningful training based on Figure 6.3, where there is
no underfitting or overfitting observed (where they might indicate that the
size of the training dataset that is used is not enough).
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Figure 6.3 – The loss for both training and validation of a network trained
for 45 epochs. The validation is done after every epoch.

The performance of the network can also be assessed by quantities that
are not differentiable with respect to the model’s weights, these quantities
are known as metrics in Deep Learning. Accuracy is a metric that is used
in binary classification tasks, which in our case is defined as the number of
correctly classified events with respect to the total number of events. If the
prediction of the network is the same as the true label of the event, it is
defined as true positive (TP). In case they don’t match, then it is defined as
false positive (FP). In an analogous way, one can define true negatives (TN)
and false negatives (FN). The accuracy can be calculated by

Accuracy = TP + TN

TP + TN + FP + FN
(6.1)

Figure 6.4 shows the accuracy of the network, where it increases for higher
number of epochs. Finally, it reaches a value of ∼ 0.9 (high accuracy) for 45
epochs.

The prediction of the network gives the result shown in Figure 6.5, which
is the leptonic score for both hadronic and leptonic events. A threshold (or
a cut) is chosen for this binary classification above which the prediction is
defined as positive, where positive and negative terms indicate how the sam-
ple was labeled by the classifier (hadronic events=0 and leptonic events=1).
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Figure 6.4 – The accuracy for both training and validation of a network
trained for 45 epochs. The validation is done after every epoch.

For a specific cut (e.g. leptonic score= 0.4), the prediction of the network is
interpreted as a leptonic event for prediction values larger than this cut, or
as a hadronic event otherwise.

Figure 6.5 – The leptonic score for hadronic and leptonic events.
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In Figure 6.5, the leptonic score for hadronic events mostly has low val-
ues while it is approximately homogeneous for leptonic events (i.e., leptonic
events have sufficient events across all leptonic score values). Nevertheless,
the discrimination between the two event classes is possible.

Two other metrics can be quantified for each cut from Figure 6.5: effi-
ciency, which is the fraction of correctly classified events, and purity is defined
as the fraction of classified events being correctly classified. Mathematically,
efficiency and purity are calculated by

Efficiency = TP

TP + FN
(6.2)

Purity = TP

TP + FP
(6.3)

Efficiency is also defined as the probability that a positively labeled sam-
ple will be predicted as positive, and purity is the probability that a positively
predicted sample is in fact a true positive.

Both purity and efficiency depend on the cuts. Figures 6.6 a and b
show this dependency of the purity and the efficiency for both leptonic and
hadronic events, respectively. There is a tradeoff between purity and effi-
ciency. For leptonic events, at efficiency higher than ∼ 0.8 the purity starts
decreasing while hadronic events of purity values less than ∼ 0.8 the efficiency
is 1.

a Leponic Events. b Hadronic Events.

Figure 6.6 – Purity vs efficiency.

36



The leptonic score for all four possible decay modes of the W boson is
shown in Figure 6.7. The total number of events is 142908 which consists of
11407 Glashow resonance events where the W boson decays into an electron
and an electron antineutrino, 50207 Glashow resonance events in which the W
boson decays into a muon and a muon antineutrino, 13684 Glashow resonance
events with the W boson decaying into a tau and a tau antineutrino, and
67610 events for the hadronic channel of the W boson decay. The leptonic
events add up to 75298 events, which differs only slightly from the number
of hadronic events. The number of events in which the W boson decays into
µ + ν̄µ is higher than the number of each of the remaining leptonic events.

Figure 6.7 – The leptonic score for all events, where em indicates electro-
magnetic showers, muon indicates events of W boson decays into a muon and
a muon antineutrino, tau stands for decay modes of W boson into a tau, and
had is for hadronic showers.
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6.3 Running Checks on The Network
The results show that the network can discriminate between the two event
classes. However, three checks were done on the network to ensure it is
working properly.

6.3.1 Check 1
The correlation coefficients between observables, which include primary ob-
servables (the number of triggered hits and the number of hits) and derived
observables (reconstruction algorithms variables), as well as the leptonic score
were calculated to see if the discrimination between both classes of events
could be visible without the help of a GNN. This correlation coefficient is
defined as

Corr = Σ(x − mx)(y − my)√
Σ(x − mx)2Σ(y − my)2

(6.4)

where mx is the mean of x and my is the mean of y.

