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CHAPTER 1. ABSTRACT

Abstract
Chapter 1.

The chemical composition of cosmic rays arriving at the Earth’s atmosphere at high energies
in the PeV region and beyond has been the research target of various experiments, but is still
subject to large uncertainties. A precise understanding of the high energy composition allows to
constrain the origin of cosmic rays and the processes by which such high energies can be reached
in astronomical accelerators. Highly energetic cosmic rays are measured indirectly, for which
detailed simulations of air showers and the particle interactions within are required. Recent
measurements at LHC have lead to a new generation of high energy interaction models, which
allow to simulate the expected cosmic ray composition at higher energies than ever before.
However, significant disagreements between these calculations and the measurements from several
experiments which study cosmic rays via the atmospheric muons they produce in air showers
have been found. This thesis examines the potential of Km3net/Orca to measure the cosmic
ray composition, which will allow it to contribute to the aforementioned topics.

Km3net/Orca is a water-Cherenkov neutrino detector, currently under construction in the
Mediterranean Sea at a depth of 2450 meters. The project’s main goal is the determination of
the neutrino mass ordering by measuring the energy- and zenith-angle-resolved oscillation prob-
abilities of atmospheric neutrinos traversing the Earth. However, the majority of the particles
observed by the detector are atmospheric muons. While they are a source of background for
neutrino measurements, they can also be used to indirectly study the properties of extensive air
showers and cosmic ray particles. Due to the high rate at which Km3net/Orca detects atmo-
spheric muons and the high density of its instrumentation, it is especially well suited to study the
properties of muon bundle events, in which multiple muons traverse the detector simultaneously.
These events are essential for investigating the properties of primary particles.

Among the observables of muon bundles that allow conclusions to be drawn about the primary
composition are the number of muons in the event, their lateral spread, as well as their incident
direction. However, no dedicated methods for reconstructing these properties exist in Km3net
so far. In this work, a set of novel reconstructions is developed, which makes use of deep
artificial neural networks to analyze low-level experimental data and directly reconstruct the
desired properties, independent of existing approaches. In the course of this, the new archetype
of graph neural networks is introduced to Km3net. By representing the data of the detector as
the mathematical structure of graphs, the measured information can be treated more efficiently
and with a higher precision than with previous deep learning architectures used in Km3net.

Detailed comparisons between the performance on simulations and on measured data for a
small version of the detector show decent agreement. In the case of the directional reconstruction,
the result from deep learning is compared to the established approach for single muon events. It
is found that both approaches produce virtually the same result on measured data. This is an
important step towards building trust in the method of deep learning, as these studies are the
first time that deep neural networks are applied to measured data in Km3net.

Using these new reconstructions, for the first time in Km3net an indirect measurement of the
mass composition of cosmic rays is successfully performed on six months of measured data. With
a dedicated set of Corsika simulations, the fraction of proton, helium and iron of the overall,
energy-averaged flux is measured. A detailed discussion of systematic uncertainties stemming
from different energy flux models and the seasonal variation of the muon flux is included.
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Zusammenfassung
Die chemische Zusammensetzung der kosmischen Strahlung, die die Erdatmosphäre mit hohen
Energien im PeV-Bereich und darüber hinaus erreicht, ist zwar in vielen Experimente untersucht
worden, aber dennoch immer noch mit großen Unsicherheiten behaftet. Ein genaues Verständnis
der Zusammensetzung bei hohen Energien ermöglicht es, den Ursprung der kosmischen Strahlung
und die Prozesse einzugrenzen, durch die solch hohe Energien in astronomischen Beschleunigern
erreicht werden können. Hochenergetische kosmische Strahlung wird indirekt gemessen, wofür
detaillierte Simulationen der Luftschauer und der darin stattfindenden Teilchenwechselwirkungen
erforderlich sind. Jüngste Messungen am LHC haben zu einer neuen Generation von Hochenergie-
Wechselwirkungsmodellen geführt, mit denen sich die erwartete Zusammensetzung der kosmis-
chen Strahlung bei höheren Energien als je zuvor simulieren lässt. Es wurden jedoch erhe-
bliche Diskrepanzen zwischen diesen Simulationen und den Messungen mehrerer Experimente
festgestellt, bei denen die kosmische Strahlung über die atmosphärischen Myonen untersucht
wird, die sie in Luftschauern erzeugen. In dieser Arbeit wird das Potenzial von Km3net/Orca
untersucht, die Zusammensetzung der kosmischen Strahlung zu messen und damit einen Beitrag
zu den oben genannten Themen zu leisten.

Km3net/Orca ist ein Wasser-Cherenkov-Neutrino-Detektor, der derzeit im Mittelmeer in
einer Tiefe von 2450 Metern gebaut wird. Das Hauptziel des Projekts ist die Bestimmung
der Neutrinomassenordnung durch Messung der energie- und zenitwinkelaufgelösten Oszillation-
swahrscheinlichkeiten von atmosphärischen Neutrinos, die die Erde durchqueren. Die meisten
der vom Detektor beobachteten Teilchen sind jedoch atmosphärische Myonen. Sie sind nicht
nur Hintergrund für Neutrinomessungen, sondern können auch zur indirekten Untersuchung aus-
gedehnter Luftschauer und kosmischer Strahlungsteilchen verwendet werden. Aufgrund der ho-
hen Rate, mit der Km3net/Orca atmosphärische Myonen nachweist, und der hohen Dichte
seiner Instrumentierung ist er besonders gut geeignet, die Eigenschaften von Myonenbündel-
Ereignissen zu untersuchen, bei denen mehrere Myonen den Detektor gleichzeitig durchqueren.
Diese Ereignisse sind für die Untersuchung der Eigenschaften von Primärteilchen essentiell.

Zu den Observablen von Myonenbündeln, die Rückschlüsse auf die Zusammensetzung der
kosmischen Strahlung zulassen, gehören die Anzahl der Myonen im Ereignis, ihre laterale Aus-
breitung sowie ihre Einfallsrichtung. Allerdings gibt es in Km3net bisher keine dezidierten
Methoden zur Rekonstruktion dieser Observablen. In dieser Arbeit wird eine Reihe neuartiger
Rekonstruktionen entwickelt, die tiefe künstliche neuronale Netze nutzen, um experimentelle
Daten direkt auf niedriger Ebene zu analysieren und die gewünschten Eigenschaften zu rekon-
struieren, unabhängig von bestehenden Ansätzen. Im Zuge dessen wird der neue Archetyp der
Graph-basierten neuronalen Netze in Km3net eingeführt. Indem die Daten des Detektors als
mathematische Struktur von Graphen dargestellt werden, können die gemessenen Informationen
effizienter und präziser behandelt werden als mit den bisher in Km3net verwendeten Deep-
Learning-Architekturen.

Detaillierte Vergleiche zwischen der Leistung auf Simulationen und auf gemessenen Daten für
eine kleine Version des Detektors zeigen eine gute Übereinstimmung. Im Fall der Richtungsrekon-
struktion wird das Ergebnis von Deep Learning mit dem etablierten Ansatz für einzelne My-
onenereignisse verglichen. Es zeigt sich, dass beide Ansätze bei gemessenen Daten praktisch das
gleiche Ergebnis liefern. Dies ist ein wichtiger Schritt, um Vertrauen in die Methode des Deep
Learning aufzubauen, da diese Studien die erste Anwendung von tiefen neuronalen Netzen auf
gemessene Daten in Km3net sind.

Unter Verwendung der neuen Rekonstruktionen wird zum ersten Mal in Km3net eine Messung
der Massenzusammensetzung von kosmischer Strahlung anhand von sechs Monaten an Messdaten
durchgeführt. Mit einem speziellen Satz von Corsika-Simulationen wird der Anteil von Pro-
tonen, Helium und Eisen am gesamten, energiegemittelten Fluss gemessen. Eine ausführliche
Diskussion der systematischen Unsicherheiten, die sich aus den verschiedenen Energieflussmod-
ellen ergeben, und der saisonalen Schwankungen des Myonenflusses ist ebenfalls enthalten.
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CHAPTER 2. COSMIC RAYS IN KM3NET

Cosmic rays in KM3NeT
Chapter 2.

The majority of cosmic rays are ionized atoms with high energies arriving at vast rates of about
1000 particles per square meter and second at the Earth’s atmosphere. Their origin is not fully
understood, but most of the particles are assumed to be produced outside of the solar system,
or even the Milky Way as a whole [1]. Relevant observables to study are their incident direction,
their energy, as well as their elemental composition. Since the cosmic rays are charged, they get
deflected by magnetic fields encountered along their path through the extragalactic, galactic and
solar space, so they show very high levels of isotropy in their arrival direction. However, slight
anisotropic irregularities up to a few percent at the highest energies have been reported [2].

The energy distribution and the composition can give important hints about which type of
astrophysical objects produce the cosmic rays, as well as the underlying acceleration mechanism.
As cosmic rays enter the atmosphere, they cause atmospheric showers in which large amounts
of muons are generated. Despite the loss of energy during their propagation through the atmo-
sphere, some of these muons can reach deep below the Sea level, and can therefore be measured
by underwater Cherenkov detectors like Km3net [3].

This chapter gives an overview over fundamental concepts of cosmic rays, existing experimental
results, and explores how Km3net can be used to study them indirectly. It is inspired by the
excellent books from Angelis and Pimenta [4], as well as Gaisser, Engel, and Resconi [5], and the
extensive review of cosmic ray physics by Becker Tjus and Merten [1].

2.1. Cosmic rays

2.1.1. Energy spectrum

Numerous experiments have measured the cosmic ray energy spectrum over the years, and have
shown it to cover an impressive interval of energies, as well as fluxes. The observed energies
range from a few GeV per primary particle up to hundreds of EeV (=1011 GeV), with the flux
being as high as hundreds of particles per square meter and second for low energies, down to
merely a few particles per square kilometer and year at the high end of the energy spectrum.

The energy spectrum is remarkably smooth, and can in large parts be described by inverse
power laws of the form F (E) = A · Eγ . The exponent γ, also referred to as the spectral index,
changes slightly a few times throughout the energy range, but remains somewhat constant in
between.

For energies above a few 10 GeV up to 106 GeV, γ is about −2.7. Afterwards, at an energy
of about 3 · 106 GeV, a transition to a steeper falling curve is observed, commonly referred to
as the knee of the cosmic ray spectrum. This steeper curve shows a spectral index of γ ≈ −3.1
between energies of 107 GeV up to 109 GeV. Then, at about 3 · 109 GeV, yet another transition
known as the ankle can be observed, back to a shallower slope of γ ≈ −2.6. Finally, a cutoff in
the rate occurs at very high energies of 1011 GeV.

The cause for this cut-off is still an open question. A possible explanation is that protons
with energies above the observed maximum are energetic enough to interact with photons of the
microwave background. As a result, they would produce a pion and lose a significant amount
of energy in the process, staying under the so-called Greisen–Zatsepin–Kuzmin energy limit [6].
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2.1. Cosmic rays
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Figure 2.1.: The cosmic ray energy flux multiplied by E2, obtained from measurements of various
experiments since the year 2000. Unless indicated otherwise, the measurements show
the all-particle flux [7].

Alternatively, the cut-off might also be intrinsic to the acceleration process from which the cosmic
rays originate.

In order to make the change of the exponent in such steeply falling power laws more visible, the
flux can be multiplied by a power of the energy for graphical displays. Different measurements
of the particle flux multiplied by E2 (i.e. the energy flux) are shown in Figure 2.1.

2.1.2. Measurements

There is a variety of different strategies in order to measure cosmic rays. If the goal is to identify
possible sources via the arrival direction, it is actually reasonable to not even investigate the
charged particles themselves, but look for other particles that might get produced in the same
object, but do not get deflected as much by the dust and fields along the way to the Earth.
Some experiments like H.E.S.S. [8] therefore look for highly energetic photons. Others, like
IceCube (see section 3.4) or Km3net itself, try to identify astrophysical neutrinos, which are not
only unaffected by electromagnetic fields, but also have a very low chance of being stopped by
obstructing matter.

However, many experiments can also measure the charged cosmic ray particles. As shown in
subsection 2.1.1, the energy distribution of cosmic rays spans over many orders of magnitude, so
different techniques of measurements are necessary to cover this vast scale.
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CHAPTER 2. COSMIC RAYS IN KM3NET

Direct measurement

At lower energies up to about the knee, the flux of cosmic rays is so high that even relatively
small detection surfaces can obtain sufficiently high statistics. Therefore, direct measurements
of the particles before they dive into Earth’s atmosphere are possible. For this, the detectors
can be mounted on a satellite or space station, which are in orbit around the Earth. Examples
include magnetic spectrometers like AMS-02, located at the International Space Station [9],
or the PAMELA [10] satellite-based experiment. A possibility for direct measurements at the
higher energies in this region are calorimeters without magnetic spectrometers. In the CREAM
experiment, such a device was lifted by a large balloon and conducted its measurements during
several flights over Antarctica [11].

Indirect Measurement

For higher energies at and above the knee, the low flux requires detection areas that are too large
for detectors high off the ground. For that reason, these cosmic rays are detected indirectly by
ground based experiments via the extensive air showers the particles cause when entering the
atmosphere. The air showers are discussed to greater detail in section 2.2.

The electromagnetic and muonic component of air showers can be measured by an array
of small detection stations arranged on the surface. In the TUNKA-grande experiment [12],
scintillation detectors are used for this, while IceTop (see section 3.4) consists of containers filled
with ice, in which crossing charged particles induce Cherenkov light. Water Cherenkov detectors
below the surface, like Km3net or the in-ice detector of IceCube, are only sensitive to the muonic
component of the air showers, as well as the neutrinos.

The Pierre Auger observatory [13] measures cosmic rays up to the highest energies at the ankle
and beyond. It has a large instrumented area of about 3000 square kilometers, since the event
rate is extremely low in that region. Two different ways of measuring air showers are used in
Pierre Auger: an array of tanks filled with water to detect Cherenkov radiation, and an array
of fluorescence detectors, which look for the ultraviolet light emitted by atmospheric nitrogen
excited by passing charged particles.

2.1.3. Composition

Most of the charged cosmic ray particles arriving at the Earth are protons (i.e. hydrogen nuclei)
and, to a much smaller extent of about 10%, nuclei of heavier atoms. A small fraction of
the cosmic rays also comes in the form of electrons, positrons and an even smaller fraction of
antiprotons, which have been measured in the GeV energy range among others by the AMS02
experiment [14].

While it is possible to measure the composition directly at lower energies using high altitude
experiments, this becomes ineffective at energies above a few hundred GeV (see subsection 2.1.2).
Instead, it then has to be studied indirectly via the extensive air showers caused by the cosmic
rays as they enter the atmosphere. In the shower, many different particles like hadrons, elec-
trons, muons and neutrinos get produced as parts of electromagnetic and hadronic cascades.
Naturally, the composition of particles changes dramatically as the shower develops, with muons
and neutrinos becoming increasingly dominant for lower heights.

Obtaining the primary composition from this is therefore not trivial. Two important observ-
ables that allow for conclusions to be drawn about the composition are the number of produced
muons, and the depth of the maximum of the shower Xmax. The latter is defined as the atmo-
spheric depth at which the air shower reaches its highest number of particles and is typically
measured with detectors for the electromagnetic component of the showers at the surface. Since
these two observables are measured using different components of the shower, they are sometimes
considered to be independent methods for studying the primary cosmic rays [15].
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Figure 2.2.: Cosmic ray primary flux up to the ankle multiplied by energy to the power of 2.7
over their energy. The dots show measurements from selected experiments, while the
lines are calculated from the combined Gaisser-Honda-Hillas flux model [16]. The
all particle flux is plotted in black, and the colors represent different primaries [1].

As mentioned before, most cosmic rays are protons, which are dominant at lower energies in
the GeV range. However, at increasing energies where the flux is much lower, the composition
undergoes drastic changes, and heavier nuclei play a more significant role. As can be seen in
Figure 2.2, helium nuclei supersede protons as the most abundant cosmic ray when getting
closer to the knee. As the energy increases, the contributions to the flux start to be dominated
by heavier nuclei like carbon or oxygen, while iron is the dominant contribution at the energies
closer to the ankle.

Figure 2.2 shows that the uncertainties of the composition for energies at 106 GeV and beyond
are quite substantial. Since the cosmic ray primaries can only be measured indirectly in this
energy range, detailed simulations of the air shower are required in order to infer the mass
composition. A large source of uncertainty in these simulations is the modeling of highly energetic
hadronic interactions. Collider experiments allow to constrain the models, but since cosmic rays
can have energies higher than what can be reached in current accelerators, the models need to
be extrapolated. Recent data from the LHC reaching as high as 108 GeV was taken into account
for the current generation of interaction models [17].

The muon puzzle

While the mass distribution predicted by these models is in decent agreement with measure-
ments based on the depth of the shower maximum Xmax, a significant difference was found in
measurements from numerous experiments that use the muon multiplicity of bundles for infer-
ring the mass. An excess of high multiplicity events at energies above 107 GeV was identified,
suggesting a high rate of heavy nuclei in this energy range. This is in disagreement to the air
shower simulations using post-LHC models and the Xmax measurements. The reason for this
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Figure 2.3.: The z scale measuring the logarithmic muon multiplicity plotted over the calibrated
primary energy. The colored dots are measurements from various experiments. The
grey band represents the expectation of z based on measurements of Xmax, while the
dashed line is the prediction obtained from simulations using the GSF flux model
[19]. The z scale is calculated using the hadronic interaction model given in the title
of each plot. The first row shows post-LHC models, while the bottom row shows
their predecessors. Plot taken from [15].

inconsistency is currently under debate, and is referred to as the muon puzzle.
In a recent meta analysis, the distributions of the muon multiplicity measured by various

experiments were compared to the expectations from simulations and the determination using
other bundle properties [18]. In order to remove potential biases in the reconstruction of the
muon number of the different detectors, the more abstract z scale was introduced. Given the
average measured muon multiplicity ⟨Nµ⟩, and the average multiplicities ⟨Nµ⟩p and ⟨Nµ⟩fe of
proton and iron primaries predicted by the simulation of air showers, the z scale is given by:

z = ln⟨Nµ⟩ − ln⟨Nµ⟩p

ln⟨Nµ⟩fe − ln⟨Nµ⟩p
.

z is expected to be between zero and one, as a measured value of z = 0 corresponds to the
average multiplicity found in a pure proton simulation, while z = 1 would be obtained for a pure
iron simulation. Since both ⟨Nµ⟩p and ⟨Nµ⟩fe depend on the simulation and therefore on the
used hadronic interaction model, the z scale is calculated separately for each model.

The plots in Figure 2.3 show the z scale for different interaction models as measured by various
experiments. Additionally, the values for z from measurements of Xmax and the expectation
according to air shower simulations are plotted. A strong deficit in the muon number is visible
for energies above 107 GeV, following a linear slope that was identified with a significance of 8σ
in the combined analysis [15]. Tuning the interaction models could solve this discrepancy, but
would in turn be inconsistent with the expectation from simulations and results from experiments
using Xmax. Therefore, it is believed that the models do not accurately describe some physical
effect which leads to the observed disagreement. A likely explanation is that less neutral pions
get produced in the air shower than currently assumed, as this would have a large impact on Nµ

but not on Xmax.
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The Heitler-Mathews model of air showers
This connection between the number of produced neutral pions and the muon multiplicity can
be understood by studying a simplified way of describing the development of air showers, the
so-called Heitler-Mathews model [20]. Despite being only a rough approximation of reality, it can
be used to develop an intuition of the relationship between properties of the primary, observables
of the air shower, and the influence of the features of hadronic interactions. In the model, all
hadrons in the air shower are assumed to be pions, ignoring heavier particles like kaons or protons.
The primary particle interacts and produces multiple charged and neutral pions. At this point,
one third of the energy leaves the hadronic component of the shower, as the neutral pions quickly
decay into photons. The remaining α = 2/3 of the energy is assumed to be distributed evenly
among the charged pions, which travel for some time through the atmosphere before they all
interact again at the same time. This process is repeated until the energy of the pions falls below
a critical value, and they decay into muons and neutrinos. Heavier primaries are treated via
superposition as the sum of multiple, independent proton showers, each having the same fraction
of the total energy.

In a shower developing according to the Heitler-Mathews model, the number of produced
muons Nµ is proportional to both the energy E and the nucleon number A of the primary
particle:

Nµ(E, A) ∼ A(1−β)Eβ, β ∼ ln α, β ≈ 0.9.

As a consequence, primaries of different masses but the same energy can be distinguished based
on the resulting muon multiplicity. This is caused by the fact that the pions produced by a
highly energetic proton with a single nucleus can undergo more iterations of interactions before
reaching the critical energy than the multiple, lower energetic nuclei of a heavier primary. Thus,
for lighter primaries, more energy is transferred to the electromagnetic component of the shower,
resulting in fewer produced muons.

In its most basic version described above, the Heitler-Mathews model assumed that after each
iteration of interactions, α = 2/3 of the energy remains in the hadronic component of the shower
in the form of positively and negatively charged pions, while the remaining third is lost to neutral
pions. In reality, however, showers also produce particles heavier than pions. Since their energy
remains in the hadronic cascade, this leads to an increase of α and consequently of the number
of muons arriving at the ground. Unlike the depth of the shower maximum Xmax, the muon
number Nµ is very sensitive to α, so if this value is set too small, it could lead to an effect like
the one described by the muon puzzle.

While it is not established yet which physical effect could lead to such a reduction of α, a
possible cause could be an increased production of particles containing strange quarks in the
forward region with pseudo-rapidities above two or so, as they are typically encountered in air
showers [15]. The pseudo-rapidity is a scalar quantity describing the angle between the trajectory
of a particle and the beam axis, and a value above two corresponds to an angle below about 15
degrees. This would lead to a reduction of the rate at which neutral pions would be produced in
the air shower, and consequently increase the value of α. A hint towards this is given by a recent
measurement by LHC-ALICE, in which an enhanced strangeness production was found in the
pseudo-rapidity range below one (angle above 40 degrees) for high multiplicity pp collisions [21].
Other LHC experiments like LHCb or CMS could perform measurements on the cross sections
of corresponding interactions also in the forward region to investigate this issue [15].

Opportunities for KM3NeT/ORCA
Km3net/Orca provides numerous opportunities for performing measurements with atmospheric
muons. Since the detector is located deep underwater, only highly energetic muons can reach
through the ocean above it and produce a signal. As these muons are often produced early in
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the shower, they allow for studying the first or early interactions close to the primary. Due
to its dense instrumentation, Km3net/Orca is especially well suited for measuring the muon
multiplicity of bundles. As described above, this quantity is strongly correlated to the mass of
the primary particle.

As such, the presence of the muon deficit could be confirmed by investigating the flux of high
multiplicity events. However, a problem arises in the independent determination of the pri-
mary energy in addition to the mass, as Km3net/Orca does not feature a surface component
like for example IceCube’s IceTop (see section 3.4). Such a surface detector allows for measur-
ing the electromagnetic component of the air shower, which does not reach the depths of the
Km3net/Orca detector. But even by measuring only the muonic component, it could be possi-
ble to detect the muon deficit by making use of the expected energy- and mass-distributions from
other measurements and simulations. Examples for this include studies performed by SUGAR
[22] and NEVOD-DECOR [23].

Investigations on the basis of air shower simulations show that the muon multiplicity is espe-
cially well suited to estimate the primary composition at high energies towards the ankle [24].
Km3net/Orca could therefore help to constraint models for the possible source of extragalactic
cosmic rays (see subsection 2.1.4). This is especially true if the muon puzzle can be resolved
and the theoretical uncertainties of the hadronic interaction models at high energies can be
consequently reduced.

Additionally, the denser instrumentation of Km3net/Orca could allow for a more precise
measurement of the lateral separation of muons in bundles as compared to other underground
Cherenkov detectors. This quantity is connected to the transverse momentum of the hadrons
that have produced the muons in the air shower, which in turn is influenced by the primary mass
and effects described in hadronic interaction models [15]. A measurement of the separation could
therefore serve as an additional independent observable for determining the mass of the primary,
and as an additional way to cross-check the interaction models (see [25] for a corresponding study
in IceCube).

2.1.4. Origin

While some cosmic rays can be produced by the sun during solar flares, most of them have an
extrasolar origin. At energies in the low GeV range, solar winds have been shown to have a
strong influence on the particles arriving in the solar system, decelerating or even preventing
them from coming closer at all [26]. For higher energies, these effects become increasingly less
influential and reveal the underlying energy distribution of the incident cosmic rays.

The first break in the otherwise smooth energy spectrum is the knee in the PeV range. The
reason for this disruption is not conclusively clear, but a common theory is that the knee appears
at the maximum momentum that galactic accelerators can emit particles with. Consequently,
cosmic rays with higher energies would necessarily be produced in extragalactic sources with a
slightly harder spectrum.