The correlation coefficient can have a value between -1 and 1. This coeffi-
cient defines the strength and direction of the relationship between variables.
For positive correlation, if one variable changes the other one changes in
the same direction. If there is no relationship between the variables, the
coefficient’s values is 0 while negative values of correlation (anti-correlated)
indicate that when one variable changes, the other variables change in the
opposite direction.
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Figure 6.8 shows the correlations between the observables with the ad-
dition of leptonic score. The red color has a value of 1, white indicates
correlation value of zero, and blue is for -1 correlation value.

Figure 6.8 – The correlation between observables with the addition of leptonic
score.
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The most common color in Figure 6.8 is white indicating that there is no
relationship between most of the observables. Figure 6.8 shows that some
observables anti-correlate and correlate with the leptonic score (referred to in
the Figure as is_leptonic which is the first bin of the matrix). 1D histograms
for these observables were generated to investigate more.

Figures 6.9a and 6.9b show the distributions of triggered hits and total
number of hits for both classes. One can see that the distribution of triggered
hits is almost uniform in both cases while for the total number of hits, the
distributions are right skewed with slight different skew between both classes.

a b

Figure 6.9 – The number of both triggered hits and hits for leptonic and
hadronic events.

The jmuon_JENERGY_CHI2 parameter distribution for both hadronic
and leptonic events is shown in Figure 6.10a, which appears to be left skewed.
Figure 6.10b shows the jmuon_JGANDALF_CHI2 parameter distributions
which seem to be different. However, it is hard to conclude whether these
variables could help to discriminate between the two event classes.
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a b

Figure 6.10 – 1D histograms of some derived observables for leptonic and
hadronic events.

Figures 6.11a and 6.11b show the distributions for variables related to
the muon reconstruction algorithms. For hadronic events in Figure 6.11a,
the distribution is left skewed. On the other hand, the distribution is right
skewed for leptonic events. The distributions in Figure 6.11b don’t show any
appreciable differences between leptonic and hadronic events.

a b

Figure 6.11 – 1D histograms of some derived observables for leptonic and
hadronic events.
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The distribution of the parameter shown in Figure 6.12a is left skewed.
Figure 6.12b shows no differences between the distributions of different event
classes.

a b

Figure 6.12 – 1D histograms of some derived observables for leptonic and
hadronic events.

Figures 6.13a, 6.13b, and 6.14 for different derived observables distributions
show a shift between the two distributions of the event classes. The shift is
not so evident for Figure 6.13b, but one can still see a difference between the
two classes.

a b

Figure 6.13 – 1D histograms of some derived observables for leptonic and
hadronic events.
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a b

Figure 6.14 – 1D histograms of some derived observables for leptonic and
hadronic events.

An additional variable was calculated for both MC and reconstructed
events, the sphericity. It is an event shape variable that describes how spher-
ical is the event. An isotropic event has a sphericity=1 while a 2-jet event
corresponds to sphericity=0.

The sphericity tensor is calculated in terms of the four-momentum vectors
of the particle pi = (p⃗i, Ei) with i=1,2,...,n, where n is the number of particles
in the event[34]. The sphericity tensor is

Sαβ =
Σ
i
pα

i pβ
i

Σ
i

| p⃗i |2
(6.5)

where α, β = 1, 2, 3 are the x, y and z components. By diagonalizing Sαβ,
three eigenvalues λ1 ≥ λ2 ≥ λ3 are found, where λ1 + λ2 + λ3 = 1. The
sphericity of the event is then defined as

S = 3
2(λ2 + λ3) (6.6)

so that 0 ≤ S ≤ 1.

The sphericity is calculated for both event classes to see if it can be used to
discriminate between hadronic and leptonic events, where hadronic showers
with 2-jets have sphericity values close to zero while electromagnetic showers
sphericity values are close to 1 since they are expected to be more isotropic.
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a The sphericity. b The reconstructed sphericity.

Figure 6.15 – The Sphericity for both leptonic and hadronic events.

The momentum for this sphericity in Figure 6.15a is calculated from the
x, y, and z directions of the mc_tracks of the events.

Figure 6.15a shows the distribution of the sphericity which shows a differ-
nce between both classes. As for the reconstructed sphericity, the momentum
is calculated from the difference between the x, y, and z positions of both
hits and reconstructed tracks of the events. This method of calculating the
reconstructed sphericiy is taken from previous studies done on the tau neu-
trinos. The distribution of the reconstructed sphericity is shown in Figure
6.15b. One can see the sphericity is distributed over the full range of 0 and
1 for both classes of the events and there are no strong differences between
the two event classes.

To summarise, there’s not a single variable that could be used to achieve
the discrimination power observed in the results of the GNN. Nevertheless,
there were appreciable differences between the distributions of leptonic events
and hadronic events for a few variables which are mostly related to the muon
reconstruction algorithms. This seems to indicate that one of the event
classes is more similar to muon events than the other. To confirm this, a
second check was performed which is explained in section 6.3.2.

44



6.3.2 Check 2
The branching ratios of each of the decay modes mentioned in section 5 were
calculated. The resulting unweighted, weighted branching ratios of the decay
channels of the W boson are shown in Figure 6.16 respectively, which are then
compared with the expected branching ratios. As seen in this Figure, The
resulting branching ratios differ from the expected ones.

Figure 6.16 – The branching ratios (BR) of the decay channels of the W
boson. The KM3NeT Simulations unweighted and weighted branching ratios
are calculated from the root files, where the left one is the unweighted, and
the one in the middle is the weighted.

Most of the contribution in the resulting branching ratios of the leptonic
channels (∼ 52.7 %) is from muons, as previously stated. The large num-
ber of produced muons could be the reason why the network was able to
discriminate between leptonic and hadronic events since muons have a track
like signature which is different (easier to distinguish) from the shower like
ones expected from other events.

To investigate whether the number of these track events affect the per-
formance of the network, the network was trained again with the exclusion
of events where the W boson decays into µ + ν̄µ. The results are shown
in Figure 6.17. This Figure indicates that the network is still able to dis-
criminate between the two different event classes, where the leptonic score
for hadronic events mostly has low values while for leptonic events, it is ap-
proximately homogeneous but has few more events in the low leptonic score
region in comparison with the leptonic score where all decay modes of the
leptonic channel of W boson were included. However, if the distribution is
flat beyond 0.5, but the increasing statistical uncertainty does not allow us
to draw this conclusion. Then this would indicate that the discrimination is
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not possible, which leads to the fact that the network is potentially a track
vs shower classifier.

Figure 6.17 – The leptonic score for hadronic and leptonic events (without
events where the W boson decays into µ + ν̄µ).

6.3.3 Check 3
The last check was training the network again but this time with the exclusion
of hadronic events to distinguish between leptonic and leptonic events, where
the total number of events used was 9316. Figure 6.18 shows that the network
was unable to distinguish between them, and therefore is working as expected.

Figure 6.18 – The leptonic score of leptonic and leptonic events.
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6.4 Other Investigations
The decays of pions and kaons are not included in this simulation, where
these decays produce early hits by muons. Unfortunately, there was no time
to prepare these simulations for training. However, a small set of simulations
were produced where it was possible to include these decays. This is shown in
Figure 6.19, where the number of particles for a specific event were counted
for both decays disabled and decays enabled cases. As seen in this figure, the
enabled case has more particles due to the additional particles produced from
these decays including muons. However, the number of particles produced by
the decays are not as excpected. For example, in the case where decays are
disabled, there are four π−, which then decay into two µ+ ν̄µ. The number of
particles doesn’t add up, which needs to be further investigated. Despite the
fact that the first simulation used in our network didn’t enable these decays,
the network was able to discriminate between the two event classes.

a Decays disabled. b Decays enabled.

Figure 6.19 – The number of particles for a specific event, for both the
enabled and disabled cases. The x-axis shows the particles and y-axis is the
number of particles.
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In addition, the branching ratio values produced by the current simulation
are wrong. Figure 6.20 shows branching ratio values, where the branching
ratio of the hadronic events in this new simulation (the one in the middle) is
higher than that of the old simulation (the one on the left). The branching
ratios of the new simulation are still a little bit different from that of the
expected ones as well. Further investigations should be done in this regard.