An easy but powerful way of estimating whether an astrophysical object comes into question
for accelerating particles up to a given momentum is the so-called Hillas criterion [27]. If a
particle with charge q and momentum p moves through a homogeneous magnetic field B, it will
travel on a circular path due to the Lorentz force. The radius of this circle is called the gyroradius
rg, and it is given by:

rg = p

qB
(2.1)

Particles can escape the site of a cosmic accelerator if their momentum (and therefore energy)
is so high that the gyroradius is larger than the object itself. This means that if the size and
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Figure 2.4.: The classical Hillas plot with potential candidates for the acceleration of cosmic
rays. It shows typical values for the magnetic field strength and size of astrophysical
objects as the hatched areas. In a simplified picture, they can accelerate particles
up to the energy at which the gyroradius is larger than the object itself. These
energies are shown for protons as diagonals for the knee, ankle and cutoff region of
the observed cosmic ray energy spectrum [1].

typical magnetic field strength of an astrophysical object is known, a prediction can be made for
the maximum energy it can accelerate particles to, depending on the type of nucleus.

This allows for a rough estimate of which objects are source candidates for the different energy
regions in the observed cosmic ray spectrum (see Figure 2.4). However, this does not consider
the boosting taking place in relativistic shocks of for example active galactic nuclei or gamma
ray bursts, so a modification of this formula which allows for higher energies is necessary for
these cases [28]. It is important to note that fulfilling the Hillas criterion is a necessary condition
for an accelerator site, but not a sufficient one: The actual energies reached by the emitted
particles in the site can be lower than the maximum given by the Hillas criterion, depending on
the acceleration process and losses involved in it.

According to the Hillas criterion, several objects come into question for the acceleration of
galactic cosmic rays. Some of the most discussed ones are:

Supernova remnants An especially promising candidate are supernova remnants. After a super-
nova explosion, a part of the stellar mass is propelled outward in the form of a supersonic
shock wave that can spread deep into the surrounding interstellar medium. The so-called
first order Fermi acceleration taking place in the shock wave provides an explanation not
only for the process by which cosmic ray particles are accelerated up to the observed en-
ergies, but also for the shape of a power law (see subsection 2.1.5). Additionally, the total
luminosity of cosmic rays arriving at Earth can be reasonably explained by supernovae as
well, by assuming typical values for the energy released by a supernova explosion, and the
rate at which they occur in the Milky Way [1]. If highly energetic protons collide with
surrounding matter, they can produce pions which quickly decay into a pair of photons.
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The Fermi experiment was able to detect the characteristic feature of this decay in the
gamma ray spectrum of several supernova remnants [29], providing experimental evidence
that they might be a source of galactic cosmic rays.

Microquasars A microquasar typically refers to a black hole that forms a binary system together
with a companion star, which constantly loses mass due to the gravitational pull of the
black hole. This material can form an accretion disk and even produce jets of extremely
energetic particles that shoot out into space at near light speed.

Pulsars Pulsars are neutron stars or white dwarfs, which may originate as the product of a
supernova. They are extremely dense, rotate rapidly, and have a strong magnetic field.
This field accelerates particles along the magnetic axis in focused, highly energetic streams.

Since none of these galactic sources both meet the Hillas criterion and have sufficient luminosity,
other astrophysical accelerators outside of the Milky Way are discussed as potential sources for
the flux at the higher energies beyond the knee:

Active galactic nuclei An AGN is the central region of some galaxies that emits large amounts
of radiation distinctively different from the usual stellar spectra. They are typically as-
sumed to contain a supermassive black hole which pulls in surrounding matter, producing
a rotating accretion disk and potentially a pair of highly energetic jets, similar to the
microquasar.

Starburst galaxies Some galaxies exhibit an unusually high rate of forming new stars compared
to the observed average. They are referred to as starburst galaxies, and have been suggested
as a potential source of ultra high energy cosmic rays by the Pierre Auger observatory [30].
In a recent study, they found an anisotropy in the arrival direction of cosmic rays at
energies above 4 ·109 GeV, which could be explained with a significance of 4σ over isotropy
by assuming starburst galaxies as the sources [31]. However, other candidates like AGNs
or combinations of multiple sources can be used to explain the fluctuations as well, albeit
with a lower significance.

Gamma ray bursts Astronomers have observed rare events in other galaxies referred to as gamma
ray bursts, which release enormous amounts of energy in very short time periods. Despite
their name, they release energy not only in the form of gamma rays, but in other wave-
lengths as well. The origins of these explosions and the mechanism of acceleration are still
under debate, but a potential candidate are super-luminous supernovae.

Apart from studying the anisotropy of cosmic rays, clues on their origin can also be obtained
from their elemental composition. However, this measurement has to be done indirectly at higher
energies. This in consequence leads to statistical fluctuations of observables like the muon number
from shower to shower It can therefore be virtually impossible to distinguish between heavier
elements with similar masses on an event-by-event basis. As a consequence, many experiments
simulate only a few primaries or primary groups for their composition measurement. To make
results comparable, the elemental composition of highly energetic cosmic rays can be summarized
by a simple scalar, the mean logarithmic mass ⟨ln A⟩ of the observed primaries.

Depending on the source assumed to produce the cosmic rays, there are different expectations
for the distribution of ⟨ln A⟩. In Figure 2.5a, the predictions from multiple astrophysical models
are shown, while Figure 2.5b depicts a summary of measurements that have determined ⟨ln A⟩
using either the muon multiplicity Nµ or the depth of the shower maximum Xmax.

An overview over the models shown in the plot is given in [32]. The two-component SNR&AGN
model shows decent agreement with the measurements over the entire plotted energy range. Here,
supernova remnants are the dominant source at energies at and above the knee up to 108 GeV,
while active galactic nuclei take over for higher energies. The dip model is similar to this, except
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Figure 2.5.: Mean logarithmic mass ⟨ln A⟩ of cosmic rays plotted over their energy [15].

that it additionally explains the observed ankle of the energy spectrum by interactions of the cos-
mic ray particles with the cosmic microwave background producing electron and positron pairs.
This process requires a high fraction of protons in the composition to work. The SNR&ankle
model instead assumes that the ankle is caused by the transition from galactic to extragalactic
sources, and that it happens at higher energies between 109 and 1010 GeV. The two mixed mod-
els assume that the extragalactic sources dominant above the ankle are similar to the galactic
ones. Other models assume that the cosmic rays underwent acceleration by gamma ray bursts or
hypernovae. Furthermore, there are models which propose that even very high energetic cosmic
rays have some rare but exceptionally powerful galactic sources.

In Figure 2.5b, the envelope around measurements from various experiments is plotted. The
uncertainty of the measurements based on the muon multiplicity Nµ is substantially larger than
the one from the measurements using Xmax. Up to 80% of this uncertainty is caused by the-
oretical uncertainties in the high energy nuclear interaction models, which are crucial for the
indirect measurement of the primary cosmic rays [15]. While the latest interaction models take
into account recent measurements from LHC and can reduce these uncertainties, they also are
inconsistent with measurements of Nµ (muon puzzle, see subsection 2.1.3). If the muon puzzle
could be solved, the size of the envelopes could be drastically reduced and allow for the exclusion
of some of the astrophysical models in the future. With that, it would also improve the potential
of Km3net as a tool for measuring the cosmic ray composition, as it is sensitive only to the
muonic component and not the electromagnetic part of the air shower which is typically used for
determining Xmax.

2.1.5. Acceleration

As was shown in Figure 2.1, the flux of cosmic rays roughly follows piece-wise power laws of the
energy. This is an important hint for discovering the source of cosmic rays, since its acceleration
mechanism must provide an explanation for why a distribution like this is observed.

Interestingly, charged particles undergoing the so-called first order Fermi acceleration in strong
shock waves, like they are present in supernova explosions, can exhibit such an energy spectrum.
This is one of the reasons why supernova remnants are often discussed as a promising potential
accelerator of cosmic rays in the galaxy. Additionally, such shock waves can also appear in
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extragalactic sources like active galactic nuclei or gamma ray bursts.
As a shock wave made of magnetized plasma expands into the surrounding matter, particles

move through the front into the region containing shocked gas directly behind it. Here, they
scatter on the various irregularities of the present magnetic fields. After some scatterings, they
can leave the shock wave, either in the direction of its expansion in front of the shock front, or
in the opposite direction.

In the latter case, they exit the acceleration process and consequently keep their current energy.
When they get in front of the shock wave, however, they not only increase their energy, but can
also enter the shocked gas again, and thus have another chance of getting in front of the wave.
This leads to a steeply falling energy distribution, as higher energies occur increasingly rarer due
to requiring multiple forward scatterings in a row. Based on these assumptions, the expected
resulting energy distribution can be estimated.

Let the particle gain a fraction ξ of its current energy whenever it crosses the front of the shock
wave, After crossing the shock wave n times, a particle with the initial energy E0 will then have
the following total energy E(n) :

E(n) = E0 · (1 + ξ)n. (2.2)

Solving this equation for n gives the number of crossings required to reach a given energy E:

n(E) = ln
(

E

E0

)
/ ln(1 + ξ). (2.3)

As described above, the particle has a certain probability p of being accelerated again after it
has encountered the front. The chance of being accelerated at least n times is therefore given by
pn. As described above, each acceleration increases the energy, so the total number of particles
N with at least a given energy E should be proportional to this aforementioned probability:

N(> E) ∼ pn. (2.4)

By inserting Equation 2.3 into Equation 2.4 and making use of the identity aln b = bln a, a power
law for the energy distribution can be obtained:

N(> E) ∼ p
ln
(

E
E0

)
/ ln(1+ξ)

=
(

E

E0

)ln p/ ln(1+ξ)

=
(

E

E0

)−γ

,

with the index γ defined as

γ ≡ ln(1
p

)/ ln(1 + ξ). (2.5)

This calculation is a simplification, as it does neglect perturbations like the influence of the
particles themselves on the magnetic field or the orientation of the fields with respect to the
shock front. However, by making use of the kinetic gas theory and some assumptions about the
velocities involved in the shock wave, it can be shown that the expected value for the index γ is
close to the experimental values for the spectral index of cosmic rays [5].
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Figure 2.6.: Scheme of an extensive air shower induced by a cosmic ray particle (left). A reoccur-
ring phenomenon in the air shower are electromagnetic showers, which are depicted
in detail on the right [33].

2.2. Atmospheric showers

As a cosmic ray particle enters the atmosphere of the Earth, it can interact with the nuclei of
an air molecule and produce several secondary particles. They can collide with the surrounding
nuclei again, generating new particles, and so on. This cascade of collisions is known as an
extensive air shower, and is the production mechanism for atmospheric muons. As depicted in
Figure 2.6, the many different interactions that take place in such a shower can be grouped into
two components: electromagnetic and hadronic showers.

2.2.1. Hadronic shower

Both the primary particle as well as the hadrons produced deeper into the shower can undergo
nuclear interactions and create a hadronic shower. Some of the energy of the incident hadron
is consumed in the nuclear process. The rest is mostly contained in neutral and charged pions,
which make up the majority of the resulting hadrons, and to a lesser extent in heavier hadrons
like kaons. One third of the pions are neutrally charged, and decay extremely quickly into a pair
of photons:

π0 → γ + γ, branching ratio = 0.988, mean lifetime = 8.5 · 10−8 ns.

These photons can then cause an electromagnetic shower. Two thirds of the pions are charged,
and decay much more slowly into muons and neutrinos (see also the Feynman diagrams in
Figure 2.7):

π+ → µ+ + νµ

π− → µ− + ν̄µ, branching ratio = 0.999, mean lifetime 26 ns.

This decay is the dominant source of atmospheric muons. About three quarters of the energy
of the charged pions is contained in the neutrino produced in this interaction. Since the neutrinos
have such a low chance of interacting again, this part of the energy is essentially removed from
the development of the hadronic shower. The muons themselves are typically minimum ionizing
(see section 2.3) and can therefore travel for quite a long time. Many of them reach the surface,
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Figure 2.7.: Feynman diagrams of the decay of a positively (left) and negatively (right) charged
pion. This is the dominant production mechanism of atmospheric muons.

and some can even go deep underground. Eventually, they decay into an electron or positron, as
well as a pair of neutrinos:

µ+ → e+ + νe + ν̄µ

µ− → e− + ν̄e + νµ, branching ratio = 1, mean lifetime 2197 ns.

A typical atmospheric muon is produced at an altitude of about 15 kilometers in the atmosphere
through the decay of a pion. On its way to the surface, it loses an average of about 2 GeV of its
energy due to the ionization losses described in subsection 2.3.1. At the sea level, the average
energy of a muon is about 4 GeV, meaning that only extraordinarily energetic muons will be
able to reach deep enough into the ocean to arrive at detectors like Km3net. Since cosmic rays
consist mostly of positively charged nuclei containing protons, there is an excess of positively
charged pions in the hadronic showers as well. As a consequence, there are about 30% more
positively charged muons at momenta above 1 GeV/c than there are negative ones.

2.2.2. Electromagnetic shower
An electromagnetic shower consists of photons, electrons and positrons, which undergo pair
production and lose energy through radiative processes. Many of these showers are initiated by
the photons emitted from the decay of neutral pions in the hadronic component of the shower. If
an incident photon has an energy higher than twice the rest mass of an electron me = 511 keV,
it can produce an electron-positron pair in the vicinity of an atomic nucleus:

γ → e− + e+.

These leptons will lose their energy quickly due to radiation processes like Bremsstrahlung (see
section 2.3), which is emitted in the form of additional photons. If the energy of these photons is
high enough, they can undergo pair production yet again and thus continue the development of
the shower. Eventually, the energy is distributed among too many of the involved particles and
the evolution of the shower comes to a halt, since most of the energy is then lost by ionization.
Due to the relatively high energy losses of electrons and positrons, most of the particles at the
surface level and below are the muons and neutrinos that are produced in the hadronic showers.

2.3. Interaction of muons with matter
As charged particles like muons travel through dense material, they undergo different kinds of
interactions with the surrounding matter, resulting in a significant loss of energy. This effect
strongly depends on the momentum of the particle.

For relativistic muons with momenta between 0.1 and 100 GeV/c, the energy loss is relatively
small, reaching a minimum at about 0.3 GeV/c. Since the energy loss in this region is dominated
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rest mass of muons (M ≈ 106 MeV/c2) into the equation for βγ, the x-axis can be
given in terms of the muon momentum p, which is shown as the second scale at the
bottom.

by ionization processes, particles at this energy are commonly referred to as minimum ionizing
particles. In practice, most muons generated by cosmic rays can reasonably be assumed to be
minimum ionizing [34], which allows them to travel long distances through air and consequently
be detected at the surface or below.

For momenta above 100 GeV/c, the energy loss rises sharply as radiative processes begin to
dominate. Below 0.1 GeV/c, the stopping power increases steeply as well, due to ionization.
This is shown in Figure 2.8 for a positively charged muon in copper. The energy loss around
the minimum has a small correlation to the proton number Z of the traversed material, so the
graph would look slightly different for water or air. In general, the stopping power for minimum
ionizing particles is typically about 2 MeV cm2/g, which corresponds to an energy loss of about
200 MeV/m in water.

2.3.1. Ionization and excitation

Charged particles can interact with atoms along their trajectory by expelling some of their
electrons (ionization) or by exciting them to a higher energy level. In both cases, the incident
particle looses energy, which can be described by a continuous loss per unit length depending
on the properties of the material, like its density or atomic number. In the interval of roughly
0.1 < βγ < 1000 (muon momenta between 0.01 and 100 GeV/c), the average energy loss for
heavy particles like muons can be described with an accuracy of a few percent with the so-called
Bethe-Bloch formula.
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2.3.2. Radiation
If a charged particle is accelerated, it looses energy by emitting electromagnetic radiation. As a
particle travels through matter, it occasionally gets deflected by the electric fields of atoms and
therefore radiates photons in the process. This is called Bremsstrahlung, and together with pair
and photon production, it makes up most of the radiative losses typically encountered by muons.
While being insignificant compared to ionization losses for smaller βγ < 1000 (muon momenta
below 100 GeV/c), they quickly ramp up for higher energies and become the dominant source of
energy loss. For electrons, this increase is present at much lower momenta due to their low mass.

Another source of radiative energy losses is Cherenkov radiation, which occurs when the
charged particle moves faster than the local speed of light in the material. Even though the
amount of radiated energy in Cherenkov light is comparatively small - being several orders of
magnitude below ionization losses - it is of critical importance for particle measurements in
Cherenkov detectors like Km3net (see also section 3.2).

2.3.3. Deflection
Charged particles can be scattered elastically by the Coulomb fields of surrounding nuclei. While
the energy loss is negligible, many of these small collisions can noticeably change the trajectory
of the particle. This effect can be described by the theory of Moliere, according to which the
distribution of the deflection of most particles is similar to a Gaussian, while a small percentage
forms non-Gaussian tails. As a consequence, the incident direction of an atmospheric muon can
get a slight smearing on its way from the atmosphere to the surface.
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Detection of particles in KM3NeT
Chapter 3.

3.1. The KM3NeT detectors: ORCA and ARCA
Km3net is a network of water Cherenkov detectors currently under construction in the deep
Mediterranean Sea. It consists of two different sites with the same collaboration and technology
behind it:

• Km3net/Orca – Oscillation Research with Cosmics in the Abyss, located at a sea depth
of 2450 meters near Toulon in southern France. It features a very densely instrumented
0.007 km3 of water for precise measurements of atmospheric neutrino oscillations, with
typical neutrino energies between 3 and 100 GeV.

• Km3net/Arca – Astroparticle Research with Cosmics in the Abyss, located at a sea depth
of 3500 meters near Capo Passero in Sicily, Italy. Its lower density of instrumentation but
large volume of about one km3 was optimized for the measurement of neutrinos from
astrophysical sources, with high energies in the TeV range.

The location of the sites are shown on a map in Figure 3.1. Water Cherenkov detectors can
detect charged particles via the Cherenkov radiation they induce when traveling faster than the
local speed of light. In Km3net, these Cherenkov photons are measured by using three-inch
photomultiplier tubes (PMTs, see Figure 3.2).

If a photon hits the cathode of a photomultiplier, it can be absorbed according to the photo-
electric effect and cause the emission of an electron. The chance of an absorption happening -
also called the quantum efficiency - amounts to about 22 to 27 percent for the Hamamatsu PMTs
utilized in Km3net, depending on the wavelength [35].

In the photomultiplier, a series of dynodes are arranged in an electrical field, with the potential
increasing from one dynode to the next. Because of this, the emitted electron is accelerated
towards the first dynode, releasing additional electrons upon impact. These electrons are in turn
accelerated towards the second dynode, and each of them can release even more electrons.

This process is repeated through a total of ten dynode stages, amplifying the original signal
by a factor of more than 106 [35]. Finally, they hit the anode and generate an electrical pulse. If
the voltage in this pulse exceeds a defined threshold, the time of the leading edge as well as the
timespan in which the voltage was over the threshold (referred to as the time over threshold, or
ToT) is digitized with nanosecond precision. Together with the info of which PMT recorded the
pulse, this is called a hit.

31 PMTs are mounted in a water-proof and pressure resistant glass sphere with a diameter
of 43 cm, which is well suited for a long-term use in the deep sea. Out of the 31 PMTs, 19
are located in the lower half of the DOM, and the remaining 12 are in the upper half. Having
so many photomultipliers in each DOM has numerous advantages: Apart form the increased
photo-cathode area and the additional reliability due to redundancy, it also allows for measuring
the photon arrival direction. As described in later chapters, this additional information can be
efficiently used by graph neural networks to aid its reconstructions.

A detection unit (DU, also called string or line) is made up of two long ropes, to which 18 of
these DOMs are attached to. It is anchored to the sea floor and has a buoy at the top, which
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Figure 3.1.: Map of relevant locations of the Km3net experiment. The cities of collaborating
universities and research institutes are shown in white. The locations of Orca,
Arca, and the proposed third site of Km3net near Greece are shown in yellow
(courtesy Km3net).

Figure 3.2.: Photos of a a prototype of a Hamamatsu photomultiplier (PMT) on the left, and a
Km3net digital optical module (DOM) on the right [36]. 31 PMTs are installed in
each DOM, visible as the golden disks.
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Figure 3.3.: Artists impression of a fully constructed Km3net building block with 115 installed
detection strings, each of which contains 18 DOMs (courtesy Km3net).

increases the buoyancy of the string to keep it in an upright position. The vertical spacing
between the DOMs depends on the site. For Km3net/Orca, it is about 9.3 meters, whereas for
the sparser Km3net/Arca detector, the distance between the stories is about 36 meters.

115 detection units are distributed on a circular area to instrument a large three dimensional
volume of sea water, called a building block. The horizontal spacing between the DUs is planned
to be about 20 meters for Orca, and roughly 90 meters for Arca. An artists impression of how
a completed building block could look like is shown in Figure 3.3. In total, there will be one
building block in Orca, and two blocks in Arca.

In early 2020, the first phase of the Km3net/Orca detector construction has been successfully
completed, with six strings being in place and smoothly taking data. As of July 2022, four
additional lines have been added, bringing the total up to ten lines. Arca currently operates
with 19 strings.

3.2. Cherenkov radiation
Water Cherenkov detectors like Km3net measure particles via the radiation they induce as they
travel through the water in the instrumented volume, the so-called Cherenkov radiation. In
order for this effect, to occur, the traversed medium has to be dielectric, the particle has to be
electrically charged, and it has to be faster then the phase velocity of electromagnetic fields in
the medium [37].

While it is impossible for particles to be faster than light in vacuum, they can be faster than
the local speed of light, as electromagnetic waves can be slowed down in matter. For example,
the local light speed in water is only about 75 percent of its vacuum counterpart. The Cherenkov
effect can be understood easily by comparing it to the bow wave of a ship. The ship produces
spherical wave fronts as it moves through the water. If the ship is faster then the wave fronts,
the wave maxima overlap and produce the characteristic triangular shape.

in a qualitative fashion, the Cherenkov effect can be described similarly. If a particle is faster
than the ratio of the local speed of light cloc divided by the refractive index n of the medium, it
induces an electromagnetic shock wave under a specific angle θ to the trajectory. This angle is
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Figure 3.4.: Scheme of the propagation of Cherenkov radiation. Spherical waves are induced by
the electric fields of a charged particle moving through a dielectric medium, with the
particle’s velocity v being < cloc = c/n on the left plot, and > c/n on the right. In
the latter case, the maxima overlap and form a cone with the opening angle θ [38].

given by:

cos θ = 1
β · n

, with β = v

cvac
, (3.1)

for particles with velocities close to the speed of light (β ≈ 1). Together with the typical refractive
index of water n ≈ 1.35, the Cherenkov angle amounts to θ ≈ 42 deg.

3.3. Event signatures
The three main sources of events in Km3net are triggered by noise, by muons from the atmo-
sphere, and by neutrinos, which can be of atmospheric or cosmic origin.

Noise is present as a background to the light emitted by passing particles. Occasionally, an
event does not show a particle at all, but is made up completely of this ambient light. It is
emitted mostly by radioactive decays of the 40K that is naturally present in the water, as well
as bioluminescent microorganisms living in the deep sea [39].

Muons have a low energy loss compared to other leptons, reaching as low as 250 MeV of
energy lost per meter of water covered in the extreme (but common) case of minimal ionization.
Therefore, they can travel long distances and consequently produce straight tracks of Cherenkov
light in the detector, which allow for a precise reconstruction of their direction. Since atmo-
spheric muons are generated in the atmosphere, their tracks never start within the detector and,
in most cases, do not stop inside of the detector either, making an energy reconstruction more
difficult.

Neutrinos are not electrically charged, so they can only be indirectly measured in water
Cherenkov detectors via the charged particles produced in interactions with nuclei of the sur-
rounding water. This interaction produces a hadronic cascade, visible as a shower of light.
Additional light can be produced depending on the type of neutrino interaction that took place:

• Neutral current (NC) interaction under exchange of a neutral Z boson, emitting a neutrino
of the corresponding flavor. Since the neutrino does not emit Cherenkov radiation, it

26



3.4. Other large volume neutrino detectors

Figure 3.5.: Scheme of the different interactions between a neutrino and a nucleon [40].

escapes undetected, leaving only the electromagnetic shower from the hadronic cascade as
a signal.

• Charged current (CC) interaction under exchange of a charged W boson, emitting a charged
lepton of the corresponding neutrino flavor. Additional light is produced depending on the
flavor:

– νe: the electron loses its energy quickly, producing another shower that overlaps with
the hadronic cascade.

– νµ: the muon can travel long distances, leaving behind a track similar to the one
from atmospheric muons. These tracks can start in the detector, in which case the
hadronic cascade can also be visible. If the hadronic interaction took place outside of
the detector, only the muon track is present.

– ντ : the τ -lepton decays shortly after the interaction, resulting in either a hadronic or
electromagnetic shower (83%) or a muon track (17%).

In summary, track-like event signatures are produced by νµ-CC interactions and 17% of the
ντ -CC interactions. In all other cases, a shower like signature is generated (see Figure 3.5). Since
the showers are often fully contained in the detector, they are well suited for a reconstruction of
the energy. Since the flux of neutrinos is many orders of magnitude below that of atmospheric
muons for events traveling downwards through the detector, they can often be safely ignored for
studies regarding muons.

3.4. Other large volume neutrino detectors
Apart from Km3net, there are several other large volume neutrino detectors in operation or
under construction, which also measure Cherenkov radiation in water using photomultipliers.

IceCube is an ice-based Cherenkov detector located in Antarctica near the south pole. The
construction of its main array was completed in December of 2010, with its digital optical
modules being embedded in a cubic kilometer of glacier ice at depths between 1.45 km
and 2.45 kilometers [41]. It features a large array of optical modules for neutrinos with
energies above 100 GeV, and a smaller array called DeepCore [42] with a five times higher
instrumentation density, situated at the bottom center of its larger counterpart. This
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provides sensitivity to neutrinos with energies as low as 10 GeV. Additionally, the IceTop
[43] extensive air shower array is located at the surface right over the detector. Completed
in early 2011, its primary goal is to measure the energies of air showers, which can be used
to investigate the cosmic ray mass composition.

ANTARES is the predecessor of the Km3net telescope, located close to the site of Km3net/Orca.
It was operational between May 2008 and February 2022. It used 12 detection units with
up to 75 optical modules per line, each containing a single 10 inch photomultiplier, to
instrument a total volume of about 0.01 km3 of deep sea water [44].

Baikal-GVD is currently under construction in lake Baikal in the south east of Russia [45]. It
consists of multiple clusters of eight detection units, every DU being composed of 36 optical
modules with a single ten-inch photomultiplier each. With the construction having started
in 2016, there are eight clusters operational in 2021 [46], instrumenting a total of 0.4 km3

of water.
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Processing chain for atmospheric
muons

Chapter 4.
Having a set of simulations that closely resemble the measured data is of crucial importance,
especially for supervised deep learning algorithms like the ones described in this thesis. In order
to achieve this, a complex chain of several processing steps is necessary, each step utilizing the
results of the previous one. An overview of these steps for the simulation of atmospheric muons,
and for the processing of measured data, is shown in Figure 4.1.

The first step in the simulation chain is the generation of the particles that can produce light
in the detector. This can happen by simulating entire cosmic ray air showers caused by primary
particles entering the atmosphere (Corsika), or by making use of parametrized distributions
that directly describe the expected atmospheric muon flux near the detector (Mupage).

In the next step, the propagation of the emitted Cherenkov radiation is simulated, which only
needs to be done for muons that come close enough to the detector in order to be detectable. This
is obviously the case for particles that travel directly through the instrumented volume, but even
if they just come somewhat close, the Cherenkov radiation can still reach inside the detector.
The chance of this happening depends on the distance of their trajectory to the instrumented
volume and on the attenuation length of the radiation in water. For this reason, the propagation
of light is simulated in a volume that is larger than the instrumented volume by a few attenuation
lengths. This enlarged volume is referred to as the can (see Figure 4.2).

Afterwards, the response of the detector is simulated. At this point, simulations and data can
be treated identically, by applying the trigger algorithms and finally reconstructing the desired
observables.

4.1. Event generation

4.1.1. Corsika

Corsika (short for COsmic Ray SImulations for KAscade) [48] is a simulation program for
extensive air showers caused by primary particles like atomic nuclei, photons or electrons. It
was originally developed for the Kascade experiment, but has become the standard solution for
simulating air showers in many cosmic ray, gamma ray and neutrino experiments. For this, the
particles involved in the shower are tracked through the atmosphere until they either interact or
decay. The effects described in section 2.3, like the energy loss along the way depending on the
density profile of the atmosphere as well as the potential deflections are taken into account in
the process. Additionally, the effect of the Earth’s magnetic field on the trajectory is also part
of the simulation.

As described in section 2.2, hadronic interactions play an important role in the development of
air showers. Models for these interactions are necessary for a detailed simulation over the entire
range of energies encountered in cosmic rays. For energies up to several hundreds of GeVs, the
collisions can be studied at fixed target detectors, allowing for cross checks with measured data.
However, an extrapolation of the observations is necessary for energies in the higher TeV region
and beyond.
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corsika

propagate
to can

mupage

light generation

detector response data

trigger

reconstruction

Figure 4.1.: Scheme of the processing chain for atmospheric muons and data in Km3net. The left
route shows the chain for simulated events, which are generated either by Corsika
and propagated to the can, or directly obtained from Mupage. After the light
generation and simulation of the detector response, they undergo trigger algorithms
similar to the ones that are used for measured data on the right route.

Figure 4.2.: Scheme of the can, in which the light of particles is simulated. The instrumented
volume of the Km3net detector is shown in blue, surrounded by the can in yellow.
The can is enlarged by a multiple of the attenuation length La [47].
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For this, several so-called high energy interaction models can be used in Corsika. Some com-
monly used models using different theoretical bases are Sibyll[49], Epos[50] and Dpmjet[51].
For lower energies, there are several different models as well, like Urqmd[52] or Geisha[53].
Since switching between any of these different models can influence the resulting particle distri-
butions from air showers, they can be a source of systematic uncertainty for any study regarding
the indirect detection of cosmic rays. As Km3net is located in the deep sea and muons need to
be quite energetic to reach it, the low energy model is likely to have less of an impact compared
to the high energy one, though.

As described in subsection 2.1.3, the elemental composition of cosmic rays changes significantly
with increasing energy. Therefore, the flux Φ(E, Z) as a function of the primary energy E and
atom number Z is typically added as a weight to simulated events of the different nuclei. There
are multiple models of the cosmic ray flux, so this is another source of systematic uncertainty.

A simple model is the so-called poly-gonato flux [54], which describes the energy spectrum
of each primary as a powerlaw up to a Z dependent cut-off resembling the knee, and continues
afterwards with a much steeper spectral index. While somewhat accurate at lower energies,
this is in disagreement with measurements towards and beyond the ankle region. More complex
models, like GST [55] by Gaisser, Stanev and Tilov or H3a [56] by Hillas and Gaisser feature
additional free parameters to better represent the observed behavior there.

Once the particles of the air shower are simulated down to the sea level with Corsika, they
are propagated all the way through the water down to the can using the corresponding programs,
like Music[57] or Proposal[58].

4.1.2. Mupage

A full simulation of a cosmic ray air shower, including the interactions and propagation of the
particles therein down to the detector, is a complex task that requires a significant amount of
computation time to conduct. The generator program Mupage [59] - short for "muon generator
from parametric formulas" - accelerates this process substantially by producing parametrized
distributions of muon bundles directly at the can.

For this, atmospheric muons were simulated with the Hemas [60] code back in the 2000s, which
handles the cosmic ray interaction and propagation through the atmosphere. Nowadays, the
calculations in this step are typically done with the more popular Corsika framework described
in the previous section. Five different primary groups (proton, helium, carbon-nitrogen-oxygen,
magnesium and iron) with a flux following the poly-gonato model [61] were used for the generation
of the air showers, with primary energies per particle ranging from 103 GeV up to 2 · 109 GeV
[62].

The particle interactions in the atmosphere were simulated with Dpmjet [51] and propagated
through the water using Music [57], down to different depths between two and five kilometers
water equivalent (w.e.). This way, the parametrization can be constructed also as a function of
the depth. Prompt muons were not part of the simulation.

The resulting distributions of various observables of the muon bundle flux were fitted with
parametric formulas. For example, the following equation, which was originally derived for the
Frejus detector [63], describes the flux Φ of muon bundles depending on the muon multiplicity
m, the depth w.e. h and the zenith angle θ:

Φ(m, h, θ) = K(h, θ) · m−ν(h,θ), (4.1)

with K(h, θ) = K0a · hK0b · cos(θ) · exp((K1a · h + K1b) · sec(θ))
and ν(h, θ) = (ν0a · h2 + ν0b · h + ν0c) · exp(sec(θ) · ν1a · eν1b·h).
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The nine free parameters (ν0a, ν0b, ν0c, ν1a, ν1b, K0a, K1a, K1b) were then tuned to the distribu-
tions obtained with the Hemas simulation. For this, 63 two dimensional bins were defined for h
and θ, and the resulting muon multiplicity distributions were fit with Equation 4.1. Similarly, the
lateral spread of muons in a bundle was modeled as a function of depth, zenith and multiplicity
using nine free parameters.

Finally, the dependence of the flux on the energy was described by a multiplicative factor to
the flux defined in Equation 4.1. It is a function with seven free parameters depending on the
zenith and the depth for single muons, and another 15 free parameters depending on the zenith,
depth, multiplicity and lateral distance for muon bundles.

The energy spectra of single and double muons from the resulting parametrization were cross
checked with measurements from the Macro experiment [64]. Macro was an underground
scintillation detector operating from 1989 to 2000, which was situated under the Gran Sasso
mountain in central Italy. While its main goal was the search for magnetic monopoles, it also
doubled as a neutrino detector and cosmic ray observatory.

For the cross check, the average muon energy at a given depth w.e. and zenith angle was
estimated from the depth in rock and arrival direction of the measured muons. This estimation
was necessary since the energy loss of muons in water differs from that in the inhomogeneous
rock of the mountain, and its irregular shape also leads to a mixture of different zenith angles.

The estimated average energy for single and double muons were measured at four different
depths with an uncertainty of 6 to 7 percent. The parametrization agrees well with this result,
as the energy obtained from it was shown to be within one sigma at all four depths, both for
single and double muons. However, no checks were performed for higher multiplicities, as well
as the lateral and zenith distributions.

In summary, the parametric formulas contained in Mupage allow for skipping the expensive
propagation of the particles in the air shower, that would otherwise require Corsika to run. All
that is required are the dimensions and position of the detector can, at the surface of which the
observables of the particles will be produced according to the parametrized distributions [65].

In effect, this allows for simulating much larger quantities of events with the given compu-
tational resources. This is especially useful for deep learning applications, since they typically
required vast amounts of training data. At the same time, however, this also makes it impossible
to study a variety of systematic effects including different interaction models, cosmic ray fluxes
or atmospheric models. The approach followed in this thesis is therefore to train neural networks
on Mupage simulations, and then apply them on a smaller set of Corsika simulations to study
these effects.

4.2. Light propagation and detector response

The positions and properties of atmospheric muons and muon bundles at the can can be generated
either from Corsika via simulation of the air shower starting at the top of the atmosphere, or
directly from the Mupage parametrization. In both cases, the next step in the chain is the
propagation of the muons through the can, and the simulation of the light emission.

In Km3net, these tasks for muons are usually handled with a custom application called JSirene,
which takes into account the specific configuration of the detector. It calculates the probability of
a photon arriving at each of the PMTs in the detector from any of the muons traveling through
the can based on multi dimensional interpolation tables [66]. Alternatively, the propagation
of each photon can also be calculated individually using the program km3sim. However, it is
typically only used for the simulation of neutrino events.

The next task is the simulation of the detector response. Even though Km3net is located
in the deep sea and therefore no daylight is present, atmospheric particles are not the only
sources of light measured by the detector. For example, β decays of the radioactive element 40K,
which is naturally present in the water, pose a substantial background to the signal of particles.
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Another source of light are bioluminescent micro-organisms present in the deep Mediterranean
Sea [39]. They react to environmental conditions like changes in the strength of the sea current,
so the amount of light produced by them can change significantly over time. To account for the
background in the simulations, a rate of typically about 10 kHz per PMT for uncorrelated hits
is added to the muon signal. Correlated hits on a DOM are simulated with increasingly lower
rates for two up to five hits. In the so-called run-by-run simulations, the observed variation of
the background rate in measured data over time is included as well.

The simulation of the detector response also has to take into account the PMT electronics in
order to resemble the measured data as closely as possible. This includes the pointing direction
and areas of the photocathodes present in each PMT, their angular acceptance, the influence of
the glass sphere of each DOM, as well as the optical gel that is contained within [36].

4.3. Trigger

In reality, the Km3net detectors are constantly running and recording data. This is necessary
to ensure no important information is missed, since it is not known beforehand when an event
of physical interest will occur. The optical data measured in each PMT is digitized and sent to
the shore station, reaching a rate as high as 25 Gigabyte per second for a full building block. In
order to reduce the amount of data that is saved to disk, specific algorithms are used to search
through the data for correlated hits and potential particle signatures.

These algorithms are called event triggers, and they exist at various levels. A level one trigger
(L1) looks for multiple hits on different PMTs of a single DOM within a given time window of
typically 10 nanoseconds. However, 40K decays and bioluminescent organisms also often produce
L1 hits, so more advanced level two triggers (L2) can be used to get a filtered selection with
higher purity.

Since atmospheric muons and some of the neutrinos can produce track-like signatures in the
detector, the 3DMuon trigger can be used to look for such patterns in the data. For this,
the algorithm looks for multiple L1 hits that could be causally connected to a straight track,
as they lie in a 3D cylinder around an assumed muon trajectory [67]. In similar fashion, the
3DShower algorithm looks for multiple L1 hits in a 3D sphere, that could have been produced
by a shower-like CC-νe, CC-ντ or NC neutrino interaction.

A recent addition to the triggers above is the MXShower trigger, which can increase the trigger
efficiency for neutrino interactions at lower energies [68]. It looks for any causally connected hits
around a single 3DShower L2 hit, taking into account the fact that low energy neutrinos can
occasionally not produce enough light for even a single second L2 hit.

When any of the L2 triggers fire, the entire cluster of triggered hits is saved as part of an
event. If multiple triggers overlap, they are merged into a single, bigger event. Since not every
photon emitted from a particle necessarily produces an L2 hit, a safety time margin is added
before and after the first and last L2 hit. All hits in this time window, including the hits that
have not triggered the event, are saved as part of the event as well. They are referred to as the
snapshot hits. The safety margin is derived from the maximum time it takes a photon to travel
through the detector at light speed.

Similar to the process on data, the simulated hits obtained from the detector response described
in the previous section 4.2 undergo the same trigger algorithms. This way, the simulated events
can be treated exactly the same as the measured events for the reconstructions ahead.

In Figure 4.3, the distributions of several important observables describing atmospheric muon
bundles are shown for a set of simulations using Mupage and Corsika. More information on
the dataset, as well as the version and parameters used for Corsika are presented in section 7.1
and section 8.1. The zenith angle of the muons has a large influence on the detection rate (top left
plot). Towards the horizon - i.e. towards a cosine zenith angle of zero - the rate is dropping fast, as
the distance to the air shower in which the muons were produced increases, resulting in a higher
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Figure 4.3.: Distribution of various observables of atmospheric muon events after the trigger stage
of the simulation chain. The events are simulated using either Mupage (blue) or
Corsika (red). In the plots showing the zenith and the diameter, large uncertainties
can be observed in some of the bins. This is caused by a single or a few events with
an exceptionally high weight being in that particular region of the phase space. The
distribution of weights has been improved for upcoming productions of Corsika.
More information on the datasets can be found in section 7.1 and section 8.1.

loss of energy along the way. It can also be seen that the overall rate of events is slightly lower
in the Corsika dataset as compared to Mupage, since the distribution is shifted downward in
the plot. The distribution of the muon multiplicity roughly follows a powerlaw, and thus rapidly
decreases towards higher muon numbers (top right plot). It is much more shallow in Mupage
as compared to Corsika, which is likely due to an inaccuracy of the Mupage parametrization
(see subsection 7.4.3 for a detailed discussion). In the given dataset, Mupage was only used to
simulate events with multiplicities up to 100 and energies up to 500 TeV, resulting in the sudden
stop of the corresponding distributions in the plots. The energy of a muon bundle is defined here
as the sum of the energies of all the individual muons in the event. While most bundles have an
energy of about 400 GeV at the height of the Km3net/Orca detector, some can rarely reach
energies as high as 107 GeV (bottom left plot). The lateral distribution of muons in a bundle can
be quantified by calculating the maximum perpendicular distance between any two muons in a
bundle at the detector can. This is defined as the bundle diameter in this work, and described
to greater detail in section 7.3. The median diameter of a bundle is 15 meters, with the rate
decreasing exponentially towards larger diameters (bottom right plot).
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4.4. Classical reconstruction
Given an event with its corresponding hits, the goal of a reconstruction is to obtain estimates for
the properties of the particle, or for multiple particles in the case of atmospheric muon bundles.
This can be done with the deep learning techniques described in this work, or with the existing
established methods, which are designed for showers and single muon tracks. Since this classical
reconstruction has been widely used and tested in Km3net, it offers an excellent opportunity to
validate the results of deep learning, especially on measured data.

The strategy for the classical reconstruction of a muon track was originally developed for the
Antares experiment, and has been further refined over the years [36]. The idea is to perform
a maximum likelihood fit on the positions of PMTs and the time of recorded hits based on the
probability distribution function (PDF) of a track hypothesis. The PDF itself has been acquired
via a fit on noise-less Monte Carlo simulations.

The whole track fit is split in multiple stages: The first step is a prefit, in which multiple
fits are made on a subset of causally connected hits of an event. In order to find promising
hypotheses for the track direction, the sky is scanned in steps of a few degrees, and a linear fit
on the hit times is performed for each step.

The actual maximum likelihood fit of the PDF is done using one or several of the best prefit
tracks to estimate the direction of the incident muon. The quality of the fit can be assessed with
the resulting likelihood of the PDF divided by the number of hits used in the process. Roughly
speaking, the higher this ratio, the better the reconstruction tends to be. Afterwards, the energy
of the muon can be estimated by using the result from the directional fit and the track length.
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Introduction to deep learning
Chapter 5.

A typical analysis task for Km3net/Orca is to reconstruct the properties of a particle based on
the data that was measured by the detector. For example, one might be interested in its energy
or its direction of arrival. Naturally, the prediction should be a good approximation of the real
value of the property.

Mathematically speaking, this prediction is a function F̂ (xin) of the measured data from
the detector xin. Its output values should be as close as possible to the values of this desired
property, where the closeness is defined in terms of some specific metric [69]. In other words, a
close approximation of the hypothetical ideal prediction function F is sought, which is assumed
to always reconstruct the property correctly. The process of finding such an approximative
function can be difficult, since it is a high-dimensional task. An especially promising way of
tackling problems of this kind is the use of artificial neural networks and especially deep learning,
which has proven to be very successful in the field of pattern recognition in the past years (e.g.
achieving super-human performance in the board game Go [70]; image recognition for the image
net challenge [71]).

This chapter will give an overview over the theoretical background of artificial networks, and
introduce practical aspects for analyzing Km3net/Orca data. Sections 5.1 to 5.5 are in large
parts taken verbatim from my Master’s thesis [72], which additionally also includes a detailed
explanation of some common network components like dense layers, convolutional layers or the
batch normalization. Some of these are also used as a part of the network architecture of this
work, which is introduced in chapter 6.

5.1. Neurons and layers

The deep learning techniques applied in this thesis are based on artificial neural networks, a term
coined by the fact that they were originally inspired by the biological function of brain cells. In
this spirit, an artificial neural network is a system of connected nodes named artificial neurons,
each of them typically applying a non-linear function - the activation function - to its inputs.
The output of this operation can then again be fed into other neurons, or can be taken as the
output of the network as a whole.

In practice, a neuron will usually apply the following operation to its N inputs {xj |j = 1, ..., N}:

f(x1, x2, ..., xN ) = Θ

 N∑
j=1

ωjxj + b

 (5.1)

That is, a sum over every input to the neuron xj ∈ R is taken, each weighted with a real number
ωj . A constant, the bias b, can be added before applying the activation function of this neuron
Θ.

Often, the neurons are ordered in layers. If the input to a certain layer consist only of neurons
from the previous layer, it is called a feed-forward network. In this case, the output x

(n)
i of

neuron i in the n-th layer is given as a function from the output x
(n−1)
j from the N neurons in
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the previous (n − 1)-th layer by the following expression:

x
(n)
i

(
x

(n−1)
1 , x

(n−1)
2 , ..., x

(n−1)
N

)
= Θ

 N∑
j=1

ω
(n)
i,j x

(n−1)
j + b

(n)
i

 , (5.2)

with ω
(n)
i,j denoting the weight between neuron j in the (n − 1)-th layer, and neuron i in the n-th

layer. Note that the number of neurons N can change from layer to layer. With this terminology,
the output x⃗ (n) of all neurons in layer n can be compactly written in vector notation with the
weight matrix ω as follows:

x⃗ (n)
(
x⃗ (n−1)

)
= Θ

(
ω(n) · x⃗ (n−1) + b⃗ (n)

)
, (5.3)

where Θ is applied element-wise to a vector. The weights in the matrix ω(n) and the biases b⃗ (n)

are the free parameters of the n-th layer of the network.
Apart from the input and the output, all layers inside the network are called hidden layers.

As an example, consider the simple case of a network with just one hidden layer: The input x⃗ (0)

is taken as the 0-th layer, and the output y⃗ (2) of the whole network is then given by iteratively
inserting Equation 5.3 :

y⃗ (2) = Θ
(
ω(2) · h⃗ (1) + b⃗(2)

)
= Θ

(
ω(2) · Θ

(
ω(1) · x⃗ (0) + b⃗(1)

)
+ b⃗(2)

)
, (5.4)

with h⃗ (1) being the output of the hidden layer.

Figure 5.1.: Scheme of a shallow, fully connected feed-forward network. Every circle represents a
neuron, and every line connecting two neurons stands for the corresponding weight.
Connections only exist between neurons in subsequent layers [73].

A network with only a single hidden layer, like the network defined by the function above,
is called shallow. A scheme of such a network is shown in Figure 5.1. If Θ is chosen to be
a non-linear function, a network with this simple architecture is theoretically already capable
of approximating any continuous function to arbitrary precision, as long as there are enough
neurons in the network [74]. For this, the free parameters of the network - that is, the weights
ω and the biases b⃗ - can be chosen to resemble the target function as closely as desired.

When it comes to practical application of networks, stacking multiple hidden layers, and
therefore making the architecture of the network deeper, can improve the ability of the network
to reproduce a desired function. This approach is called deep learning.

5.2. Backpropagation and gradient descent
As mentioned in the introduction to this chapter, we seek to approximate the theoretical, ideal
prediction function F (xin), which predicts certain properties of the original particle as a function
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CHAPTER 5. INTRODUCTION TO DEEP LEARNING

of the measured data xin from the detector. If this approximation is realized with the help of
artificial neural networks, the approximation function F̂

ω,⃗b
(xin) is defined via its free parameters,

the weights ω and biases b⃗ of all the layers in the network. These free parameters then have to
be chosen to closely approximate the desired ideal prediction function.

Usually, this is achieved in an iterative process by assessing the quality of the prediction of
the network on a small sample of so-called labeled data (i.e. data for which the true value for
the desired output is known). The difference between the target output and the actual output
of the network is measured with a problem-specific metric. Then, the weights and biases of the
network are tweaked to reduce the metric distance, and the quality is reassessed. This process of
training the network on data samples is repeated over and over until the metric distance reaches
a minimum.

Since neural networks can contain millions of free parameters, many training steps are needed
before the network is fully converged, and a large pool of labeled data is required. For the
Km3net/Orca data analysis in this thesis, this data is obtained by simulating events using the
known properties of the detector.

A common technique to optimize the parameters of a network is called back propagation, a
concept that is crucial for deep learning [75]. For an input to the network x⃗ (0), the network
predicts the desired property of the particle to be F̂

(
x⃗ (0)

)
, whereas the target output - the

actual property of the particle - is given by F
(
x⃗ (0)

)
.

Note, that the input x⃗ (n) is written here as a vector, but this does not imply that the in-
put necessarily has a one-dimensional data structure. It could as well be a two-dimensional
image, or a high-dimensional graph, all of which can be linearized into a 1-D vector. Regard-
less of the dimension, the connections between a layer and the next can still be described by
a two-dimensional weight matrix: each of its elements defines the connection between exactly
two neurons, independent of each of their positions in the potentially higher dimensional data
structure. For this, all neurons can be assigned a unique number, which is used to identify both
their position in the vector x⃗ (n), and their corresponding column or row in the weight matrix.

How well the network managed to approximate the desired output is defined by a cost function
C, which gives the metric distance between two output vectors depending on the weights and
biases of the network. An example for such a cost function is the squared vector norm difference
(also known as mean squared error or MSE), in which case the cost function for a specific input
x⃗ (0) is given by:

C(F̂
ω,⃗b

, x⃗ (0)) = ∥F̂
ω, b⃗

(
x⃗ (0)

)
− F

(
x⃗ (0)

)
∥2, (5.5)

with the vector norm ∥.∥ and the true output F
(
x⃗ (0)

)
. In principle, the cost function can be

defined arbitrarily, and the best choice is often highly problem-specific (see also section 5.4 for
a discussion of cost functions). The lower the value of the cost function is for a certain set of
free parameters, the better is the prediction of the network. Therefore, the goal of the training
process is to find a set of parameters which minimizes the cost function for the whole training
dataset. This would require calculating the above cost function for all samples in the dataset.
Since the datasets used for training networks tend to be quite large, the cost function for all
samples in the dataset is usually approximated by the cost function for a small batch of training
data, so that the calculation can be achieved in a reasonable time frame.

After the cost function of the network for the dataset was computed (or approximated by using
a batch), the weights and biases of the network will be adjusted slightly to decrease the value of
the cost function via the method of gradient descent. For this, the free parameters are changed
in the direction of the negative gradient of the cost function:

ω 7→ ω − η
∂C(F̂

ω,⃗b
)

∂ω
, (5.6)
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and similar for the biases b⃗. The parameter η defines the step size of the descent, and is also
called the learning rate.