Figure 6.20 – The branching ratios of W boson decays. The old simulation
branching ratios are the ones on the left. In the middle, the new simulation
branching ratios are shown, and the expected branching ratios are shown on
the right.
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Chapter 7

Summary and Outlook

In this thesis, investigations of the capabilities of KM3NeT/ARCA to dis-
criminate between Glashow events according to the decay of the W-boson,
hadronic or leptonic cascades, were conducted using deep learning techniques.
The data were represented by graphs which are then used as an input to a
network (GNN). The results showed that the network was able to discrim-
inate between the two event classes. The network was checked using three
approaches to ensure that it was working properly. The first check showed
that by looking into the correlations between observables and the leptonic
score, there’s no evidence that a single observable allows to discriminate
between both classes of events. Nevertheless, a few of them showed small
differences which combined could explain the results of the GNN. The sec-
ond check in which we excluded the events where the W boson decays into
µ + ν̄µ, showed that the network can still discriminate between leptonic and
hadronic events. In the last check, the events where the W boson decays into
hadrons were excluded. This was done to see if the network would be able
to distinguish between leptonic and leptonic events, which was not possible,
thus indicating that the network is working as expected. In the end, none of
the checks indicated that the network should be working otherwise.

The next step would be to produce new simulations that include the
decays of pions and kaons, train the network using these simulations, and
see if the network would be able to discriminate. Also, the wrong branching
ratio values for the decay modes of the W boson and the number of particles
after enabling the decays need further investigations.

49



Bibliography

[1] A. D. Dolgov. Cosmology and neutrino properties. Physics of Atomic
Nuclei, 71(12):2152–2164, dec 2008.

[2] J. A. Formaggio and G. P. Zeller. From eV to EeV: Neutrino cross
sections across energy scales. Reviews of Modern Physics, 84(3):1307–
1341, sep 2012.

[3] M. Sajjad Athar, A. Fatima, S. K. Singh. Neutrinos and their interac-
tions with matter. The European Physical Journal Special Topics, 2022.

[4] Th. M. Nieuwenhuizen . Do non-relativistic neutrinos constitute the
dark matter? Europhys.Lett.86:59001, 2008.

[5] X. Qian, P. Vogel. Neutrino mass hierarchy. PPNP, 83, 1-30, 2015.

[6] Ulrich F. Katz, Christian Spiering. High-energy neutrino astrophysics:
Status and perspectives. 2011.

[7] T.K. Gaisser, M. Honda. Flux of atmospheric neutrinos.
Ann.Rev.Nucl.Part.Sci.52:153-199, 2002.

[8] J.L. Autran, D. Munteanu, T. Saad Saoud, and S. Moindjie. Character-
ization of atmospheric muons at sea level using a cosmic ray telescope.
Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, 903:77–84,
2018.

[9] Naoko Kurahashi, Kohta Murase, Marcos Santander. High-energy extra-
galactic neutrino astrophysics. Ann.Rev.Nucl.Part.Sci. 72 (2022) 365,
2022.

[10] IceCube Collaboration. Evidence for neutrino emission from the nearby
active galaxy ngc 1068. Science 378, 6619, 538-543, 2022.

50



[11] Erik Ganster, Richard Naab, Zelong Zhang (for the IceCube Collabo-
ration). A combined fit of the diffuse neutrino spectrum using icecube
muon tracks and cascades. Proceedings of Science, 395, 2022.

[12] V. Barger, Lingjun Fu, J.G. Learned, D. Marfatia, S. Pakvasa, T.J.
Weiler. Glashow resonance as a window into cosmic neutrino sources.
Phys. Rev. D 90, 121301, 2014.

[13] P. Abreu et al. Search for ultrahigh energy neutrinos in highly inclined
events at the Pierre Auger Observatory. Phys. Rev. D 84, 122005, 2012.

[14] the KM3NeT Collaboration. Letter of Intent for KM3NeT 2.0. Journal
of Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016.

[15] Rodrigo Gracia Ruiz. Search for populations of unresolved sources of
high energy neutrinos with the ANTARES neutrino telescope. Thesis,
Université Sorbonne Paris Cité, November 2016.

[16] Ellen Riefel. Bioluminescence in the KM3NeT neutrino telescope. Bach-
elor’s thesis. Leiden University, The Netherlands. 2017.

[17] G. Carminati and M. Bazzotti and A. Margiotta and M. Spurio. At-
mospheric MUons from PArametric formulas: a fast GEnerator for
neutrino telescopes (MUPAGE). Computer Physics Communications,
179(12):915–923, 2008.

[18] Mona Dentler. Investigation of the one-particle approximation in the
ANTARES simulation package KM3, Bachelor’s thesis, Erlangen Cen-
tre for Astroparticle Physics Friedrich-Alexander-Universität Erlangen-
Nürnberg. 2012.