By applying the chain rule, the derivative of the cost function that appears in the gradient
step of Equation 5.6 becomes

∂C(F̂
ω,⃗b

)
∂ω

=
∂C(F̂

ω,⃗b
)

∂F̂
ω,⃗b

·
∂F̂

ω,⃗b

∂ω
. (5.7)

The first factor depends on the choice of the cost function. For example, when using the squared
vector norm distance from Equation 5.5, it would result in

∂C(F̂
ω,⃗b

)
∂F̂

ω,⃗b

= 2∥F̂
ω, b⃗

(
x⃗ (0)

)
− F

(
x⃗ (0)

)
∥. (5.8)

The second factor in Equation 5.7 is the derivative of the output of the network with respect to
a certain weight inside of the network. The output is a known function of the input (an example
was given in Equation 5.4 for a shallow network), so the derivative can be calculated analytically.

In fact, just like the forward pass through the network, the backpropagation can also be
calculated iteratively on a per-layer basis. For this, consider the general case of calculating the
derivative of layer n: Let α be a weight or a bias in a layer somewhere in the network before the
current layer n. The output of a specific neuron in the current layer n is given as a function of
the outputs of the previous layer n − 1 by

x
(n)

i

(
x⃗ (n−1)

)
= Θ

(
ω(n) · x⃗ (n−1) + b⃗ (n)

)
i

= Θ

 N∑
j=1

ω
(n)
i,j x

(n−1)
j + b

(n)
i

 , (5.9)

similar to Equation 5.3. Note that the output of the previous layer x⃗ (n−1) depends on all the
weights and biases before that layer in the network, including the target α. The weights ω(n)

and biases b⃗ (n), however, do not, as they are constants. Therefore, the derivative of the above
expression is given by

∂x
(n)

i

∂α
= Θ′

 N∑
j=1

ω
(n)
i,j x

(n−1)
j + b

(n)
i

 ·
N∑

k=1
ω

(n)
i,k ·

∂x
(n−1)

k

∂α
, α not in ω(n). (5.10)

This equation expresses the derivative of the output of the current layer using the output from
the previous one. It can be applied recursively, until the layer m containing the target parameter
α is reached. Depending on whether α is a weight or a bias, the derivative is then given by one
of the following:

∂x
(m)

i

∂α
= Θ′

 M∑
j=1

ω
(m)
i,j x

(m−1)
j + b

(m)
i

 · δi,l x
(m−1)

k , α = ω
(m)
l,k (5.11)

∂x
(m)

i

∂α
= Θ′

 M∑
j=1

ω
(m)
i,j x

(m−1)
j + b

(m)
i

 · δi,l , α = b
(m)
l , (5.12)

with the Kronecker delta δ. By introducing the definition

M
(n)
i,k ≡ Θ′

 N∑
j=1

ω
(n)
i,j x

(n−1)
j + b

(n)
i

 · ω
(n)
i,k , (5.13)

Equation 5.10 can be compactly written in matrix and vector notation again, similar like during
the forward propagation:

∂x⃗ (n)

∂α
= M (n) · ∂x⃗ (n−1)

∂α
, α not in ω(n). (5.14)
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Figure 5.2.: Example of three different, commonly used activation functions: The sigmoid func-
tion, the rectified linear unit (ReLu) and the Softmax function. For the first two,
x is the output of the neurons prior to applying the activation function. The Soft-
max function requires a multi-dimensional argument. Here, it was plotted for the
case of a layer with three neurons in which two are assumed to output zero, that is,
f(x⃗) = f(x, 0, 0).

The matrix M (n) defines the step between a layer n and the previous one in the network during
the process of backpropagation. It is independent of the target parameter α, provided that
this variable is not in the current layer n. This makes the backpropagation algorithm very
computationally efficient, since most calculations have to be done only once per input for the
whole network, and not specifically for every single weight or bias. Furthermore, since both
the forward and the backward pass through the network require the multiplication of large and
numerous matrices, they can be run in parallel and therefore sped up substantially by using
Graphics Processing Units (GPUs). Popular deep learning frameworks like TensorFlow, which
is used in this work, or PyTorch feature easy built-in ways to accelerate network operations with
GPUs.

5.3. Activation functions

In Figure 5.1, it has been established that neural networks can represent functions to arbitrary
precision if the activation function Θ of layers is chosen to be non-linear. This is of course a
very general criterion, leaving plenty of functions to choose from. Historically speaking, artificial
neural networks were designed to resemble the neural structure of the brain. In a simplified
model, the biological neuron receives signals from its dendrites, sums the signal strengths and, if
it is above a certain threshold, the neuron fires along its output, the axon. To mimic this behavior,
a possible choice for the activation function in artificial networks is the sigmoid function:

Θ(x) = 1
1 + e−x

, (5.15)

which is also plotted in Figure 5.2. Depending on the sum of its inputs, this function can be
close to zero (neuron does not fire) or one (neuron does fire). It is also differentiable in the whole
range, which is a requirement for the backpropagation algorithm (see Equation 5.10). However,
this choice of an activation function has become less popular, since it not only seems to be
quite far from how actual neurons in the brain work (see e.g. [76] for a recent discussion of the
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computation in biological neurons), but is also suboptimal for the training process in artificial
networks, since it possesses some undesirable properties.

For example, it can be seen in Figure 5.2 that the sigmoid function converges exponentially to
zero or one for very small or very large x. This in turn means that the gradient of the function
is very close to zero in these areas. Since the matrix which defines the back propagation step
depends on this gradient (Equation 5.13), the weight updates in a layer in which the inputs have
a large absolute value can get very small, too. Furthermore, since the weight updates in the
previous layers depend on the back propagation matrix of that layer as well, this can actually
slow the training process in all preceding layers, a phenomenon known as vanishing gradients.

Nowadays, the sigmoid function is often used exclusively in the last layer of classification
networks, together with the categorical cross entropy cost function. This function is explained
in greater detail in section 5.4. For this purpose, the sigmoid function can be generalized for
multiple neurons, as networks are frequently used to classify their inputs into multiple different
categories and therefore have multiple neurons in the output. It is then called a Softmax
function, whose output is given by:

Θj(x1, ..., xK) = exj∑K
k=1 exk

, for j = 1, . . . , K. (5.16)

Since the sum over the output of all neurons in a layer using the softmax activation function is
one, it can be used to model a probability distribution. A plot for the specific case of K = 3
neurons, in which two neurons xk are always zero, is plotted in Figure 5.2. The curve of the
Softmax function is identical to the sigmoid function, shifted in the positive x direction by the
natural logarithm of the sum of the other neurons’ outputs.

A popular choice for the activation in the more recent past is the rectified linear unit (ReLU,
see Figure 5.2), which is given by:

Θ(x) = max(0, x). (5.17)

Both the ReLU itself, as well as its derivative are very inexpensive to compute, which is a big
upside compared to the sigmoid function. Also, this function does not saturate in the positive
x regime. However, there is the risk that the weights defining the input of the ReLU are set in
such a way that it will always output zero for all samples in the batch or even the entire dataset.
In this case, the neuron would not receive updates to its weights anymore, and would thus be
permanently stuck in this state. In this case, it is called an inactive neuron.

Nevertheless, ReLUs have shown to yield very good results over the sigmoid function (e.g. in
[77], one of the first networks to use the ReLU activation in image classification), and they will
be used for most of the neurons in this thesis as well.

To further combat the problem of inactive neurons, various modifications of the ReLU function
have been proposed, e.g. the leaky ReLU or the parametric ReLU. They have been shown to be
able to improve the performance of networks in specific cases [78].

5.4. Cost functions

In Equation 5.7, the first step of the backpropagation has been described, which depends on
the cost or loss function C(F̂

ω,⃗b
). In general, this cost function specifies the goal of the network

training, as it defines how close the prediction F̂
ω,⃗b

of the network is to the desired output F ,
given a specific input. Typically, networks will conduct one of the two following tasks:

• Classification: The input can be sorted in different categories. For example, the particle in
an event can be classified as a neutrino or as an atmospheric muon.
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• Regression: The input depends on an underlying observable, and the network should re-
construct this quantity. Such observables are for example the incident direction or energy
of a particle traveling through the detector.

Depending on the task, different choices of loss functions are popular.
In the case of a regression, a common choice is the mean squared error loss function, which was

already introduced in section 5.2. For a given input, let the network predict the desired quantities
to be F̂

ω,⃗b
≡ y⃗ pred = (ypred

1 , ..., ypred
n ), while the true values are F ≡ y⃗ true = (ytrue

1 , ..., ytrue
n ).

The mean squared error then amounts to:

C(y⃗ true, y⃗ pred) = 1
n

n∑
i=1

(
ytrue

i − ypred
i

)2
. (5.18)

This function is always positive, and reaches its minimum when the prediction from the network
is exactly equal to the true value. Another popular choice for regression tasks is the mean
absolute error, which is defined in a similar fashion as above:

C(y⃗ true, y⃗ pred) = 1
n

n∑
i=1

∣∣∣ytrue
i − ypred

i

∣∣∣ . (5.19)

In the case of a classification task, a frequently used loss function is the categorical cross
entropy: Given the prediction of the network F̂

ω,⃗b
≡ y⃗ pred = (ypred

1 , ypred
2 , ..., ypred

n ), which sorts
its input into n different categories, and the desired output F ≡ y⃗ true with the same number of
categories, the categorical cross entropy loss function is defined as:

C(y⃗ true, y⃗ pred) = −
n∑

i=1
ytrue

i ln ypred
i . (5.20)

This loss function is often used in conjunction with the softmax activation function defined in
Equation 5.16. The outputs from a layer with this activation function will always be between
zero and one after passing through this activation function, and the sum over all outputs will be
one. This makes it similar to a probability distribution. However, if the softmax function is in
the saturated regime, in which the input to one neuron is much higher than those of the others,
the gradient of the function becomes exponentially small (see Figure 5.2 for very large or small
x). In the mean squared error from Equation 5.18, the activation function itself appears in the
definition, since y⃗ pred is the output of neurons which apply this function. If neurons get in the
saturated regime, their weights and biases may only receive small updates, thereby slowing the
training process. With the cross entropy loss, in contrast, the cost function can be written as:

C
(
y⃗ true, y⃗ pred

)
= −

n∑
i=1

ytrue
i

(
xi − ln

K∑
k=1

exk

)
, with ypred

i = θ(xi), (5.21)

by inserting Equation 5.16 in Equation 5.20. Here, the outputs x1, ..., xK of the neurons prior
to the activation function appear as a linear factor in the cost function, since the logarithm of
the the categorical cross entropy cancels out with the exponentiation in the softmax activation.
This prevents the neurons from getting stuck in the saturated regime of the softmax activation
during backpropagation.

5.5. Optimizers
During backpropagation, the derivative of the cost function C(F̂

ω,⃗b
) with respect to all the

weights and biases in the network is calculated. Afterwards, the free parameters are updated in
order to minimize the loss.
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In Equation 5.6, a simple way of updating was shown, in which a fraction of the gradient of
the cost function is subtracted from every parameter, which is known as gradient descent. In
fact, since the derivative of the cost function was not calculated for the entire training dataset,
but rather approximated via a small batch of randomly chosen samples from the set, it is more
accurately called stochastic gradient descent (SGD). However, there are also other strategies of
updating the weights and biases, which for example try to accelerate the learning process by
modifying Equation 5.6 in various ways. The specific strategy after which the free parameters
are updated is referred to as the optimizer. A popular one, which was also chosen for most of
the networks trained in this thesis, is the adaptive momentum estimation (adam).

The adam optimizer was introduced by Kingma and Ba in 2014 [79]. It attempts to speed
up the convergence of network training by setting the step size η from Equation 5.6 to not be
constant for the entire gradient step, but instead makes it adapt to the current situation of
convergence, and allows different free parameters to have different effective step sizes. For this,
decaying averages over the past gradients and squared gradients are kept track of, which estimate
the mean m⃗t and the uncentered variance v⃗t of the gradient updates at the current step t:

m⃗t = β1 · m⃗t−1 + (1 − β1) · ∇⃗ωC(F̂
ω,⃗b

) (5.22)

v⃗t = β2 · v⃗t−1 + (1 − β2) ·
(
∇⃗ωC(F̂

ω,⃗b
)
)◦2

, (5.23)

where the square operation ◦2 in the last line uses the Hadamard product, in which the vectors
are multiplied element-wise. Every element in the vectors m⃗t and v⃗t are the moving moment
estimates of a specific free parameter in the network. Similar equations can be defined, if the
parameter with respect to which the differentiation is computed is a bias b instead of a weight ω.
The two constant hyperparameters β1, β2 introduced in the above equations define the rate at
which past gradients and variances are exponentially decayed in the saved momentum estimates,
and are usually set to β1 = 0.9 and β2 = 0.999 as recommended in the original paper.

The above equations will result in estimates that are heavily biased towards zero in the early
stages of training, since the original estimates m⃗0 and v⃗0 are initialized as vectors of zeros. This
can be fixed by scaling the contribution of moment estimates in early gradient steps t towards
the decaying average:

⃗̂mt = m⃗t

1 − βt
1

(5.24)

⃗̂vt = v⃗t

1 − βt
2

(5.25)

In total, the gradient update with the adam optimizer for a specific weight or bias in the network
is given with the corresponding bias-corrected momentum estimates m̂t and v̂t by:

ω 7→ ω − α
m̂t√
v̂t + ϵ

. (5.26)

Two new hyperparameters were introduced here: The step size α, which allows to scale the
gradient step of all weights simultaneously as with the SGD optimizer, and ϵ, a small constant
which was introduced for numerical stability. The authors of the paper recommend a value of
ϵ = 10−8.

The fraction mt/
√

vt is compared to the signal-to-noise ratio of the gradient by the authors.
If this ratio is small, that is, if there are large changes in the gradient from batch to batch, the
adam optimizer automatically adapts to this by decreasing the effective learning rate, since this
might indicate a close proximity of the weight to its optimum. In contrast, if the ratio is high,
then the direction of the gradient seems to be clear, even within the limited statistics of single
batches of samples. Thus, an increase in the effective learning rate could accelerate the learning
process.
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5.6. Estimating uncertainty in regressions
In section 5.4, some commonly used cost functions were introduced, including the categorical
cross entropy combined with a softmax activation function in the last layer of a network. With
this combination, the output of the network is a probability distribution over the different output
categories. This is a very useful property, as it allows for cuts based on the probability of
belonging to one of the categories on an event-by-event basis.

For example, consider the case of a network that classifies neutrinos against the overwhelming
background of atmospheric muons. In its simplest form, a classifier would sort each event to be
either a neutrino or a muon. However, a network using the categorical cross entropy and softmax
combination instead assigns each event a probability of being a neutrino or muon. In this case,
we can increase the purity of the resulting neutrino sample by demanding a stricter cut on this
neutrino probability [80].

For regression tasks, such a quality cut is not possible if we use a popular loss like the mean
squared error from Equation 5.18. In this case, the output of the network is a single number
- the estimator for the observable that we want to reconstruct - without any indication of the
associated uncertainty. This is suboptimal, as the error can play a similarly important role for
regressions: It obviously makes a big difference whether the zenith direction of a muon track
is reconstructed as 5° ± 0.1° or 5° ± 50°. The latter case indicates a problem with the
reconstruction for this event, which we might want to cut away before carrying out any further
analyses.

However, it is also possible to acquire the uncertainty for reconstruction tasks by making use of
the concept of mixture density networks [81]. In this picture, the minimization of a loss function
in neural networks in general is seen as performing a maximum likelihood fit given a probability
distribution that is parametrized by the network, independent of whether we are dealing with a
categorization or a regression problem.

For understanding this, it is useful to first consider again the case of a categorization over n
categories. Let us assume that the output of the network is a categorical distribution y⃗ pred, that
is, the final layer in the network has n neurons (y pred

1 , ..., y pred
n ) with ∑ y pred

i = 1. Then, the
likelihood of getting the correct category given the predicted distribution y⃗ pred is

L
(
y⃗ true|y⃗ pred

)
=

n∏
i=1

(ypred
i )ytrue

i , (5.27)

with the the true distribution y⃗ true being 1 for the correct category, and 0 otherwise. For
example, if we want to categorize events as showing either a neutrino or an atmospheric muon, the
true distribution of a neutrino would be y⃗ true = (1, 0). Given a prediction of y⃗ pred = (0.8, 0.2),
L would thus amount to 0.8.

We can then train the network by adjusting its free parameters in order to maximize the given
likelihood. This is equivalent to minimizing a cost function C defined as the negative logarithm
of the likelihood:

C(y⃗ true, y⃗ pred) := − ln L
(
y⃗ true|y⃗ pred

)
(5.28)

For the categorization problem, we can calculate C by inserting the likelihood of the categorical
distribution from Equation 5.27:

C(y⃗ true, y⃗ pred) = − ln
(

n∏
i=1

(ypred
i )ytrue

i

)
= −

n∑
i=1

ytrue
i ln ypred

i . (5.29)

The term on the right is exactly the categorical cross entropy defined in Equation 5.20. The
necessary condition ∑ y pred

i = 1 for the output of the network can be assured by choosing an
appropriate activation function, like the softmax function.
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In summary, we let the output of the network parametrize a distribution by constraining it
with an appropriate activation function, and then used Equation 5.28 to obtain the cost function.
This is a universal approach, which can be used for regression problems as well.

For example, we can let the network parametrize a normal distribution by letting the output
layer have two neurons representing µ ∈ R and σ ∈ R>0. It can be assured that the variables
are in the defined intervals by choosing e.g. a linear and an exponential activation function,
respectively. Then, the likelihood is given by the Gaussian function

L (ytrue|y⃗pred = (µ, σ)) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
. (5.30)

By inserting this into Equation 5.28, we end up with the cost function

C(ytrue, (µ, σ)) = ln(
√

2π) + ln(σ) + (ytrue − µ)2

2σ2 . (5.31)

This is the cost function for a regression with an included uncertainty σ. Since we are interested
in minimizing C with respect to µ and σ, we can simplify this equation by removing the constant
summand ln(

√
2π) and multiplying by 2:

C(ytrue, (µ, σ)) = ln(σ2) + (ytrue − µ)2

σ2 . (5.32)

It is worth noting that if we set σ = 1, we can recover the mean squared error loss function
defined in Equation 5.18 for the case of a single output neuron n = 1. The case n > 1 can be
obtained in the same way by letting the output of the network parametrize a multivariate normal
distribution with a diagonal covariance matrix instead. This means that using the mean squared
error can be seen as letting the network output a set of independent normal distributions with
a fixed variance of σ = 1 each. In other words, Equation 5.32 is a generalization of the mean
squared error loss function that includes an estimate of the uncertainty.

Naturally, a normal distribution is not the only choice for the output of the network. For
example, we can also generalize the mean absolute error by letting the network parametrize
a Laplace distribution L = (2σ)−1 exp(−|ytrue − µ|/σ). In fact, any desired distribution can
be chosen by representing each free parameter in the distribution by an output neuron in the
network. The best choice for this distribution is highly problem specific, and not necessarily
trivial to figure out.

A possible solution for this issue is the concept of normalizing flows [82]. They allow the
network itself to parametrize an arbitrary distribution during the training, and automatically
adapt it to the reconstruction task at hand. First studies in the field of high-energy physics
have shown promising results [83], but additional research for the specific use case in Km3net
is required.

5.7. Deep learning software in KM3NeT
While modern machine learning frameworks like TensorFlow provide high level implementations
for many important aspects of neural networks, processing the data and organizing the training
still requires many complex steps. In order to facilitate the future use of deep learning in Km3net,
it was made sure that all the studies in this thesis can be easily reproduced and followed up by
providing well documented and tested software. For this, the first iteration of the software
originally developed by Michael Moser [84] has has been rewritten in large parts, and drastically
expanded in its functionality. It is split into two Python packages, OrcaSong1 for preprocessing
the data, and OrcaNet2 [85] for training the networks. Despite the name, the software is also

1https://git.km3net.de/ml/OrcaSong
2https://git.km3net.de/ml/OrcaNet
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used for data from the Arca and the Antares detector [86][87]. All of the code is published
under an open source license, and is accessible online.

5.7.1. OrcaSong

OrcaSong is used to preprocess Km3net files to a format that is specifically tailored to the needs
of machine learning applications. The starting point are Km3net offline files in the aanet root
data format on the trigger or reconstruction level. The disk space usage and read-out speed of
these files can be optimized by removing the information that is not needed for the application of
neural networks. In addition, some expensive calculations, like for example counting the number
of hits that each muon in a bundle produced in the detector, are ideally only performed once,
and not every time an event is encountered during the training. Finally, it should be made
sure that events containing different particles or runs from different time periods are properly
shuffled. This way, it can be made sure that the statistics in each minibatch of samples during
the training is representative of the entire dataset.

OrcaSong addresses all of these points, encouraging reproducibility and sharing of workflows
at the same time by letting the user define their setup through a simple, human readable con-
figuration file. With this, the software can be run with commands directly from the command
line. An extensive documentation has been published alongside OrcaSong, which describes the
necessary steps in more detail. In short, the preprocessing roughly happens in two stages:

1. Generation of hdf5 DL files Hdf5 is a open source big data format, which is especially pop-
ular in the machine learning community. It features compression, high read out speed, and
an easy to understand, self describing format. For this reason, it was chosen as the format
of the DL files that are used as an input to the neural networks. The DL files themselves
essentially consist of two datasets, which contain the samples (x) and the labels (y), re-
spectively. The samples in x can be either images for convolutional networks, or the full
hit information for the generation of graphs. In addition to the labels, the y dataset also
contains other event-level information that is useful for the later stages of the analysis, like
event identifiers or the output of the classical reconstruction. The kind of information that
is contained in x and y is defined by configuration files. OrcaSong comes with examples
for such files, which have been used for the analysis of neutrinos and atmospheric muon
bundles. The files used for this thesis can also be found in the appendix section A.1.

2. Shuffling the training files As mentioned before, the order of events in the training files
should be as random as possible. Therefore, OrcaSong contains two high level commands
which can be used to merge different DL files into a single, bigger one, and to randomize
the order of events in any DL file. Together, these scripts can be used to create large,
properly shuffled DL files, with a mixed input from many files of a run-by-run simulation
or different neutrino flavors. Since the scripts operate on a file level, the complexity of this
step is kept as low as possible. This stage is of course only necessary for the training files,
since the order of events is irrelevant during inference, in which the weights are constant.

5.7.2. OrcaNet

OrcaNet handles all the typical tasks that occur when handling deep neural networks, like ef-
ficiently reading data, executing and monitoring the training, or saving the predictions of the
fully trained model to an hdf5 file. It is designed with the restrictions of working on a com-
puting cluster in mind, as regular checkpoints allow to easily split the training up over several
consecutive jobs. Similar to OrcaSong, it can be entirely controlled via simple commands and
configuration files. Additionally, it can also be used to construct the model itself from such a
configuration file. This is especially useful for newcomers, as the hyperparameters of the model
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can be varied without any deeper knowledge about Python or TensorFlow. In total, the following
three configuration files can be used to set up OrcaNet:

list.toml: A list of the paths to the DL files created by OrcaSong that will be used for the training
and validation. It also can also contain paths to DL files on which the network should be
applied on in inference mode after the training is complete. This is typically used for the
test set, or for predictions on measured data.

config.toml: Parameters that will be used during the training, like the learning rate or the
batchsize.

model.toml: Definition of the architecture of the model, using predefined blocks of layers which
are often used together in common architectures. In principle, this file is optional, as any
compiled keras model can be used with OrcaNet. However, the use of a configuration file
guarantees reproducibility and makes sharing an architecture easy.

Often times, small modifications need to be made to the samples or labels that are read from
a DL file before it can be handed to the network. For example, classifications typically require
the label to be in the so-called one-hot encoding, i.e. the classes {1, 2, 3} need to be encoded as
vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This can be done in OrcaNet using small, user-defined
functions referred to as modifiers. Several commonly used functions, like the one-hot encoding
mentioned above, are already implemented in OrcaNet and can be used by specifying them as a
string in the config.toml file. For the example of the one-hot encoding, the corresponding string
is ClassificationLabels.

In order to start the training of a new instance of a model, the three configuration files described
above can be moved in a new, empty directory. Then, the command line tool orcanet train
name_of_directory is called on this directory, which per default will train for an unlimited
number of epochs. If the training gets interrupted, for example because the walltime of the job
in a computing cluster ran out, it can be resumed from the last auto-generated checkpoint by
running the same command again. Finally, the prediction of the network can be saved to an hdf5
file by running the command orcanet inference name_of_directory. For this, the network
with the lowest validation loss across the entire training history will be loaded automatically. All
the OrcaNet configuration files used for this thesis are listed in the appendix section A.2.
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Graph neural networks
Chapter 6.

Deep learning has seen a large surge in popularity for image recognition tasks over the last
decade, making use of model architectures involving discrete convolutions on the rectangular
grid that images are made of. These designs have also been successfully applied in the context
of high-energy particle physics, for example in Km3net [80], IceCube [88] or CTA [89].

However, the nature of the data measured at experiments like Km3net differs significantly from
the images or videos these architectures were originally designed for. These high dimensional
and sparse signals bear much closer resemblance to point clouds, which can be well represented
by the general structure of a graph. Graph neural networks are deep learning algorithms working
in the domain of graphs, which have the potential to improve the performance of convolutional
networks, as demonstrated by IceCube [90].

This chapter explores strategies for using graph neural networks in Km3net, and discusses
basic choices like the architecture, as well as technical details of the implementation developed
for this thesis.

6.1. Basics of graph theory
A graph G = (V, E) is composed of a set of N nodes V and up to N2 edges E [91]. Each edge
connects two nodes, and can also have a direction, in which case G is called a directional graph. It
can also connect the same node back to itself, which is called a self connection. The information
of which nodes in a graph are connected to each other can be represented by the adjacency
matrix A. The entry at position (i, j) in the adjacency matrix has a non-zero value if the nodes
i and j are connected, and is zero otherwise. In the simplest case, the non-zero values of the
entries in the adjacency matrix are one, but they can also chosen to be any real number, in which
case they represent the weight of each edge. In Figure 6.1, these definitions are visualized for a
simple directional graph with unweighted edges.

The degree matrix D of a directional graph is a diagonal matrix, whose entry Di,i is the degree
of node i, i.e. the number of edges that point towards that node. Another important property of
a graph is its Laplacian matrix L, which is defined as the difference between the degree matrix
D and the adjacency matrix A:

L = D − A (6.1)

It is the discrete analogue for the Laplacian operator of continuous functions [92].

6.2. Convolutional graph networks - spectral and spatial
Convolutions have proven to be a powerful tool in deep learning, and are found in virtually
all modern image recognition architectures. It is therefore quite natural to look for a similar
approach in graph based networks. However, transferring the concept of convolutions from
images to the more general structure of graphs is not straight-forward, as neighborhoods are not
as easy to define, and the computational effort can quickly become unreasonably large.
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B CA

(a) Nodes and edges.

A B C
A
B
C

 0 1 0
1 0 1
0 0 1


(b) Adjacency matrix.

Figure 6.1.: Example of a simple directional graph featuring 3 nodes and 4 edges. Nodes A and
B are connected to each other in both directions. B is connected to C, but not
the other way around. C also has a self connection. This structure is visualized
in the plot on the left. Note that the positions of the nodes can be chosen freely
in this representation, as the graph is defined only by the number of nodes and the
connections between them. The adjacency matrix of the graph is shown on the right.

A possible strategy for tackling this issue in graph networks are spectral methods, which
perform convolutions on spectral representations of graphs [93]. For this, we can first look at the
well known definition of a continuous Fourier transformation of a function f :

F{f}(ξ) =
∫ ∞

−∞
e−2πixξ f(x) dx. (6.2)

The exponential term in Equation 6.2 is identical to the eigenfunctions uξ(x) = e2πixξ of the
Laplacian operator ∆:

∆e2πixξ = ∂2

∂x2 e2πixξ = −(2πξ)2e2πixξ. (6.3)

By using these eigenfunction, we can write the Fourier transformation in Equation 6.2 as:

F{f}(ξ) =
∫ ∞

−∞
u∗

ξ(x) f(x) dx. (6.4)

In a similar way, we can also express the discrete Fourier transformation FG on a graph G in
terms of the eigenvectors ul and eigenvalues λl of the Laplace matrix L defined in Equation 6.1
[94]:

FG{f}(λl) =
N∑

i=1
u∗

l (i) f(i). (6.5)

Here, f(i) is a discrete function on the N nodes of the graph. Using matrix notation, this can
be compactly written as:

FG{f⃗} = UT f⃗ . (6.6)

The basic motivation behind spectral graph methods is rooted in the convolutional theorem. In
continuous space, a convolution ∗ between two functions f and g is defined as:

(f ∗ g)(x) ≜
∫ ∞

−∞
f(τ)g(x − τ) dτ =

∫ ∞

−∞
f(x − τ)g(τ) dτ. (6.7)

The convolutional theorem then states that

f ∗ g = F−1{F{f} · F{g}}, (6.8)
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i.e. the convolution of two functions is equivalent to the point-wise multiplication of these func-
tions in the Fourier transformed space. This is also true for the discrete version of the Fourier
transformation on a graph as defined above:

f ∗ g = U(UT f⃗ · UT g⃗), (6.9)

with the inverse graph Fourier transformation U . The matrix fθ := UT f⃗ can be seen as a filter
kernel in spectral space, which can be defined and learned by a neural network with a set of
parameters θ. A basic approach is to construct fθ as a non-parametric filter, i.e. as a diagonal
matrix in spectral space [95]. However, this definition proves to be difficult to use in practice
due to its computational inefficiency, as the resulting filter is not localized in space. Different
approaches exist to solve this issue, for example by parametrizing fθ using an expansion with
Chebyshev polynomials [96].

An alternative to the spectral approach explained above is the spatial approach. Here, the
kernel that is learned by the network is simply directly defined in space in a localized way, which
also removes the need to perform any Fourier transformations of the graph. In this sense, it
is similar to the traditional approach of convolutional neural networks on images. While this
is an easy way to solve the issue of localization, it poses the problem of matching the different
neighborhoods of each node [95]. This is naturally much more difficult for graphs as compared
to images, since graphs in general have an irregular structure, as opposed to the highly regular
grid and therefore neighborhoods found in images. As will be shown in section 6.4, this spatial
strategy is also adopted for the network architecture of this work.

6.3. Transforming KM3NeT data to graphs

A Km3net event contains a set of hits, each with its own set of coordinates. For example,
these coordinates include the x-, y- and z-position of where a particular hit was measured in
the detector, the time t, as well as the pointing direction of the PMT that recorded the hit. A
natural way of encoding the information of an event as a graph is to view each hit as a node,
and the features of each node as the aforementioned coordinates of that particular hit. This
way, the full data of each hit can be fed into the network as float numbers, avoiding any loss of
information in the process.

However, it is not clear a priori how the nodes should be connected to each other in the
graph. A straight-forward approach is to define some sort of distance between two nodes, and
base the adjacency on that. Reasonable choices for such a distance can be the norm of the
distance in the euclidean space d2 = c2δt2 + δx2 + δy2 + δz2, or in the Minkowski spacetime
d2 = c2δt2 − δx2 − δy2 − δz2. Here, δx, δy, δz and δt denote the differences in space and
time between the two hits that are represented by the corresponding nodes. For this work, the
euclidean distance was chosen, but it is also worth to try out other metrics in future projects.

Even with the distance defined, there are still multiple ways to connect the nodes. A possible
approach using the euclidean distance is to define a fixed maximum radius r, and then connect
each node to all the nodes that are within that radius. While easy in theory, this poses multiple
problems in practice: It is not clear how large or small r should be, making this a problem
dependent hyperparameter. Furthermore, since the number of nodes that are within the radius
is not limited, the resulting graph could have many connections. In the worst case, it might even
happen that every node in a particular event gets connected to every other one. This could lead
to memory issues, since the required VRAM would be proportional to the squared total number
of nodes in the graph.

A different approach is to connect every node to its k nearest neighbors (knn) in terms of the
chosen distance. This way, the total number of connections in the graph is always linear in the
number of nodes, and thus also the memory usage. For this reason, the graphs in this work are
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(a) z-t-plot of the event. (b) Graph representation of the same event.

Figure 6.2.: Example of the transformation of a Km3net event into a graph, in this case an
atmospheric muon event simulated with Mupage for Orca4. The plot on the left
shows the z- and t-coordinate of each hit in its respective detection unit. On the
right, each node in the graph represents one of the hits, and the edges connect to
the eight nearest neighbors of each hit, calculated using the euclidean distance in
x, y, z and t. The arrows are pointing away from the neighbors, and towards the
central node. Note that the nodes are plotted in the same z-t position as in the left
plot. This was chosen only to aid the visualization, as the position of the nodes can
be chosen arbitrarily when plotting the graph.

constructed using the knn method based on the euclidean distance. Such a transformation into
a graph is illustrated on the example of an atmospheric muon event in Figure 6.2.

Efficient data structures

Memory efficiency is crucial, not only when calculating the adjacency, but also when handling
the data of the nodes. As established above, an event consist of N hits, each with a set of F hit
features like the space and time coordinates of that hit. Overall, the data of an event can thus
be stored efficiently as a two dimensional array with the shape (N, F ).

In practice, we will often work with batches of events at a time, for example with multiple
events in a run that are saved in the same file. This results in a more complex data structure:
If we have M different events, each of them will typically have a different number of hits. So in
total, we have a list of M arrays with shapes (N1, F ), ..., (NM , F ). Even though the number of
hits Ni differs from event to event, the number of hit features F is the same for each hit in each
event.

We can therefore think of this batch of events as a single array of shape (M, ?, F ), where the
question mark denotes an axis with variable length {N1, ..., NM }. Such an array is typically
referred to as a ragged array. Having data in a ragged structure is a common occurrence,
especially when dealing with graphs, so there are several efforts in the Python community to
treat them efficiently and easy at the same time.

An efficient way to save such a ragged array to disk is to transform it into a single, big array
with shape (Ntot, F ) of the hits in all the events, and additionally a small vector of length M that
contains the number of hits Ni in each event. A scheme of this strategy is shown in Figure 6.3.

In the TensorFlow framework, a special class exists to handle data with ragged properties: a
TensorFlow ragged tensor. It can be initialized by giving the large array of all hits and the small
vector described above, and can then be used directly as an input to networks.
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hits of event 1
(N1, F)-array

hits of event 2
(N2, F)-array

hits of event 3
(N3, F)-array

all hits
(N1 + N2 + N3, F)-
array

+
number of hits
per event
vector, length 3

Figure 6.3.: Three events with a varying number of hits N1, N2, N3 each, but the same number
of hit features F . They can be stored efficiently in a single regular two-dimensional
array of shape (N1 + N2 + N3, F ), together with a small vector of length 3 that
contains the number of hits per event.

6.4. ParticleNet and the Edge Convolutional block
The model architecture used in this work is based on the ParticleNet model by Qu and Gouskos
[97], which makes use of the Edge Convolutional layer block proposed by Wang et al. [98].
Originally designed for point clouds, this block was adapted for jet tagging in LHC, and was
shown to outperform the image convolutional based networks significantly in this task. Since
Km3net data with its high dimensionality and sparse signal also resembles a point cloud, it is a
promising choice of architecture here as well.

The Edge Convolutional block has two separate inputs: The first input contains the coor-
dinates of each node and is used to determine which nodes are connected to each other. For
this, each node is connected to its k nearest neighbors based on the euclidean distance of the
coordinates. The second input is then used to calculate the node and edge features of the graph
(see Figure 6.4a).

While the authors of ParticeNet provide the TensorFlow code used in their study, it is not
sufficiently optimized to allow for the use with Km3net data. An optimized solutions exists
for the PyTorch framework, but this can not be used within the context of TensorFlow. Since
the deep learning efforts and tools developed so far in Km3net rely exclusively on TensorFlow,
an efficient implementation of the Edge Convolutional block using the TensorFlow backend was
designed for this work1. and is described in the following.

The k nearest neighbors algorithm

The calculation of the k nearest neighbors is done in parallel on a batch of events. Since each of
the events has in general a varying number of hits, a knn-operation that works on a ragged tensor
is required. Since no such operation exists in the TensorFlow framework, a custom kernel with
CUDA [99] acceleration was developed. The number of operations performed in the k nearest
neighbors search for a graph with N nodes is O(N2), since we need to calculate for each node
the distance to each other node. However, it is possible to reduce the required VRAM to a linear
scaling of O(N · k). For this, consider the knn calculation of a single node. A naive approach
would be to calculate the distance between this node and all other N nodes in the graph first,
and then pick the k smallest values. However, this would mean having N values in memory at
the same time, and since this is done in parallel for all nodes in the graph, it could result in a

1https://github.com/StefReck/MEdgeConv
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(a) Structure of an EdgeConv block.
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(b) Architecture of ParticleNet.

Figure 6.4.: The structure of ParticleNet and the EdgeConv block as published by Qu and
Gouskos [97], where it was used for a classification task. The original model shown
on the right was slightly changed for this work, by removing the dropout in the first
layer after the pooling, and by replacing the last layer depending on the specific
reconstruction task at hand.

VRAM requirement of O(N2). This can become prohibitively large for bigger graphs. A more
efficient approach is to keep only the smallest k distances encountered for each node in memory.
For each new node, we can then compare the new distance to the k saved distances, and if it is
smaller then any of them, replace the largest saved distance with the new one. This means we
will never have more then O(N · k) values in memory, which allows for using much larger graphs
as an input.

This is especially useful for applications in Km3net. While most events tend to have a com-
parable number of hits, we also occasionally encounter events with a very large number of hits.
But since these unusually large events happen increasingly rarer the more hits they contain, they
will only have a reduced impact on the overall running time.

For example, consider a reconstruction of 10,000 events, with the average event taking a time t
to process. If one of them happens to be large and consequently take 100 times longer to process
than the average event, the total elapsed time will increase to 10,099 t, an increase of merely one
percent. A O(N2) scaling of the memory usage on the other hand is more problematic, since
exceeding the available VRAM at any point will lead to a crash, independent of whether such
events are rare or not.

The knn calculation can be efficiently parallelized: Each node in a graph and each graph in a
batch can be treated independently of each other. Therefore, a large speed boost can be acquired
by writing and compiling the code using CUDA, similar to many other operations in TensorFlow
and deep learning in general. The compiled CUDA kernel is then linked with a corresponding
CPU implementation of the same algorithm and wrapped in a Python TensorFlow operation,
which can be used in custom keras layers.
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Edge Convolution
After defining the start and end points of the edges using the k nearest neighbors, we can then
proceed to calculate the features of these edges. Following the strategy in ParticleNet, they are
derived from the features of the nodes (i.e. the coordinates input). Given two nodes n⃗i, n⃗j with
F features each, the features of the edge e⃗i,j going from node i to node j are defined as:

e⃗i,j = (n⃗i, n⃗j − n⃗i) (6.10)

This is a vector of length 2·F , which consist of the features of the node itself, and the difference
to the neighboring node. To perform the convolution, we use a multi-layer perceptron consisting
of three dense layers with a batch normalization layer in each of them. This so called kernel
network takes the 2 · F features of an edge e⃗i,j , and produces an update vector u⃗i,j . The length
of the vectors u⃗i,j is given by the number of nodes in the last of the three dense layers. Then,
the update vectors of the k nearest neighbors of each node are averaged to retrieve the new node
features n⃗∗

i :

n⃗∗
i = 1

k

k∑
j=1

u⃗i,j . (6.11)

Here it is important to note that the same kernel network is used for every single edge in the
graph. In other words, the kernel network is slid over the edges of the graph, similar to how the
kernel of an image convolutional layer is slid over the pixels.

In the spirit of popular image recognition networks like ResNet [100], ParticleNet also makes
use of shortcut connections between the input and output of the EdgeConv block. For this, the
updated node features n⃗∗

i from Equation 6.11 are added to the original nodes features n⃗i that
were used as the input to the EdgeConv block. However, the length of the new nodes n⃗∗

i is not
generally the same as the length of the old nodes n⃗i, since the length of the vector that the kernel
network produces is a hyperparameter and can therefore be of any size. So to make it possible
to add them together, a single dense layer and batch normalization is used on n⃗i, whose number
of units is the same as in the last dense layer of the kernel network, thus producing a vector with
the same length as n⃗∗

i . The result can then be added element-wise to n⃗∗
i .

All of the operations and layers described above are grouped into a higher level unit called
EdgeConv block. In summary, this more abstract object has two inputs: the coordinates and
the features, which are ragged tensors of shape (N, ?, C) and (N, ?, F ). Here, C and F are the
number of coordinate and nodes features. The output is again a ragged tensor of shape (N, ?, F ∗),
that contains the new node features. F ∗ is the number of features of the new nodes, which is
given by the number of units in the last layer of the kernel network.

Since the inputs and output of the EdgeConv block all are three-dimensional ragged tensors,
we can stack these blocks by using the output of one block as the input of the next. We can
even use the output for both of the inputs - the coordinates and the features. The adjacency of
the graph is constructed using the coordinates input at the start of every EdgeConv block. This
means that the connections in the graph are recalculated based on the output of the previous
block, which of course depends on the free parameters of the network. This is a called a dynamic
graph, and it is a powerful property of the Edge Convolution. Essentially, it allows the network
to redefine adjacency in the graph, for example to group nodes together that share properties
useful for the task at hand.

ParticleNet architecture
Figure 6.4b shows the architecture of the entire ParticleNet model. It consist of three EdgeConv
blocks, with a dynamic update of the graph between them. The adjacency is constructed by
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finding the k = 16 nearest neighbors of each node. The units in the dense layers of the kernel
network double in each layer, from (64, 64, 64) in the first layer to (256, 256, 256) in the third.

The feature input in the first block is seven dimensional: For each hit, it gets the x-, y- and
z-position, the time t with respect to the first triggered hit of each event, as well as the pointing
direction of the PMT as an euclidean vector (dx, dy, dz). The coordinate input is supplied with
x, y, z and c · t (i.e. the time multiplied by the speed of light in water). The difference of these
coordinates between nodes is used for the calculation of the nearest neighbors. The second and
third block get the output of the previous block in both inputs.

After the third EdgeConv block, a global average pooling is performed. It averages the nodes
in the graph feature-wise, i.e. it takes a set of node features of shape (N, ?, F ), averages the nodes
along the ragged axis, and returns a regular tensor of shape (N, F ). After that, two dense layers
are added, which produce the final output of the network.

This architecture is reminiscent of popular image recognition networks like VGG [71]. These
are built by stacking blocks of image convolutional layers with batch normalizations, while the
number of filters per layer is doubled after each block. In the end, they often perform a filter-wise
global pooling as well, followed by some dense layers.

A main difference between these architectures is the presence of intermediate pooling layers
between the image convolutional blocks, which do not exists in ParticleNet. Apart from the
fact that pooling operations are less straight forward to define for graphs than for highly regular
images,Wang et al. [98] argue that the dynamic graph updates extend the receptive field of
the Edge Convolution. In that sense, they perform part of the role of pooling layers in image
convolutional networks. However, a reduction of the number of nodes using some sort of graph
pooling could still be beneficial, as it could reduce the computational burden and consequently
shorten the runtime or allow for handling larger graphs.

6.5. Advantages and limitations compared to convolutional networks

Several advantages of graph convolutional networks compared to the previously published image
based methods in Km3net ([80], [84]) are apparent when comparing the way that the input
information is encoded. Images of events are generated by defining a detector-specific grid in
space and time, and then summing up the number of hits in each bin. The exact position within
a bin of the DOMs in the water, which can also change over time due to the sea current, is
therefore lost in this step.

The grid also limits the time resolution to the size of a time bin. While it is possible in principle
to increase the number of time bins to any desired time resolution, this would increase the size of
the images and consequently the training and reconstruction time. It would also further raise the
sparsity of the signal, and thus potentially require the use of more convolution layers to increase
the receptive field.

Finally, convolutional layers in TensorFlow can only convolve over three or less dimensions.
Since our data has at least six dimensions (x, y, z, t, PMT direction), we can not convolve a
kernel over all of them simultaneously and have to resort to different methods like using the color
channel of convolutions or building models with multiple towers.

The graph network approach discussed in this work elegantly solves all of these issues. Since
the information of each hit is represented as float numbers in the node features, it is not required
to design a grid for each specific detector layout, and none of the hit information is lost in the
encoding step. This might be especially advantageous considering the positions of DOMs in
the water can change over time due to sea current. However, dedicated simulations including
a shift in the position might be necessary to fully understand the implications of this effect
[101]. Furthermore, the graph convolutions are by design n-dimensional and well suited for point
clouds, which allows us to treat our sparse high-dimensional data efficiently.

The fixed grid used in image convolutional networks also has advantages though: The resulting
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images always have the same size independent of the number of hits in an event. So even very
large events with thousands of hits do not lead to slower or more memory intensive calculations.
In graph networks this is not the case. As established in section 6.4, the memory requirement is
expected to be O(N) of the number of hits N in an event, and the k nearest neighbor algorithm
requires O(N2) operations.

However, first investigations for simulations with ARCA115 suggest that even events with
an average of many thousand hits can still be processed using current GPUs, so this limitation
might not be too troublesome for the use in Km3net. Additionally, technological advancements
of the employed hardware in the coming years, parallelizing networks among multiple GPUs, or
reducing the number of hits per graph via some sort of preprocessing might be viable options to
reduce the memory burden.

Since the graphs are constructed using exclusively the hits, the information about which PMTs
did not measure any hits is not directly provided on an event-by-event basis. It is likely though
that the network will learn the number of PMTs over the course of the millions of events it
gets presented with during the training, which all share this property. But the exact position of
where each DOM is might still be helpful for the convergence or performance, especially when
used in conjunction with the positioning system that keeps track of the movement of DOMs in
the water.
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Muon bundle reconstruction with
Graph Neural Networks

Chapter 7.
Even though Km3net/Orca is primarily a neutrino detector, most of the triggered events
contain an atmospheric muon, or a bundle of muons traversing the detector at the same time.
While these events usually pose as background for neutrino measurements, they are interesting
subjects of research as well, since they can be used to indirectly investigate cosmic rays.

Various observables can be used to characterize such a bundle of muons: The incident direction
and number of muons contained within the bundle (also called the muon multiplicity) as well as
the energy and the lateral position of each muon. The classical track reconstruction algorithm
of Km3net as described in section 4.4 can be used to estimate the direction and energy of
atmospheric muons, but since it was developed for events with a single track, it turns out to be
suboptimal in its current state for the case of multiple muons.

This chapter describes a deep learning based approach of reconstructing the direction, multi-
plicity and lateral diameter of muon bundles, which aims to improve the existing reconstruction,
and extract additional information beyond what is currently available. It also details the first
ever application of deep learning algorithms in Km3net on measured data [86][102]. Since the
detector is currently under construction, data from a small version of it is used, which consists of
four lines out of the 115 lines that will be in place in the future. This detector setup is referred
to as Orca4 in the following. Due to the high detection rate of muons, precise statistical com-
parisons of the simulations and measured data are feasible, even with relatively short windows
of observation. This can greatly improve the understanding of the algorithm, and is a crucial
step in building up trust in the powerful method of deep learning.

7.1. Model design and training setup

The architectures of the models used for the different reconstruction tasks in the following sections
are in large parts identical, as they follow the ParticleNet structure introduced in section 6.4.
The inputs are the x-, y-, and z-coordinates and the pointing direction of the PMT that recorded
each hit as well as its time. The time is given relative to the first triggered hit of the event: For
example, a hit time of 50 nanoseconds means that the hit was recorded 50 nanoseconds after the
time of the first triggered hit. The pointing direction is encoded as the three components of a
unit vector, so in total, each hit has seven features in the input layer.

For technical reasons, only up to 2000 hits are supplied to the network for each event. If
there are more, hits are randomly removed until the threshold is reached. In order to reduce the
number of hits, a time cut is applied before this: All hits that are outside of a time window of
-250 ns to +1000 ns of the first triggered hit are removed. Using the simulations, it can bee seen
that the vast majority of signal hits coming from muons are inside of this interval.

The coordinate input from which the edges are constructed are x, y, z and t · c of each hit for
the first EdgeConv block, and the output of the previous block for the second and third EdgeConv
block. After the global pooling, a dense layer with 256 neurons is added before the final output
layer. This final layer is the only part of the architecture that is different for each reconstruction

57



CHAPTER 7. MUON BUNDLE RECONSTRUCTION WITH GRAPH NEURAL
NETWORKS

Table 7.1.: Properties of the datasets used in this chapter, all of which are for the four-line
setup of the Km3net/Orca detector (Orca4). The Mupage dataset with the KM3
light simulator (see section 4.2) is only used for training the multiplicity network of
section 7.4. Everywhere else, the Mupage dataset with the JSirene light simulator
is used as simulations.
Mupage JSirene dataset

data version 5.4
light simulation JSirene

events train 20.0 million
events validation 1.1 million

events test 5.3 million

measured dataset
data version 5.4

runs 40
livetime 9.5 days

time period 08/2019 - 01/2020
events 5.4 million

Mupage KM3 dataset
data version 5.4

light simulation KM3
events train 4.9 million

events validation 1.2 million

task. Otherwise, the configurations of the models are identical. The structure of the output layer
for each reconstruction task is described in detail in each of the following sections. By training
and comparing several models with different hyperparameters, the proposed architecture was
found to be suited decently for all the given tasks.

All presented networks have about 300,000 free parameters in their three Edge Convolutional
blocks. In addition, they have about 70,000 free parameters in the dense layers, though this does
depend slightly on the reconstruction task at hand. The models are trained with a batchsize of
64 and the Adam optimizer with the default parameters. The properties of the datasets used in
the following sections are listed in Table 7.1.

The labels for the training are derived from the properties of the muon events. For example,
one interesting observable is the muon multiplicity, i.e. the number of atmospheric muons in an
event. However, it might not be ideal for the reconstruction to simply count the total number
of simulated muons in the simulation can, since not all of these muons necessarily produce
measurable hits in the detector. Consequently, it would be impossible to directly reconstruct
such a muon. Similarly, if a muon merely produces a single hit, it might not be distinguishable
from the background.