[19] M. de Jong. Jsirene: A program to simulate the detector response. Jpp
documentation. url: https://sftp.km3net.de/documentation/Jpp/v15.
0.0-rc.2/JSirene.PDF.

[20] Sheldon L. Glashow. Resonant scattering of antineutrinos. Phys. Rev.
118, 316, 1960.

[21] Guo-yuan Huang, Qinrui Liu. Hunting the Glashow resonance with PeV
neutrino telescopes. JCAP03(2020)005, 2019.

[22] Jerzy Mańczak. Sensitivity study for the Glashow resonance detection
at KM3NeT. MSc. thesis. University of Warsaw Faculty of Physics,
2018.

51



[23] IceCube Collaboration. Detection of a particle shower at the Glashow
resonance with icecube. Nature 591, 220-224, 2021.

[24] Stefan Reck. Investigating systematics for KM3NeT/ORCA using
unsupervised Deep Learning. Thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU).

[25] Johannes Lederer. Activation functions in artificial neural networks: A
systematic overview. ArXiv, abs/2101.09957, 2021.

[26] David E. Rumelhart, Geoffrey E. Hinton Ronald J. Williams. Learning
representations by back-propagating errors. Nature 323, 533–536, 1986.

[27] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation
of rectified activations in convolutional network. ArXiv, abs/1505.00853,
2015.

[28] X. Zhong, David Lee Enke. Predicting the daily return direction of
the stock market using hybrid machine learning algorithms. Financial
Innovation, vol. 5, no. 1, SpringerOpen, 2019.

[29] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun. Graph neural
networks: A review of methods and applications. 2018.

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? ArXiv, abs/1810.00826, 2018.

[31] S. Reck, D. Guderian, G. Vermariën, A. Domi and on behalf of the
KM3NeT collaboration. Graph neural networks for reconstruction and
classification in KM3NeT. Journal of Instrumentation, Volume 16, 2021.

[32] Huilin Qu, Loukas Gouskos. ParticleNet: Jet Tagging via Particle
Clouds. Phys. Rev. D 101, 056019, 2019.

[33] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional Conference on Machine Learning, 2015.

[34] Torbjorn Sjostrand. PYTHIA 5.7 and JETSET 7.4 Physics and Manual.
1995.

[35] J. A. Formaggio, G. P. Zeller. From ev to eev: Neutrino cross sections
across energy scales. Rev. Mod. Phys. 84, 1307, 2013.

52



[36] Anna M. Suliga. Diffuse supernova neutrino background. Handbook of
Nuclear Physics, Springer Nature Singapore, 2022.

[37] IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neu-
trinos at the IceCube Detector. Science 342, 1242856, 2013.

[38] Amit Loewy, Shmuel Nussinov, and Sheldon Lee Glashow. The Effect of
Doppler Broadening on the 6.3 PeV W− Resonance in ν̄ee

− Collisions.
arXiv: High Energy Physics - Phenomenology, 2014.

[39] Guo-yuan Huang, Manfred Lindner, Nele Volmer. Inferring astrophysi-
cal neutrino sources from the Glashow resonance. arXiv e-prints, 2023.

[40] Hans Ulrich Schmidt. Meßelektronik in der Kernphysik. Teubner-
Studienbücher. B. G. Teubner Stuttgart, 1 edition, 1986.

53



Acknowledgements
Thanks to everyone who supported me during this thesis. A special thanks
goes to

• Rodrigo Gracia-Ruiz

Thank you very much!

54



Statement of Authorship

I hereby confirm that I have written this thesis independently and only with
the help of the indicated sources and aids.

Erlangen, July 10, 2023

Yara Darras

55


	Introduction
	Neutrinos
	Neutrino Interactions
	Neutrino Oscillations
	Neutrino Sources
	Atmospheric Neutrinos
	Astrophysical Neutrinos


	KM3NeT
	Detection Principle
	Signal and Background in KM3NeT
	Simulation

	Glashow Resonance
	Analysing KM3NeT/ARCA Data Using Graph Neural Networks
	Artificial Neural Networks
	Graph Neural Networks (GNNs)
	Deep Learning Software in KM3NeT

	Analysis and Results
	Analysis
	Results
	Running Checks on The Network
	Check 1
	Check 2
	Check 3

	Other Investigations

	Summary and Outlook