For this reason, only visible muons, defined as producing ten McHits or more, are counted
towards the multiplicity. A McHit is a hit in the simulations (also referred to as Monte Carlos)
before the simulation of the detector response. Together with the simulated PMT efficiency of
50%, ten McHits result in an average of about five actual hits. The number of five hits was
chosen somewhat arbitrarily, but there was little difference in the result when choosing a slightly
higher or lower value. Whenever the number of muons is mentioned in the following sections, it
always refers only to the visible muons, unless specified otherwise.

The preprocessing of the data is done using the OrcaSong framework (see subsection 5.7.1)
in version 4.7.1. The results can be easily reproduced by using the configuration files listed in
section A.1 for Mupage and measured data. All the models presented in the following sections
were built and trained using OrcaNet v0.16.3 (see subsection 5.7.2) and MEdgeConv v2.1 (see
section 6.4), together with the respective configuration files found in section A.2.
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7.2. Reconstruction of the incident direction
For this task, the goal is to reconstruct the incident direction of an atmospheric muon or a bundle
of muons. The case of just one muon in an event is the most common one, making up about
77% of the triggered simulated events, while events with higher multiplicities occur increasingly
more rare.

In measured data, the multiple muons of a high multiplicity event do not generally all have the
same incident direction, as they can receive different transversal momenta during their creation
in the air shower, and can also be deflected along the way. However, this variation is typically
small and is therefore not part of the Mupage simulation. Instead, all muons in Mupage arrive
from the same direction, and consequently there is also only this one observable to reconstruct.

The classical reconstruction described in section 4.4 was primarily designed for single track
events, as it makes use of a track hypothesis and PDFs developed from single muons. These events
provide an excellent opportunity to evaluate the performance of the deep learning algorithm, and
cross check results on measured data. Deep learning can be especially powerful for multi muon
events. As these events are part of the training dataset, the network learns to properly reconstruct
them, too.

7.2.1. Performance evaluation on simulations

The architecture of the network for the directional reconstruction is as described in section 7.1.
The output of the network are the three components of a vector (dir_x, dir_y, dir_z), from
which the direction can be inferred. As described in section 5.6, a normal distribution is assumed
for each of these components in order to obtain a measure for the uncertainty of the reconstruc-
tion. Since this results in two values (µ and σ) per component, the network has six output
neurons in total. The µ neurons have a linear activation, while the σ neurons have an exponen-
tial one, which ensures that their output is always positive. The loss is the negative log-likelihood
of a unit vector pointing in the true direction given the prediction, calculated individually for
each component and then added together:

loss = − log L(truedir_x|µdir_x, σdir_x)
− log L(truedir_y|µdir_y, σdir_y)
− log L(truedir_z|µdir_z, σdir_z)

The training of the network was done on a GTX 1080ti GPU, and finished after about four
days. As shown in Figure 7.1, the learning rate was kept constant at the default value 0.001 of the
Adam optimizer until no improvement in the loss was observed. At this point, the learning rate
was decayed by a factor of 10 for an epoch, and again for the final epoch. No big change in the
loss was observed after the second decay, indicating that the network has converged sufficiently.
After every quarter of an epoch, the loss was checked on a validation dataset that was not used
otherwise during the training. All following plots in this section are generated using a third test
dataset, which was not used for the training or validation.

In Figure 7.2, the zenith and azimuth angle of the reconstructed vector is compared to the
true values. For now, only the central values µ of the distributions are investigated, while the
uncertainties σ will be explored separately in subsection 7.2.2. The reconstructed values are
scattered tightly around the true values. For the zenith, a bias in the positive direction (i.e.
towards cosine zenith of 1, muons traveling straight down) can be observed. This is likely
caused by the shape of the true distribution on the training data: Less and less atmospheric
muons arrive from directions closer to the horizon (cosine zenith = 0), where they have to travel
longer distances through the atmosphere and the sea water and therefore lose more energy before
arriving at the detector.
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Figure 7.1.: Training history of the neural network used for the directional reconstruction. Shown
is the loss (top) and the learning rate (bottom) over the epoch, i.e. the number of
iterations over the training dataset.
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Figure 7.2.: 2D histograms of the directional reconstruction of muon bundles with the neural
network. Shown is the reconstruction versus the truth, for the cosine of the zenith
angle (left) and the azimuth (right). The straight grey lines through the origin show
the ideal case where the reconstruction is equal to the truth.
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Figure 7.3.: Error in the zenith reconstruction for deep learning (blue) and the classical recon-
struction (orange) over the true cosine zenith angle. Each plot shows only events
with a specific number of simulated muons, as indicated in the title. The solid line
is the median of the distribution for each bin, while the colored regions give the
68% interval around the median. Only the 93% of events that were reconstructed as
down-going by the classical reconstruction were used in the plots.

The network takes on the information about the shape of the true distribution during the
training, and incorporates it in its prediction via the observed bias. Since such a distribution
of arrival directions is also observed in measured data, it can be considered as a legitimate way
to improve the performance. However, it also adds a dependency on the shape of this reduction
of the flux. If a bias-free reconstruction is desired, the true distribution should be made flat,
either by producing a dedicated simulation, or by weighting the samples accordingly during the
training.

As mentioned above, there is also a classical approach for reconstructing the direction of a
single muon track in Km3net. In Figure 7.3, the error in the zenith angle reconstruction is
compared between the deep learning and the classical approach. Since these plots show the true
zenith angle on the x-axis, the bias of the deep learning approach is clearly visible as an increase
for the more horizontal events below a true cosine zenith of about 0.4. The classical approach is
unbiased and therefore flat in this region.

In order to make this comparison a bit fairer, any events that are reconstructed as up-going
by the classical approach were removed here. The network never reconstructs events as up-going
as such events were not part of the training dataset, so it would have an advantage for them.
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Figure 7.4.: Angle between the reconstructed direction and the true direction as a function of
the true muon multiplicity for deep learning (blue) and the classical reconstruction
(orange). The solid line is the median of the distribution for each bin, while the
colored regions give the 68% interval around the median. Only the 93% of events
that were reconstructed as down-going by the classical reconstruction were used in
the plot.

As seen in Figure 7.3, the deep learning approach achieves a similar performance in the zenith
reconstruction for single muons, but greatly outperforms the classical approach for higher mul-
tiplicities.

This is shown in greater detail in Figure 7.4. The precision of the directional reconstruction
is best for single muons for both approaches, and quickly climbs up to a plateau for events with
about three or more muons. This plateau is at a median error of about three degrees for deep
learning, and eight to ten degrees for the classical approach.

It is not too surprising that the classical approach performs suboptimal for higher multiplicities,
as it was designed for single muon tracks produced by neutrino interactions. Its performance for
atmospheric muons could potentially be improved by re-parametrizing the PDF for the multi
muon case. Additionally, only downward directions could be sampled during the prefit stage,
which would prevent upward going solutions in the first place, as they are not required for
reconstructing atmospheric muons. For deep learning, no such manual adjustments are necessary:
The optimization happens autonomously as the training dataset consists of downward going
muons and bundles.

7.2.2. Uncertainty estimation

Since the outputs of the network were parametrized to be normal distributions for each compo-
nent of a three dimensional vector, they can be used not only as an estimator for the direction,
but also for the quality of the reconstruction on an event-by-event basis. This quality is given
by the widths σ of the normal distributions. Cuts on this quantity allow to discard events for
which the network was not able to reconstruct the incident direction well. This is illustrated in
Figure 7.5 for the zenith angle by selecting events of increasingly higher quality.

It is not inherently clear whether the choice of independent normal distributions for the out-
puts of the network are a reasonable choice given the reconstruction task at hand. As mentioned
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Figure 7.5.: Histograms of the reconstructed cosine zenith angle over the true cosine zenith angle
for different cuts on the reconstruction quality, indicated by the title of each plot.
For example, the top right plot shows only the events that are among the best 75%
of events in terms of the reconstructed sigma zenith.

in section 5.6, this choice can be highly problem specific, and is de facto an additional hyperpa-
rameter of the architecture.

A good way to investigate this is to compare the pull distribution of the reconstruction to
the ideally expected standard normal distribution. The pull is defined for each event as the
difference between the true value ytrue and the reconstructed µreco, divided by the reconstructed
uncertainty σreco:

pull = ytrue − µreco
σreco

.

In other words, the pull describes how many sigmas the true value is away from the recon-
struction. If the error estimation works correctly, 68% of the true values should be within the
1σ interval around the reconstruction, 95% within the 2σ interval, and so on. In short: the pull
should follow a standard normal distribution. The pull distributions for the components of the
reconstructed direction are shown in Figure 7.6.

In the interval ±2σ, the pulls closely follow the normal distribution. For the few events in higher
intervals, non-Gaussian tails are observable. It is intuitively clear that a normal distribution can
not be a perfect posterior distribution for the output of the network, because the components of
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Figure 7.6.: Pull distributions of the directional reconstruction. The solid lines are the pulls
for the components of the reconstructed vector, and the dashed line is the ideally
expected case of a standard normal distribution.

a unit vector are restricted to the interval [−1, 1], whereas a normal distribution is unbounded.
However, for the 95% of events in the two sigma interval, the estimation of the error is accurate.

This could potentially be improved by adjusting the output distribution, for example by in-
cluding correlation terms between the components, or choosing a distribution that is directly
defined on the surface of a sphere. An interesting candidate for this could be the von-Mises-
Fisher distribution for a spherical surface, which can be compared to a two dimensional normal
distribution that respects the periodicity of the angles. However, no satisfying results using this
distribution could be achieved within the scope of this work.

While the pulls are symmetrical for dir_x and dir_y, the distribution of dir_z is asymmetri-
cally slanted towards the positive direction. This is caused by the fact that while the true dir_z
is restricted from above to always be ≤ 1 (since the truth is defined as a unit vector), it only has
a soft restriction from below: The flux of atmospheric muons gradually decreases when looking
closer to the horizon, reaching practically zero for dir_z < 0.

If the network would reconstruct dir_z = 1, it would essentially put half of the normal
distribution outside of the interval in which the true value can occur. To maximize the likelihood,
it will therefore shy away from the border dir_z = 1 and place the normal distribution at a
slightly smaller value, depending on σ. This means that the true values will be systematically
above the µ in these cases, leading to the positively slanted pull distribution. As this affects the
dir_x and dir_y components for both their borders −1 and +1 in opposite ways but with the
same frequency, their pulls are symmetric.

7.2.3. Data-Monte Carlo comparison

Deep learning is a relatively new approach to reconstruction in high energy physics. Previous
studies in Km3net have only looked at the performance on simulations [84], but have not inves-
tigated the application on measured data. Since the neural networks are sometimes considered
to be a black box, it is not a priori clear how potential differences present in measured data as
compared to the simulations affect their behavior.

It is therefore of critical importance to thoroughly investigate how networks behave when using
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Figure 7.7.: Comparison of the reconstructed cosine zenith angle on simulations (solid lines) and
data (dots) for deep learning (blue) and the classical reconstruction (orange). The
bottom plot shows the ratio between data and the simulation for each bin. As
described in the text, only events with a high quality of the classical reconstruction
are used for this plot.

them on measured data. Since atmospheric muons are measured at high rates, large statistics of
events are available even within relatively short time periods and a detector in an early stage of
construction.

A good way to check if deep learning works as expected on data is to compare it to the
established classical reconstruction. For this, a strict cut is made on the classical reconstruction
quality to ensure that only well understood events are selected, for which the PDF could be very
accurately fit to a muon track. Only events with a likelihood per hit ratio of more than 2, at
least 40 hits involved in the fit, and which are reconstructed as down-going are considered for
this. The described cut keeps 27% of simulated events and 36% of data events, and also removes
virtually all multi muon events. The distribution of the reconstructed cosine zenith angle of
these selected events is shown in Figure 7.7 for simulations and data.

The rates in the top part of the plot are calculated by dividing the number of events in each bin
by the total livetime of the simulation or the measured data. The error bars show the standard
deviation of the Poisson distribution for each bin, i.e. the square root of the number of events in
a bin divided by the livetime. The bottom part shows the ratio rdata/rmc between the rates on
data and simulations (also referred to as Monte Carlos, or MC). The uncertainty of this ratio is
calculated from the errors of the rates via propagation of error:

σdata/mc = rdata
rmc

√(
σdata
rdata

)2
+
(

σmc
rmc

)2
(7.1)
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Both algorithms show excellent agreement with each other for cosine zenith angles above 0.4
(zenith angles between zero and 66 degrees from straight down-going). Below that value, the
absolute rates differ increasingly, as the bias towards down-going events of deep learning becomes
apparent compared to the unbiased classical reconstruction. However, the ratio between data
and simulation agrees down to a cosine zenith of 0.2 (78 degrees), below which the statistics on
data are too sparse.

It is also worth noting that the data-MC ratio is quite far from one overall. This is in part
due to the aforementioned quality cut, as there is a significant data-MC disagreement of the
likelihood per hit of the classical reconstruction. The reason for this disagreement is currently
under investigation in Km3net. On the other hand, the parametrization of Mupage from which
the arrival directions are drawn is also not fully accurate, and it is an ongoing effort in Km3net
to improve the simulation by tuning the Mupage parameters [103].

On the left side of Figure 7.8, a similar data-MC comparison as before is shown, but this time
including all events. It is noticeable that there is a significant excess of events reconstructed
as relatively straight down (cosine zenith > 0.9) by the neural network. This increase is not
visible for the classical reconstruction, so these events are likely wrongly reconstructed by the
deep learning algorithm. This highlights another very important use case of the uncertainty
estimation of the network: Improving the data-MC agreement.

For this, consider the data-MC comparison of the reconstructed sigma of the zenith angle in
Figure 7.9. While the agreement is good for low uncertainties σ < 0.16 rad, there is a large
excess visible for the rarer, high uncertainty events. The 3% of MC events and 8% of data
events above that threshold can be easily removed with a cut. The right side of Figure 7.8 shows
that the previously observed excess in the zenith angle reco vanishes with this cut, resulting
in good agreement of the data-MC ratio between deep learning and the classical approach. A
slight disagreement is visible for cosine zenith below about 0.5, caused by the bias of the network
compared to the bias free classical reco.

Unlike in Figure 7.7, where a strict cut on the classical fit quality was used, the absolute rates
also differ slightly above a cosine zenith of 0.5. This means that for events where the classical
approach has a lower quality, the network reconstructs events with a slightly different direction.
Such events include for example multi muon events, for which it was shown in Figure 7.4 that
deep learning produces a slightly different and more precise directional reconstruction. However,
the fact that the ratio matches suggests that this difference in the reconstruction of the zenith
is consistent on both data and simulations.

But why is the deep learning algorithm not capable of reconstructing the events that ended
up with a high sigma more precisely? For this, it is useful to look at Z-T plots of events that
got removed with the sigma cut (Figure 7.10). These plots visualize the data recorded in the
events in question. and can help to understand the strategy of the network. The two Z-T plots
in the first row show typical events that get cut. They have a very low number of hits, and
there is no track clearly visible, suggesting that these are events that got randomly triggered by
background noise (see section 4.2). As there is no muon to reconstruct, it is not surprising that
the directional reconstruction does not produce a precise reconstruction. In fact, it is very useful
that the network assigns these events a high uncertainty, even though such events are not part of
the Mupage dataset used during the training. This suggests that a deep learning reconstruction
together with a sigma cut can be robust against deviations between data and simulations.

This point is further strengthened by specifically looking at the rare high uncertainty events
that also have a high number of hits, meaning that they are unlikely to be triggered by background
noise. The second and third row of Figure 7.10 show typical events with a high uncertainty and
with more than 200 hits, which make up only about 0.4% of all the events in the cut. The two Z-T
plots in the second row exhibit atypical horizontal patterns, again without a clear track visible.
These events are likely to be either microsecond afterpulses or sparking PMTs. Afterpulses can
occur after a bright event goes through the detector, and cause PMTs to record additional hits
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Figure 7.8.: Data-MC comparison of the reconstructed cosine zenith angle, similar to Figure 7.7.
All events are used on the left side, and only events with a reconstructed sigma
zenith below 0.16 rad are used on the right.
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Figure 7.9.: Data-Monte Carlo comparison of the reconstructed sigma zenith of the neural net-
work.
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Figure 7.10.: Z-T plots of selected events that have a high uncertainty in the deep learning
directional reconstruction (reconstructed sigma zenith above 0.16 rad). The plots
show the z coordinate and the time at which each hit is measured in any of the four
lines of the detector.
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due to ionized residual gases in the photomultiplier tube long after the particle is gone [104].
This can then trigger another event, without a particle being present. Sparking PMTs repeatedly
register hits with a high frequency for a short time, that did not originate from a passing particle
either. Both of these effects are not part of the detector response simulation and therefore do
not occur in the training dataset. Still, the network can properly assign these events a high
uncertainty, which allows for easily removing them from a selection.

Some of the events with a high number of hits also look like a legitimate track, as shown in
the third row of Figure 7.10. These muons might have hit the detector far from the center, as
their track appears to barely reach down to the lowest story. As such events are more difficult
to reconstruct, it is expected that their estimated uncertainty is also high.

7.3. Reconstruction of the bundle diameter
7.3.1. Definition
When multiple muons traverse the detector at the same time, one of the reconstructable ob-
servables of this bundle is the lateral spread of the individual muons. It arises mainly from the
transversal momentum the muons receive when they are produced in the air shower. As they
travel down to the depth of the detector, this momentum leads to a spatial separation of the
muons. With its dense instrumentation, Km3net/Orca is an especially promising candidate for
analyzing this observable. This lateral spread is correlated to several properties of the primary
particle of the extensive air shower. For example, heavier primaries can produce more detectable
muons at the depth of Km3net further out from the primary axis [105].

In order to reconstruct the spatial configuration of a bundle, it is useful to first simplify the
problem from the three dimensional trajectories down into a two dimensional plane. For this, we
can choose a plane that is perpendicular to the prolonged primary trajectory of the air shower,
and consider the points in which the muon trajectories hit the plane.

This plane can be referred to as the shower plane of the bundle. The individual muons can
travel at slightly different angles in Corsika and in reality, so the plane should be chosen to be
close to the instrumented volume. For this work, the point (0, 0) of the shower plane is set to be
the center of the instrumented volume of the Orca4 detector. The x- and y-axes of the plane
are set to be in the xz- and yz-planes of the 3D coordinate system used in the simulations.

In the Mupage simulations used to train the network, no information about the primary
particle is available. But since all muons travel in parallel there, the trajectory of any muon can
be used to construct the shower plane.

The result of this transformation is a set of shower plane (x, y) coordinates for each muon
in the bundle. But how can this spatial configuration be reconstructed efficiently using deep
learning? A direct approach would be to reconstruct the coordinate of every single muon, and
thus obtain the full information. However, this proved to be difficult due to the varying number
of muons per event, which causes problems for a static model architecture with a fixed number
of output neurons.

Instead, we can break down the spatial information even further to a single scalar number
describing the diameter of the bundle. This makes a deep learning based reconstruction very
straight forward, as it can then be done using the same approach as for example with the
directional reconstruction. One option to define the bundle diameter is to look at the distance
of the muon that is furthest from the primary. Since the Mupage simulation does not contain
the primary trajectory, this approach is not possible.

Other options include replacing the primary position with the energy-weighted average position
of all the muons in the bundle, or by calculating the smallest enclosing circle around all muon
positions. But for this work, the diameter was defined as the maximum distance between any
pair of visible muons in the bundle (see Figure 7.11). In practice, little difference was observed
between the different definitions.

69



CHAPTER 7. MUON BUNDLE RECONSTRUCTION WITH GRAPH NEURAL
NETWORKS

shower plane x
sh

ow
er

 p
la

ne
 y

Rb

    Muon

Figure 7.11.: Scheme showing the positions of the atmospheric muons of a bundle in the shower
plane. The bundle diameter Rb is defined in this work as the maximum perpendic-
ular distance between any two visible muons in the bundle.

7.3.2. Performance evaluation on simulations
The architecture of the network up to the last layer is as described in section 7.1. The output
of the model consists of two neurons (µ, σ) parametrizing a normal distribution, with a linear
and an exponential activation function, respectively. The label is chosen to be the log10 of the
bundle diameter, which is functionally identical to letting the network parametrize a lognormal
distribution for the diameter, but easier to execute in practice. The lognormal distribution was
used, since the uncertainty is expected to be proportional to the central value. For example, it
can be argued that a reconstruction uncertainty of ±1 m for an event with a 10 m diameter is
similar to an uncertainty of ±10 m for a 100 m event. This is properly reflected in the lognormal
distribution, in which both of these cases could have a σ of about 0.1. Similar to the approach
used in subsection 7.2.1, the loss for the training is then defined as the negative log-likelihood of
the true value given the distribution parametrized by the network.

As usual, the data is split threefold in a training, validation and a test dataset. Since the
bundle diameter can only be defined for events with more than one muon, all single muon events
are removed from the training and validation set. The training takes about 25 hours to complete
on a GTX 1080ti GPU, spanning over close to nine epochs (see Figure 7.12). The learning rate
was decayed from its original value of 0.001 by a factor of 0.9 after every quarter of an epoch.
Some fluctuations in the loss curve can be observed in the first two epochs, but it stabilizes in
the later stages of the training where the learning rate is lower.

In Figure 7.13, the reconstruction of the network is plotted over the true diameter for events
from the test set with more than one muon. Since the distribution of the true diameter spans
over multiple orders of magnitude, the number of events in the column of each true bin were
normalized to the same value. When looking at the left plot in Figure 7.13, multiple components
can be identified:

• Events close to the diagonal, for which the reconstruction works well.

• Events in a box below a true diameter of about log10 Rb ≈ 0.5 (Rb ≈ 3 m). For these
events, the reconstruction of the network is more or less a guess between 0.3 and 1 ( 2 -
10 meters). The muons in these events might be too close together to allow for any sort of
separation. This is likely also the reason that the network never reconstructs events with
a diameter below about 0.2 (1.6 meters).

• Events in a horizontal band located at a reconstructed diameter of log10 Rb ≈ 1 (Rb ≈ 10
meters), with a slight shift upwards for higher true diameters. These are mostly events
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Figure 7.12.: Training history of the neural network used for the bundle diameter reconstruction.
Shown is the loss (top) and the learning rate (bottom) over the epoch, i.e. the
number of iterations over the training dataset.

where one or more muons are far from the detector: If only the 44% of bundles where all
muons are within 50 meters to the center of the detector are plotted, this band disappears
(right of Figure 7.13). For these events, the localization of the far away muon might be
more difficult. When such a muon is missed, it can lead to a misreconstruction of the true
diameter.

Since the cut used on the right hand side of Figure 7.13 uses MC truth information, it can not
be used on data, even though it clearly improves the performance. Instead, we can make use of
the reconstructed σ from the network, i.e. the width of the (log) normal distribution that is the
output of the network. In Figure 7.14, the pull distribution of the reconstruction in log space is
compared to a normal distribution, just like in subsection 7.2.2. Apart from non-Gaussian tails
above ≈ 2.5σ, the distributions match well. Thus, σ can be used as an event-by-event measure
of the reconstruction quality.

In Figure 7.15, the same 2D plot as before is shown, except that only the best 44% of events
with the smallest values of σ have been used. While Figure 7.15 and Figure 7.13 (right) both
use 44% of the events, the cut based on the DL reco quality provides a better performance.
This is quite natural, as not every event with a muon further than 50 meters from the detector
is necessarily an event with a bad reconstruction. The reco quality allows for identifying well
reconstructed events even for bundles with a far away muon. Additionally, most of the events in
the box below a true diameter of ≈ 3 m were correctly assigned a high uncertainty as well, and
were consequently also removed with the cut.

The median of the relative error of the diameter reconstruction for the different cuts is com-
pared in Figure 7.16. The relative error is defined as the absolute difference between the true
and the reconstructed value, divided by the reconstruction. When using the reco quality cut,
the error has a plateau at about 15% between a true diameter of 5 and 40 meters, and ramps
up below and above these values. It is worth noting that the diameter of the instrumented
volume of the Orca4 detector is roughly 40 meters, the distance up to which the plateau of the
error extends. This could imply that future larger versions of the detector could measure much
larger diameters with good precision, as the full Km3net/Orca detector is expected to have a
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Figure 7.13.: 2D histograms of the bundle diameter reconstruction with the neural network.
Shown is the reconstructed versus the true bundle diameter, for all bundles (left)
and only the 44% of bundles in which the true trajectories of all muons come to
within 50 meters of the center of the detector (right). The straight black lines
through the origin show the ideal case where the reconstruction is equal to the
truth. The bins in each column were normalized to have an area of one.
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Figure 7.14.: Pull distribution of the bundle diameter reconstruction. The solid line is the pull
for the reconstructed diameter, and the dashed line is the ideally expected case of
a standard normal distribution.
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Figure 7.15.: 2D histogram of the bundle diameter reconstruction with the neural network, sim-
ilar to Figure 7.13. Only the best 44% of muon bundles according to the recon-
structed uncertainty of the diameter are used for this plot (events with σ < 0.15).
This is the same fraction of remaining events as when using the distance cut in the
right plot of Figure 7.13.

diameter of more than 200 meters.
Heavier and more energetic primaries can lead to higher bundle diameters. It is therefore

important to check how the reconstruction of the diameter depends on the energy of the bundle.
For example, it would be suboptimal if the diameter reco would be proportional to the energy
and therefore not add additional information beyond that. The bundle energy is calculated here
as the sum of the energies of each visible muon in the bundle at the height of the detector.

Figure 7.17 shows the performance of the reconstruction for different intervals of the bundle
energy. The reconstruction works well for all intervals, so the neural network can indeed dis-
tinguish between events with a small and wide diameter, even if their energy is similar. The
distribution of the true bundle energies, along with the intervals used in the aforementioned
performance plot, are shown in Figure 7.18.

7.3.3. Biases in reconstructions

During the training, the network can implicitly learn the true distribution of the diameters, and
tune the bias of its reconstruction in order to optimize its performance. This is similar to the
situation of the zenith reconstruction, where the network picked up the fact that the flux of
muons decreases towards the horizon. As can be seen in the following, the autonomously learned
bias can be quite powerful, but it also bears the risk of model dependency: If the underlying true
distribution changes, for example when applying the network to data, this can have implications
for the accurateness of the reconstruction as well. Cross-checks using a different true distribution
could be used to investigate this.

In Figure 7.19, a 2D histogram of the reconstruction is shown similar to the ones from before,
except that now each row is normalized to the same area. So instead of showing what the
distribution of reconstructed values are for a given true interval, it is now the opposite way
around: Each row shows the distribution of true values for a given reconstructed value. Or, in
other words, if we look at events that are reconstructed with a specific diameter, it shows what
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Figure 7.16.: The median relative error of the diameter reconstruction plotted over the true
diameter. The orange and green curves are using the different cuts introduced in
Figure 7.13 and Figure 7.15.

the true diameters of these events are. Even though no cuts were used in the plot, the events are
very close to the diagonal across the board, from the lowest reconstructed diameters of 2 meters
or so, up to 100 meters and beyond.

Components like the band of bad reconstructions at a reco diameter of 10 meters discussed for
Figure 7.13 are not present in the row-normalized plot. This is because the highest flux of muons
is located at a true diameter of about 10 meters (see Figure 7.20). Events with a higher or lower
true diameter appear much more rarely. Thus, when such events get wrongly reconstructed as 10
meters, they only pose a small background to the much larger amount of correctly reconstructed
true 10 meter events. In fact, this is arguably the reason for why this band of misreconstructions
is even located at a reco diameter of 10 meters.

Similarly, if the network encounters one of the many difficult to reconstruct events with a very
small or very large diameter, it can shift the reconstruction of these events upward or downward,
closer to the maximum of the underlying true distribution. This way, the reconstruction is closer
to the truth for a given reco value, even for events with an extreme diameter. On the flip side,
this also means that the efficiency at which such events are reconstructed is relatively small, as
many events are shifted away from their true value due to this bias. This can also be seen in
Figure 7.20, where the number of events of the reco distribution is much lower than that of the
truth for big and small diameters.

Considering the diameter of the instrumented volume of the Orca4 detector is only about
40 meters, it is quite remarkable that the network can accurately reconstruct bundles with a
diameter of up to 100 meters. This poses the question of what the approach of the network is for
this task. While it is not possible to deduce the network’s strategy analytically from its complex
internal structure, we can still try to get some insight by looking at the events for which the
reconstruction works well, and at those for which it does not.

In Figure 7.22, the positions of the individual muons in a bundle are plotted for several
randomly selected events, together with a rough indicator of the instrumented volume of the
Orca4 detector. Figure 7.22a shows random events with a large reconstructed diameter. As
was established in Figure 7.19, the true diameter is close to the reco on average. In Figure 7.22b,
random misreconstructed events with a large true diameter are plotted, for which the network
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Figure 7.17.: 2D histograms of the bundle diameter reconstruction for the 44% of events with
the highest reco quality, similar to Figure 7.15. Each plot only shows events in the
specific true energy interval indicated in the titles. These intervals are also shown
in Figure 7.18.

wrongly reconstructed a small diameter.
Events in Figure 7.22a often exhibit a typical spatial configuration, in which one or more

muons are close to the instrumented volume, while the other muon or muons are in a distant
separate group and close together. In cases like these, the network could try to measure the time
distance between the arrival of the photons from the central muon(s) and the group that is far
away. From this time difference, the diameter could be calculated.

Naturally, this strategy only works if the groups of muons have a large difference in the arrival
time of their photons. In particular, it does not work if the muons have a similar distance to the
center of the detector. Looking at the badly reconstructed events in Figure 7.22b, they generally
seem to exhibit this exact pattern: The muons are often on a tangent to the instrumented volume.
In conclusion, it seems plausible that the network actually follows the aforementioned strategy,
at least for larger diameters.

7.3.4. Data-Monte Carlo comparison
In all plots in the previous subsections, we were only ever looking at muon bundles, that is, events
with more than one muon. In fact, single muon events were even excluded from the dataset on
which the network was trained, because the used label, the log10 of the diameter, can not be
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lines indicate the four intervals
plotted in Figure 7.17.
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Figure 7.19.: 2D histogram of the bundle di-
ameter reconstruction with the
neural network. Similar to Fig-
ure 7.13 (left), except that now
the bins in each row were normal-
ized to have an area of one, in-
stead of in each column as before.
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(a) Events with a reconstructed diameter above 70 meters.

100

50

0

50

100

sh
ow

er
 p

la
ne

 y
 (m

)

100 0 100
shower plane x (m)

100

50

0

50

100

sh
ow

er
 p

la
ne

 y
 (m

)

100 0 100
shower plane x (m)

100 0 100
shower plane x (m)

(b) Events with a true diameter above 70 meters, but a reconstructed diameter below 30 meters.

Figure 7.22.: True muon positions in the shower plane of 12 random events. Each blue circle
represents one muon, while the size of the circle is proportional to the number of
McHits that the given muon deposited in the detector (i.e. the bigger the circle,
the brighter the muon). A grey circle centred at the origin with a diameter of
40 meters is also shown, which roughly represents the instrumented volume of the
Orca4 detector.
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properly defined for an event with just one muon. However, most events encountered in practice
are events with just one muon.

Ideally, the network would recognize that something is wrong with these single muon events,
and reconstruct them with a high uncertainty. We could then easily remove these events by a
cut on the reco quality. In Figure 7.21, this is investigated using the cut from Figure 7.15 that
leaves only the best 44% of muon bundles (events with σ < 0.15). Unlike before, all events are
plotted here, not just the bundles.

For a multiplicity of two or more, the number of events is reduced by a factor of about 2 - 3
as expected (since 1/44% ≈ 2.3). The cut leaves slightly more events for higher multiplicities,
probably due to the higher number of hits and energies of these events, which can make the
reconstruction more precise. The number of events with just one muon is reduced by factor of
about 40, which is much higher than for the other multiplicities. This means that the network is
clearly capable of separating the single muon events, even though it was never trained on them.
Naturally, not all single muon events are removed with the cut, for example because some of
them might look very similar to a double muon event. Similarly, some double muon events in
the training might have looked like as if there was just one muon, so the network might not be
completely unfamiliar with event signatures of single muons.

Using the quality cut, which removes most of the single muon events, a comparison of the
reconstructed diameter between the simulations and measured data can be made. This is shown
in Figure 7.23. The distributions of the reconstructed diameter on both simulations and data
were normalized here to have an area of one, so only the shapes of the distributions and not their
overall scale is compared. As will be described in section 7.4, the reason for this is that Mupage
has a shallower multiplicity distribution than what is seen in the measured data, so there is a
significant excess of muon bundles in the simulations. Since the discrepancy in the multiplicity
is discussed separately later, the distributions are normalized here.

The agreement between data and simulations is decent, the ratio being close to one between
log10 Rb = 0.8 and 1.5 (Rb = 6 meters to 30 meters). A slight excess of data events at the flanks
of the distribution with diameters of about 5 meters and 50 meters is visible. This could be
caused by an incorrect modeling of the radial distribution of the muons in Mupage. However,
it could also arise from the shallower multiplicity distribution, since the lateral parametrization
depends on the multiplicity [62]. In subsection 7.4.3, a reweighting of the Mupage events
is proposed, which adjusts the simulated muon multiplicity distribution in order to match it
with the measurement on data. Using this adjusted weighting for the data-MC comparison
improves the agreement for the left flank, but not for the right one. It will be interesting to
see if the agreement improves in upcoming productions of Mupage, which feature and adjusted
parametrization.

7.4. Reconstruction of the muon multiplicity

The muon multiplicity Nµ describes the number of muons produced in an atmospheric air shower.
As the muons propagate through water and air, they lose energy and may eventually decay
before reaching the detector. In this work, the muon multiplicity therefore always refers to the
number of muons at the detector. More specifically, as has been described in the introduction to
chapter 7, only muons that deposit ten or more McHits (≈ 5 hits) in the detector are counted
towards the multiplicity. For example, if a bundle consists of three muons with 1, 10 and 20
McHits respectively, it would be assigned a muon number of two. The reasoning of this definition
is that muons with very few hits are increasingly difficult to reconstruct, apart from possibly a
statistical statement. For future studies, however, it might be worthwhile to change the definition
to something that is not dependent on the detector response, for example by basing it on the
path length of the muon in the instrumented volume.

The muon multiplicity is an important parameter for studying cosmic rays, as it is one of the
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Figure 7.23.: Comparison of the reconstructed bundle diameter on simulations (solid line) and
data (dots). The bottom plot shows the ratio between data and the simulation for
each bin. Only events with a reco σ < 0.15 (best 44% of bundles on MC according
to the reconstruction quality) are used in this plot.

main ways to estimate the mass of the primary particle [15]. Another commonly used observable
for this is the depth of the air shower maximum Xmax. This observable is typically reconstructed
by measuring the electromagnetic component of the air shower. Since Km3net is only directly
sensitive to the muonic (and neutrino) component of the shower, the muon multiplicity is crucial
for studying cosmic ray induced air showers.

7.4.1. Architecture

A regression of the muon multiplicity is quite different from the other observables presented in
section 7.2 and section 7.3, since it is a discrete quantity and bound from below to be greater
than zero. It is worth noting that in very rare cases, simulated events can also have a multiplicity
of zero (if all muons have less than ten McHits). For technical reasons, the label for the network
is still set to one for these events. The distribution of the muon number roughly follows a power
law, and has its maximum at Nµ = 1. About 77% of the simulated events consist of only a single
muon, 13% have two and 4% have three.

As before, the regression of the multiplicity can also provide an estimate of the event-by-
event uncertainty. For this, an appropriate distribution needs to be chosen for the output of the
network in order to follow the likelihood approach introduced in section 5.6. Due to the discrete
nature of the muon number, this choice is not as straight forward as with continuous observables.
A promising candidate is the negative binomial distribution, which is both discrete and bound
from below. However, no satisfying results with this distribution could be obtained within the
scope of this thesis.
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Figure 7.24.: Architecture of the network used for the multiplicity reconstruction. It consists
of two separate output towers trained with different loss functions (mean squared
error and normal likelihood).

Instead, the distribution of choice is yet again the normal distribution using the log-transformed
multiplicity as a label, which in this combination can be thought of as letting the network output a
log-normal distribution. While this distribution properly reflects the positivity of the multiplicity,
it is continuous and not discrete. In practice, a network with such an output was observed to
suffer from high instabilities during the training, preventing it from converging. On the other
hand, using the simple and robust mean squared error as a loss function works fine, but does not
provide an estimate on the uncertainty. So how can we get the best out of both worlds?

In section 5.6, it was shown that the MSE is a specialization of the normal likelihood loss with
a constant σ = 1. To increase the stability of the training, we can therefore make use of a trick
that has been used previously in Km3net [80]: The model is trained as usual with the MSE as a
loss, resulting in a stable convergence. It outputs an estimator µ for the muon number, assuming
a fixed σ = 1.

Additionally, a separate output tower of dense layers is added after the pooling layer of the
last Edge Convolution, which is separated from the rest of the network via a gradient stop (see
Figure 7.24). This prevents gradient updates from this part of the network to reach into the Edge
Convolutional layers and the other output tower. The second tower is trained with the normal
likelihood loss, using the µ as a constant from the first tower. It is not limited any more to the
value of σ = 1, and instead can adjust the uncertainty on an event-by-event basis. Even though
this part of the network can be very unstable, sudden sharp increases in its loss do not affect the
training progress of the main part of the network, the Edge Convolutional layers. Thus, as these
layers get closer and closer to convergence over time, the σ tower can stabilize as well.

In summary, this trick can essentially be thought of as fitting the µ of the normal distribution
while keeping σ constant, and then fitting σ separately while keeping µ constant. While it is
quite obvious that this can increase the stability of the fit, it can also lead to a different result.
After all, it is not infeasible that µ would have a different - possibly better - minimum if it
was fit together with a variable σ at the same time. Such a behavior was actually observed for
the directional reconstruction: Here, the performance slightly increases when using the normal
likelihood approach instead of the MSE. However, the trick is at least strictly superior to the
MSE-only approach, as it additionally provides an uncertainty estimate without affecting the
reconstruction of µ.

80



7.4. Reconstruction of the muon multiplicity

0.008

0.010

0.012

lo
ss

 (M
SE

 to
w

er
)

training
validation

3

2

lo
ss

 (l
kl

 to
w

er
)

training
validation

0 1 2 3 4 5 6 7 8 9 10
epoch

10 4

10 3

le
ar

ni
ng

 r
at

e

Figure 7.25.: Training history of the neural network used for the multiplicity reconstruction.
Shown are the losses of the two output towers of the model (top and middle) and
the learning rate (bottom) over the epoch, i.e. the number of iterations over the
training dataset.

7.4.2. Performance evaluation on simulations

Unlike the previous networks, the model for the reconstruction of the muon number is trained
and validated on a dataset generated using the KM3 light simulator, instead of JSirene. This was
done because a slight degradation of the performance was noticeable when training the model on
the JSirene dataset. Updates to JSirene released in the meantime might have fixed this effect,
though. The degradation was only observed for the reconstruction of the muon number, and not
for the diameter or the direction. The data with which all the plots in this section are generated
is still the same JSirene test set used in the previous sections.

The training of the network was done on a GTX 1080ti GPU, and finished after about three
days. In Figure 7.25, the course of the loss for the two output towers of the network is shown.
The learning rate was decayed from its original value of 0.001 by a factor of 0.9 after every
quarter of an epoch, until the losses showed no further improvement. While the curve of the
MSE tower is very stable, large fluctuations are visible for the normal likelihood tower. However,
the curve gets more and more stable as the training progresses.

The performance of the reconstruction is visualized as 2D histograms in Figure 7.26. Since
the event rate of muon bundles falls off steeply as the multiplicity increases, each column was
normalized to sum up to the same value in these plots. In the left of the two histograms, it
can be seen that the reconstruction is close to the truth up to true multiplicities of about 50,
with a slight tendency to underestimate the truth. Above 50, the underestimation becomes a
lot stronger. Apart from that, the distribution of the reconstruction around the truth widens up
toward a higher muon number. This is expected, as it is plausible to separate a two from a three
muon event, but more difficult to tell apart events with 30 muons from those with 31.
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Figure 7.26.: 2D histograms of the muon multiplicity reconstruction versus the truth. The
straight black lines through the origin show the ideal case where the reconstruction
is equal to the truth. The plot on the left shows all events, while the one on the
right shows only the 82% of events with a reconstructed σ < 0.11. Each column
has been normalized to have an area of one.

This underestimation at high muon numbers might have multiple reasons: The number of
events in the region of high multiplicity is so low in the used Mupage simulation, that it might
negatively impact the performance. Using a weighted simulation with a flatter distribution
would address this issue. On the other hand, it could also be caused by the selection of hits.
As mentioned in the introduction of chapter 7, only events within a time window of -250 ns to
+1000 ns around the first triggered hit were used for generating the input to the network, and
only up to 2000 hits per event. This selection might negatively impact the reconstruction of
events with a high multiplicity, since they also have more hits than the average event. Relaxing
these conditions might address the observed bias.

It is more difficult here to judge how well the estimation of the reconstruction quality works
than it was for the direction or the diameter reco task. For these, a pull plot and a comparison
to the standard normal distribution was reasonable. However, the pull distribution of the muon
multiplicity reco does not follow a normal distribution due to its discrete nature, especially for
lower multiplicities close to the minimum multiplicity of one where the event rates are highest.
Instead, the error estimation can be visualized by observing the effect of cuts on the reco quality.

As an example, the right plot of Figure 7.26 uses an arbitrary cut on the reconstruction quality
σ < 0.11, which leaves 82% of the original events. Many of the events with an underestimation
were removed by this cut, as they were assigned a high uncertainty by the network. This suggests
that the bias might have been purposefully introduced by the network in order to improve its
performance. Similar to what is described in subsection 7.3.3 for the reconstruction of the
diameter, this could be achieved by taking into account the steeply falling true distribution of
the muon number. This learned bias could probably be prevented by training on a flat true
distribution. However, since the power law of the muon multiplicity is also observed on real
data, it might actually be advantageous to let the network have this bias.

As mentioned before, the cut σ < 0.11 leaves 82% of events. It is important to note that,
since higher multiplicities appear so rarely, it is not immediately clear how this cut affects the
underlying distribution of the muon number. In Figure 7.27, this impact is visualized. Cuts on
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Figure 7.27.: Distribution of the true muon
multiplicity for all events (blue)
and using different cuts on the re-
construction quality (orange and
green).
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Figure 7.28.: Mean relative error over the re-
constructed muon multiplicity, us-
ing different cuts on the recon-
struction quality.

σ generally affect events with just a single muon much less strongly than bundles. Apparently,
it is easier for the network to separate one muon from multiple than it is to distinguish bundles
from each other.

In Figure 7.28, the relative error of the muon multiplicity reconstruction is plotted over the
reco. Single muon events can be reconstructed much more precisely in relative terms than higher
multiplicities. A plateau with an average error over all events of ≈ 20% is reached for reco
Nµ > 10. In the interval between reco Nµ = 2 and 10, the error has a spike up to about 25 %
caused by events with a low reconstruction quality, which can be removed with a corresponding
cut.

The muon number is of course correlated to the number of hits in an event, as each additional
muon can further deposit hits in the detector. But is the network doing more than simply
counting up the hits? This is investigated in Figure 7.29, where the performance is shown for
different intervals of the number of hits. As can be seen there, even for events with a similar
number of hits, the network still manages to separate low multiplicities from higher ones.

7.4.3. Data-Monte Carlo comparison

Unlike in Mupage, not all events in the measured data contain a muon or muon bundle. Apart
from the extremely rare neutrinos, a few percent are triggered randomly by noise and, to a much
smaller extent, by afterpulses or sparking PMTs. Since these events are not part of the Mupage
dataset on which the network was trained, they should be removed from the selection before a
comparison between data and simulations. As shown in subsection 7.2.3, a cut on the quality of
the zenith angle reconstruction can be used to exclude the majority of these events.

Even though the number of events triggered by these effects is small in comparison to the high
rate of muon events overall, it is still important to investigate the impact of this on the recon-
struction of the muon multiplicity. The flux of muons is decreasing quickly towards higher muon
numbers, so if these background events were to be reconstructed with a high muon multiplicity,
even a small fraction of such events remaining in the selection could severely limit the validity
of the reconstruction.

We can get an estimate of which muon number pure noise events get reconstructed as by making
use of a cut on the uncertainty of the reconstructed zenith angle. As described in subsection 7.2.3,
most of the events with a σzenith > 0.16 rad contain only noise and no muons. Figure 7.30a shows
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Figure 7.29.: 2D histograms of the muon multiplicity reconstruction, similar to Figure 7.26. Only
events with a specific number of hits were used for each plot, as indicated by the
titles.

the distribution of the reconstructed muon multiplicity for these events, which are clustered at
low multiplicities. This is very advantageous, as the overall flux of muons is highest there, so
any noise events possibly not removed by a cut would result in a neglectable contamination.

Intuitively, it seems reasonable that pure noise events with their low number of hits get recon-
structed mostly as one- or few-muon events, as higher multiplicities would be expected to lead to
many more hits. However, this does not apply for the events triggered by afterpulses or sparking
PMTs. As was seen in Figure 7.10, these events often have high numbers of hits, albeit typically
in a different, non-track-like arrangement.

To investigate how the network reacts to these events, a set of cuts is used to isolate a small
sample which consists to a large degree of afterpulses and sparking PMTs. These cuts are:

• the event triggered directly before the current one had at least 500 hits

• less than 30% of the hits in the current event are triggered hits

• the time between first and last triggered hit is more than 400 ns

1345 events out of the 5.4 million events in the measured dataset satisfy these conditions. By
looking at Z-T plots of random events in this afterpulse cut, it can be estimated that about 75%
of the selected events actually show afterpulses or sparking PMTs, with the rest being normal
tracks. Similar to pure noise events, Figure 7.30a shows that they get reconstructed with a low
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Figure 7.30.: Distribution of the reconstructed muon multiplicity and uncertainty on measured
data. The different curves show all events (blue), events with a high uncertainty in
the directional reco (orange, mostly noise events), and events that are likely to be
afterpulses (green).

muon multiplicity. While it is likely that the proposed cut criteria do not identify all of the
desired events, they pose very little background at these low muon numbers. Additionally, they
get reconstructed with a very high σ on average, so even a moderate cut on the reconstruction
quality can be used to reduce the contamination further (see Figure 7.30b).

For the following, only the 97% of events in Mupage and the 92% of events on data with
σzenith < 0.16 rad are used for the plots, which eliminates many of the pure noise events present
on data but not the simulation. In Figure 7.31a, the distributions of the reconstructed muon
number are compared between Mupage and measured data. While the agreement is good for
Nµ = 1, the distribution is much steeper on data and reaches an event rate as low as only 0.1 of
what is expected from the simulations around Nµ = 45 to 50. The rates are closer to each other
again for multiplicities above 50, but low statistics do not allow for a definitive evaluation.

Is such a large discrepancy between Mupage and measured data feasible, or is this simply
a sign that the network does not work properly when confronted with data that is potentially
different from the simulations it was trained on? Unfortunately, no classical reconstruction of
the muon number exists yet, so it is not possible to directly perform a cross check of the deep
learning reconstruction. But as established earlier, many low-level observables, like the number
of hits or triggered DOMs in an event, are proportional to the muon multiplicity. So, if there is
indeed such a large discrepancy in the muon number, it should be visible in these quantities, too.
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Figure 7.31.: Data-Monte Carlo comparison of the reconstructed muon multiplicity, using only
events with σzenith < 0.16 rad.

The event rates on data and Mupage for a selection of several such observables are shown in
Figure 7.32. Many of them indeed show an excess in Mupage with a similar order of magnitude
as the reconstruction of the muon number.

It is therefore interesting to see to which degree these differences can be explained by the
mismatch of the muon number. This can be investigated by reweighting the Mupage events
so that the data-Monte Carlo ratio of the multiplicity reconstruction is close to one. For this,
the data-MC ratio shown in the bottom plot of Figure 7.31a is used. Each Mupage event is
then weighted according to this ratio and its true muon multiplicity. For example, the data-MC
ratio is about 0.5 for a reconstructed muon multiplicity of 5. Consequently, each Mupage event
with a true muon multiplicity of 5 is assigned a weight of 0.5. Since the ratio gets increasingly
unstable for Nµ > 30, all events with a true muon multiplicity above 30 get the same weight as
an event with 30 muons.

These reweighted distributions are shown as the orange curves in Figure 7.32. For many ob-
servables, like the number of PMTs that recorded a hit in an event, the number of triggered hits
or triggered DOMs, the data-Monte Carlo agreement is substantially improved. Also for param-
eters related to the classical reconstruction (JGandalf) a clear improvement can be observed,
even though some differences in the fit quality (likelihood/n_hits) remain.

In Figure 7.31b, the same data-Monte Carlo comparison as in Figure 7.31a is shown, but on
a log scale for the muon number. As was described in subsection 4.1.2, the dependency of the
muon bundle flux Φ on the multiplicity m can be described by a power law

Φ(m, h, θ) = K(h, θ) · m−ν(h,θ). (7.2)

The parameters K and ν depend on the height h and the zenith angle θ. Figure 7.31b shows the
flux integrated over these quantities, but they still seem to follow a power law up to multiplicities
of about 20, after which the flux decreases more strongly. This reduction is much more prominent
on Mupage than on data for muon numbers above 50. Two power laws have been fitted to the
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Figure 7.32.: Data-Monte Carlo comparison of various quantities, using only events with σzenith <
0.16 rad. The blue curves are for the default Mupage weighting, whereas the orange
curves were reweighted in such a way that the distributions of the reconstructed
multiplicity (top left) on data and simulations match up to Nµ = 30.
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distributions in Figure 7.31b via a χ2 fit in the interval between one and 50 muons, which takes
the form of a straight line in the double log plot.

Interestingly, the distribution of the ratio between data and simulation follows a power law
more closely than the muon numbers themselves. This suggests that the effect that causes the
reduction in flux for multiplicity above 20 is present to the same multiplicative extent in both
the data and the simulations. By using Equation 7.2, the following formula for the expected
distribution of the ratio between data and simulation can be obtained:

Φdata(m, h, θ)
Φmc(m, h, θ) = Kdata(h, θ)

Kmc(h, θ) · m−(νdata(h,θ)−νmc(h,θ))

The height- and zenith-angle integrated quantities were determined via the fit to the data-MC
ratio of Figure 7.31b in the interval between one and 50 muons to be:

Kdata
Kmc

= 1.0671 ± 0.0020

νdata − νmc = 0.472 ± 0.005. (7.3)

This indicates that a tuning of the original Mupage parameters could fix the observed differ-
ences. However, the parameters obtained in Equation 7.3 might not suffice for this, as they do
not respect the zenith and depth dependency of the muon multiplicity. There are various ongoing
efforts in Km3net that pursue alternative strategies, like making use of Corsika simulations
to update the Mupage parametrization, or perform a multi dimensional optimization based on
various other observables [103].
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Cosmic ray composition measurement
Chapter 8.

In the previous chapter 7, the reconstruction and evaluation of the different bundle properties has
been performed using exclusively Mupage simulations. Due to the relatively low computational
effort to simulate events in Mupage, vast numbers of atmospheric muon bundles are available,
which is especially helpful during the training of the deep neural networks. However, these
simulations do not contain information about the primary that produced the air shower from
which the muons originate. Corsika simulations do provide this information, but they are much
more expensive to generate and therefore typically only available in fewer numbers.

The strategy followed in this chapter is to use the networks that were trained on the large
Mupage dataset, and then apply them to the much smaller Corsika dataset for measuring
the primary composition. This way, the network can make use of large statistics for learning
the features of bundles, while the entire Corsika production with its information about the
primary can be used for the measurement, since none of its events were used during the training.
Additionally, this approach doubles as a cross check of the reconstruction, since the training of
the network is done on a different set of simulations than the measurement itself. Furthermore,
this also allows for a systematic study to assure that the network retains its performance when
switching from Mupage training set to Corsika.

As before, the preprocessing of the data is done using OrcaSong (see subsection 5.7.1). Since
Corsika contains additional information compared to Mupage, the OrcaSong configuration file
given in the appendix in section A.1 was slightly adjusted accordingly.

8.1. Corsika dataset

First studies with the Corsika dataset provided by the Collaboration have shown satisfying
agreement to Mupage simulations and measured data [106]. It was simulated with Corsika
version 7.6400 using Sibyll 2.3c [49] for high energy hadronic interactions, and Geisha 2002d
[53] for the lower energies. In total, 2.5 million atmospheric showers were simulated with pri-
mary energies between 103 and 109 GeV, resulting in about 242,000 triggered events in the
Km3net/Orca detector. Five different nuclei have been used as the primary particles of the
shower: proton, helium, carbon, oxygen and iron. The number of triggered events is roughly
even among the different primaries, with about 48,000 events for each of them. The flux of events
is calculated by weighting each event according to its primary type and energy using the GST-3
cosmic ray flux model [55].

The networks used in this section are the exact same ones that have been introduced in
chapter 7. As described there, these models have been trained on Mupage simulations, and are
applied in inference mode (i.e. with their free parameters being fixed) on the Corsika simulations
in the following. Similar to the Mupage test set, the Corsika data has therefore not been seen
by the network at any point during the training or validation. For comparisons with Mupage
and measured data, the corresponding datasets from chapter 7 described in Table 7.1 are used.
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Figure 8.1.: 2D histograms of the directional reconstruction of muon bundles with the neural
network, similar to Figure 7.2. The plots show data from the Mupage (left) and
the Corsika (right) datasets. Bins below the minimal rate of the colorbar are set
to the same dark blue color, or to white if if they are below 20% of the minimum.

8.2. Performance of the GNNs on Corsika

8.2.1. Direction

As described in section 7.2, this network reconstructs the incident direction of an atmospheric
muon or muon bundle. Unlike in Mupage, the muons in bundles of Corsika are in general
not fully parallel, so the incident direction is defined as the direction of the primary in this case
instead. In Figure 8.1, the reconstructed cosine zenith angles on both the Mupage and Corsika
simulations are compared to the truth.

The color indicates the rate of events in each bin. For Mupage, this can be calculated by
dividing the number of events in a bin by the total simulated livetime (in this case 9.6 days). For
Corsika, the flux is computed using the weight_w3 included from the simulation chain divided
by the total number of simulated air showers per primary (five million). In the case of Mupage,
a bin cannot have a non-zero flux below rmin = 1 / 9.6 days ≈ 1.2 · 10−6 s−1, which is reached if
there is only one event in a bin. For Corsika, however, the flux can be much lower due to the
weighting. In order to make the plots comparable, all bins with a flux between rmin and 0.2 ·rmin
are plotted in the same dark blue color, and bins with a rate below 0.2 · rmin are set to white.

The performance of the network is very similar on Mupage and Corsika, as the zenith
reconstruction is close to the truth in both cases. The counts per bin are fluctuating much
more strongly in the case of Corsika, though. This is because the Corsika dataset consists
of only 242,000 events - much fewer than the 5.3 million events of the Mupage JSirene test set.
Additionally, many of these events contribute only little to the overall flux, as they originate
from the rarer, heavier primaries, or have a large energy. For example, the proton events alone
account for about 69% of the flux, but only for 18% of the simulated events. On the other hand,
oxygen, carbon and iron together make up 7% of the total event rate, but 63% of the simulated
events. The larger fluctuations from bin to bin seen in Figure 8.1 are therefore mainly caused
by the small subset of events with a high weight from the overall already quite small Corsika
dataset.

In Figure 8.2, the error in the zenith reconstruction is compared between Mupage and Cor-
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Figure 8.2.: Error in the zenith reconstruction
for events simulated with Mupage
(blue) and Corsika (red) over the
true cosine zenith angle, similar to
Figure 7.3. The solid line is the
weighted median of the distribu-
tion for each bin, while the colored
region is the 68% interval around
the median.
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Figure 8.3.: Angle between the reconstructed
direction and the true direction as
a function of the true muon mul-
tiplicity for Mupage (blue) and
Corsika (red), similar to Fig-
ure 7.4. The solid line is the
weighted median of the distribu-
tion for each bin, while the colored
region is the 68% interval around
the median.

sika. The low statistics lead to large fluctuations here as well, but it can still be seen that the
performance is very similar on the two datasets. Since muons with higher multiplicities are much
more rare, they carry little weight in this graph. In Figure 8.3, the performance of the directional
reconstruction is therefore compared as a function of the muon number. As before, there is little
to no difference between Mupage and Corsika, even for larger bundles. Since heavier primaries
tend to produce bundles with more muons, the fluctuations from bin to bin are less prominent
in this plot.

A data-Monte Carlo comparison of the reconstructed cosine zenith angle is shown in Figure 8.4.
In order to remove events that have been triggered by noise instead of muons, events with
a high uncertainty in the deep learning reconstruction of more than σzenith = 0.16 rad have
been cut on both data and simulations for these plots. This is the same approach that was
introduced in subsection 7.2.3, which leaves about 97% of the total event rate on both Mupage
and Corsika. For reference, the comparison is additionally also done with the result from the
classical reconstruction using the same cut.

For Mupage and measured data, the rates shown in the top part of the plot are calculated as
described in subsection 7.2.3 by dividing the number of events in each bin by the overall livetime.
For Corsika, the approach is slightly more complicated, as the weight of each event has to be
taken into account. The rate rcorsika of the n events in a bin is therefore given by the sum of the
weights wi of all the events contained in it. As described above, wi is calculated by taking into
account the total number of simulated air showers. The uncertainty σcorsika per bin is given by
the square root of the squared sum of each weight wi:

rcorsika =
n∑

i=1
wi, σcorsika =

√√√√ n∑
i=1

w2
i . (8.1)

For both techniques, the agreement between Mupage, Corsika and data is decent in the
interval between a cosine zenith of 1 and 0.4 (0 to 67 degrees from vertical down going), although
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Figure 8.4.: Data-Monte Carlo comparison of the reconstructed cosine zenith angle, similar to

Figure 7.8. The plots only show events from the Mupage (blue) and Corsika (red)
datasets that have an uncertainty of the zenith angle reconstruction σzenith below 0.16
rad. The plot on the left shows the result of the deep learning reconstruction, and
the one on the right shows the results from the classical reconstruction for reference.

the low statistics only allow for evaluating this down to a factor of about two. The disagreement
between deep learning and the classical reconstruction for cosine zenith angles below 0.4 is caused
by the fact that the classical algorithm is bias-free toward the horizon, and produces different
results for bundles. This was discussed to greater extent in subsection 7.2.3.

The deep learning reconstruction shows a much more pronounced decrease of the rate for cosine
zenith angles below 0.25 on Corsika than on Mupage. The classical reconstruction does not
exhibit this behavior. However, the distribution of the classical reconstruction does not match
with the true distribution of the zenith angle in this interval at all (cf. Figure 4.3), since it is
dominated by misreconstructed events there. The deep learning reconstruction should therefore
be seen as evidence for a mismatch of the zenith distribution between Mupage and Corsika
for close-to-horizontal events.

8.2.2. Diameter

As described in section 7.3, the bundle diameter is defined as the maximum perpendicular dis-
tance between any two visible muons in a bundle. In Mupage, all muons are simulated as
traveling in parallel, so their lateral positions can be easily defined in a plane that is perpendic-
ular to all of them. In Corsika, however, each individual muon travels at a slightly different
angle depending on the transversal momentum it received during its production in the air shower.
Their lateral positions are therefore instead defined using a plane that is perpendicular to the
trajectory of the primary particle. In both cases, the origin (x, y) = (0, 0) of the coordinate
system of this plane is set to the center of the Orca4 detector, and the positions of the muons
in the plane are the points at which their trajectories intersect with it.

Figure 8.5 compares the reconstructed distributions of the diameter on Mupage and Corsika
using two-dimensional histograms. Only events with at least two muons are used for this plot,
since the diameter cannot be defined for events with just one muon. As before, the small
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Figure 8.5.: 2D histograms of the bundle diameter reconstruction. Shown is the reconstructed
versus the true bundle diameter, using bundles simulated with Mupage (left) and
Corsika (right). Bins below the minimal rate of the colorbar are set to the same
dark blue color, or to white if if they are below 20% of the minimum.

statistics of the Corsika dataset lead to much higher fluctuations of the rate between bins
compared to Mupage. Apart from that, the distributions are similar, and the events are scattered
predominantly around the truth in both cases.

A more detailed look at the performance of the reconstruction is given in Figure 8.6. For this,
the relative error of the reconstruction is plotted over the true diameter. Similar to what was
shown in Figure 7.16, the curves represent the median of the distribution in each bin. However,
the fact that the events in Corsika are weighted has to be taken into account when calculating
the median. For this reason, a weighted variation of the median is used. Given a distribution of
values {x1, x2, ..., xN } in a bin, it is defined as the value xm for which the summed up weights
of events smaller than xm make up half of the total sum of weights. As there usually is no value
that fulfills this criterion exactly, an interpolation is used instead. In order to remove events
for which the diameter could not be properly reconstructed, a cut on the reconstruction quality
σdiameter < 0.15 is used. This is the cut referred to as the high reco quality cut introduced in
subsection 7.3.2, which leaves 44% of bundles for Mupage and 41% for Corsika. The slight
deviation in the fraction of remaining events between the simulation programs is caused by
the different distributions of the true multiplicity and the diameter (see Figure 4.3). On both
Mupage and Corsika, a stable plateau in the performance is visible between 5 and 40 meters,
for which the diameter can be reconstructed down to about 15%.

In Figure 8.7, the distributions of the reconstructed diameter are compared between Mupage,
Corsika and measured data. The cut on the reconstruction quality σdiameter < 0.15 is used here
as well, as it removes most of the single muon events encountered in data. Within the relatively
large uncertainty of a factor of about two, Corsika shows decent agreement with Mupage and
the measurement. It is noticeable that the bins with a reco log10 diameter below 0.5 and above 2
are empty for Corsika, but not for Mupage and data. This is caused by the limited statistics
of the Corsika dataset, especially for events with exceptionally large or small diameters.
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Figure 8.6.: The weighted median of the rel-
ative error of the diameter re-
construction plotted over the true
diameter, similar to Figure 7.16.
The curves show events simulated
with Mupage (blue) and Corsika
(red). Only events with σdiameter <
0.15 are used for the plot.
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Figure 8.7.: Comparison of the reconstructed

bundle diameter on Mupage
(blue), Corsika (red) and data
(black), similar to Figure 7.23.
Only events with σdiameter < 0.15
are used for the plot.

8.2.3. Multiplicity

As mentioned before, the muon multiplicity of an event in this work is defined as the number
of visible muons in the bundle. A muon is assumed to be visible if it produces ten or more
McHits in the detector. In Mupage, events are simulated with up to 100 muons, which leads to
a maximum visible muon number of about 80. In the Corsika dataset, bundles with up to 2500
muons are simulated, corresponding to a maximum visible multiplicity of about 2000. However,
events with such a high muon number occur at an extremely low rate, and therefore have little
influence on the performance at lower multiplicities.

In Figure 8.8, the reconstruction of the network is compared to the truth for both Mupage and
Corsika. The plots show a high degree of agreement, all the way up to the highest multiplicities
that have been simulated in Mupage. As before, bins with a rate lower than 20% of the minimum
that can be encountered in Mupage dataset are set to white. Therefore, most of the events with
a muon number above 80 would not be visible in the Corsika plot and therefore not part of the
depicted interval of true multiplicities.

The performance as a function of the reconstructed multiplicity is investigated to a closer
degree in Figure 8.9. In order to make the datasets more comparable, events with more than 100
simulated muons were removed from the Corsika set for this plot. The curves are on top of each
other for most of the interval, but a slight deviation is visible at low multiplicities: The average
relative error in Corsika is a few percent lower for single muon events, but a few percent higher
for events with two muons.

This is because the network was observed to very slightly overestimate the true muon multi-
plicity on Corsika for lower muon numbers. In other words, in Corsika there are fewer two
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Figure 8.8.: 2D histograms of the muon multiplicity reconstruction. Shown is the reconstructed
versus the true multiplicity, using events simulated with Mupage (left) and Corsika
(right). Bins below the minimal rate of the colorbar are set to the same dark blue
color, or to white if if they are below 20% of the minimum.

muon events wrongly reconstructed as one muon, and more single muons events wrongly recon-
structed as two. The reason for this is not fully clear, but as can be seen in Figure 8.10, muon
bundles have a slightly higher median energy in Corsika as compared to Mupage. Since the
network was trained on Mupage, it might sometimes wrongly interpret the higher muon energy
in Corsika as an additional muon, leading to the observed overestimation. Another potential
reason is the strong difference in the distribution of the muon multiplicity between the Mupage
and Corsika dataset. A bias acquired during the training on the Mupage set could lead to
a slight degradation of the performance, especially in the low multiplicity region where the dis-
tribution falls steeply. The difference in the distributions is discussed in greater detail at the
end of this section, and shown in Figure 8.12. In upcoming productions of Mupage, alternative
distributions of the muon number will be provided, which can be used to test this. Alternatively,
the observed overestimation might also merely be an artifact caused by the low statistics of the
Corsika set, which are especially noticeable in the proton-dominated low multiplicity region.
Future Corsika productions with improved statistics and updates might therefore resolve this
issue.

Since the network was never trained on events with a true muon multiplicity above 80, it is
interesting to see how the algorithm performs on this type of events in the Corsika dataset.
In Figure 8.11, the mean reconstructed multiplicity is plotted as a function of the truth. As
explained, the Mupage curve ends at a muon number of 80, as no events with a multiplicity
above that are part of the dataset. The average reconstruction is significantly below the truth at
that point, which is caused by the bias that the network put in place to make use of the steeply
falling distribution of the muon multiplicity (see subsection 7.4.2). Consequently, the bias is not
visible in plots like Figure 8.9, which show the performance as a function of the reconstructed
value.

On Corsika, the curve can be extended well beyond a true muon number of 80. In this
region, the network is forced to extrapolate its reconstruction, which can be seen to result in a
plateau around the highest values it predicted on Mupage. For true multiplicities above 120,
there is even a slight reduction visible in the mean reconstructed muon number. However, this
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Figure 8.9.: Average relative error over the
reconstructed muon multiplicity,
similar to Figure 7.28. Only events
with less than 100 simulated muons
were used for this plot.
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Figure 8.10.: Mean bundle energy over the
number of simulated muons. The
solid line is the weighted median,
and the shaded region indicates
the 68% interval around it. The
bundle energy is defined here as
the sum of the energies of all
muons in the bundle.

effect is not only caused by the limited distribution of the multiplicity in the training dataset.
As mentioned in section 7.1, only up to 2000 hits are handed to the network for each event.
While this has a relatively small impact on the events from Mupage, this approach can severely
limit the information contained in events with very high multiplicities. For future iterations of
the algorithm, the number of hits should therefore not be limited. Since events with a very
high multiplicity are extremely rare, this will have only a negligible effect on the runtime of the
network for an average event, but could prove useful for studies on Corsika datasets.

The distributions of the reconstructed muon multiplicity on Mupage, Corsika and measured
data are compared in Figure 8.12. In order to remove events triggered by noise, the cut on
the reconstruction quality of the zenith angle introduced in subsection 7.2.3 is used. While
Corsika does not perfectly match the distribution on data, the agreement is a lot better than
with Mupage across the entire multiplicity interval, and is very close to one for events with ten
or less muons. Both simulations reach the highest difference between data and Monte Carlo in
the range of 40 to 50 muons. For Corsika, the rate on data in that region is lower by a factor
of about two, compared to a factor of five to eight for Mupage. A potential explanation for the
remaining observed disagreement between Corsika and measured data could be an incorrect
description of the primary mass composition of the cosmic rays. While the GST-3 model was
used for the analysis so far, multiple different flux models exist, which can have a strong influence
on the expected multiplicity distribution. Several different alternative flux models are discussed
and investigated in subsection 8.4.1.

8.3. Connection between bundle observables and the primary mass
Even though the properties of the primary particle, like its mass or energy, cannot directly be
measured in the detector, various features of the observable atmospheric muon bundles have
a correlation to them. In Figure 8.13, the rate of simulated Corsika events is plotted over
the muon multiplicity as reconstructed by the graph neural network. In order to evaluate the
connection to the primary mass, events are plotted in separate curves depending on the type
of primary that caused the air shower they originate from. Since five different primaries were
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Figure 8.11.: Reconstructed versus true muon
multiplicity for Mupage (blue)
and Corsika (red). The solid
line is the weighted median of the
reconstruction for each true bin,
while the colored region is the
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10 5

10 3

10 1

101

ev
en

ts
 / 

bi
n 

/ s

mupage
corsika
data

1 20 40 60 80
reco muon multiplicity

10 1

100

da
ta

 / 
m

c

Figure 8.12.: Data-Monte Carlo comparison of
the reconstructed muon multi-
plicity for Mupage (blue) and
Corsika (red). Just like in
Figure 7.31, only events with
σzenith < 0.16 rad are used, which
are often triggered by noise.

simulated in the Corsika dataset used, there are also five different curves ranging from light
(proton) over medium (helium, carbon, oxygen) to heavy (iron) cores.
As can be seen in the plot, the distributions vary significantly between the different primary
masses:

• The rate of proton events is dominant only in the left-most bin with a multiplicity of one
and two, and drops steeply afterwards.

• Helium events become dominant in the low multiplicity range between two and ten.

• Carbon and oxygen exhibit a very similar distribution, which makes it difficult to separate
them from each other based on the multiplicity alone. Their rate is never dominant in any
region of the reconstructed multiplicity, so their contribution to the shape of the total rate
is smaller than that of the other primaries.

• Iron events replace helium as the dominant nucleus at multiplicities higher than 15. At the
highest muon numbers of 40 or more, the flux consists almost completely of iron events.

The curves in Figure 8.13 show events of all primary energies. As explained in subsection 2.1.3,
the elemental composition undergoes drastic changes depending on the primary energy. Multiple
different models exist, which differ significantly in their predictions for the flux of the various
primaries, especially at higher energies beyond the knee. So fat, the cosmic ray particle flux
model used to weight the Corsika simulations has been the GST 3-gen model. As can be seen
in Figure 8.14, the flux of this model shows a correlation between the energy and the mass
of primaries, as heavier nuclei tend to become dominant at higher energies. Similarly, heavier
nuclei also become dominant at higher multiplicities, so there is a correlation between the primary
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Figure 8.13.: Rate of Corsika events over the
reconstructed muon multiplicity.
Each curve shows the events pro-
duced by air showers that have
been induced by the given pri-
mary particle.
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Figure 8.14.: Flux of cosmic ray particles ac-
cording to the GST 3-gen [55]
model plotted over the true pri-
mary energy.

energy and the muon number as well. As a consequence, the features of the muon multiplicity
distributions of the individual primaries described above can also be encountered to some extent
in the primary flux.

The muon number is not the only observable that is connected to the primary composition. In
Figure 8.15, the distribution of the reconstructed zenith angle of muon bundles is plotted for the
different primaries. Proton is dominant for events going close to straight down with cosine zenith
angles above 0.8 (i.e. zenith angles < 37 degrees). The contribution of helium increases when
looking closer to the horizon, while even heavier nuclei start to become increasingly dominant at
cosine zenith angles below 0.3 (i.e. zenith angles > 73 degrees). This behavior is likely caused
by the aforementioned correlation between the primary mass and their energy. Muons that
arrive close to horizontally have to travel through more of the Earth’s atmosphere and sea before
reaching the detector. The additional energy loss along the way means that muons need a higher
initial energy on average in order to be measured by the detector, which they are more likely to
have if they have been produced in the air shower of a highly energetic primary.

The bundle diameter also exhibits a connection to the primary type. In Figure 8.16, the
diameter of events with two or more muons originating from showers produced by proton and
iron nuclei is plotted. At low diameters, proton is dominant, while iron induced events become
the majority above diameters of about 30 meters. However, it is difficult to quantify the diameter
of this transition exactly, as low statistics of the Corsika simulations lead to large fluctuations
in the rates and spikes in some of the bins. This is despite the overall flux at 50 meters being
at about 10−3 events per second. In contrast, the statistics for the muon multiplicity are still
sufficiently high even at muon numbers of 75 or more, with rates of about 10−6 events per second
(see Figure 8.13). It is unclear whether an appropriate adjustment of the weighting during
the simulation could reduce the fluctuations and thus improve the feasibility of estimating the
primary mass with the bundle diameter. However, a larger detector can improve the statistics
even further and likely provide a better reconstruction of events with large diameters. The four
line detector used for this work has a diameter of about 40 meters, while the finished 115 line
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Figure 8.15.: Rate of Corsika events over the
reconstructed bundle zenith an-
gle. Each curve shows the events
produced by air showers that have
been induced by the given pri-
mary particle.
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Figure 8.16.: Rate of Corsika proton and
iron events over the reconstructed
bundle diameter. Only events
with more than one muon are used
for this plot.

setup will span more than 200 meters across. This is well in the region in which events from iron
induced showers are dominant, so this observable will become increasingly important for future
studies.

8.4. Composition measurement

8.4.1. Muon multiplicity and zenith angle

It was shown in the previous section that one of the most important observables for estimating
the primary composition is the muon number. As can be seen in Figure 8.17, heavier primaries
tend to produce events with higher multiplicities on average. This correlation can be exploited
to make a statistical statement about the composition given the measured distribution of the
muon multiplicity on data.

The data-Monte Carlo comparison in Figure 8.17 shows that there is a significant difference
between the distribution of the reconstructed muon number on measured data and simulations.
The agreement can be improved by increasing or decreasing the fraction of the individual pri-
maries in the total flux. In a logarithmic plot like Figure 8.17, this scaling corresponds to shifting
the distributions of the primaries up or down.

As can be seen in the plot, the contribution of carbon and oxygen induced events to the
overall event rate is small compared to other primaries over the entire range of reconstructed
multiplicities. For this study, they are therefore not needed in order to describe the observed
distribution of the muon number and are not considered for the measurement. This leaves
only the three primaries proton, helium and iron, which are dominant in the low, medium and
high multiplicity range, respectively. In Figure 8.18, the distribution of the reconstructed muon
number of the Corsika simulation with three primaries is compared to what is measured on
data. Each of the three primaries is assigned a scale sp, she and sfe with an initial value of 1.
These are the free variables in the least squares fit that matches the sum of the three primary
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Figure 8.17.: Data-MC comparison of 6 months of Orca4 line data versus the Corsika sim-
ulated dataset. The top plot shows the distributions of the reconstructed muon
multiplicity for data, Corsika, and the five individual primaries that make up the
Corsika dataset. The middle plot gives the fraction that each primary contributes
to the total flux in Corsika, depending on the reconstructed multiplicity. At the
bottom, the ratio between Corsika total and measured data is shown.

curves to the distribution on measured data. The quantity which is minimized in the fit is r2,
the sum of the squared weighted residuals δ2

i / σ2
i over all the bins M in the histogram:

r2 =
M∑

i=1

δ2
i

σ2
i

,

δi = ndata,i −
∑
prim

sprim · nprim,i,

σi =
√

σ2
data,i + σ2

MCtotal,i.

In order to calculate the residual δi between the fitted simulation and the measured data
for a bin i, the bin counts of the individual primary curves nprim,i are multiplied with the
corresponding scale sprim, summed up, and then subtracted from the bin count on data ndata,i.
δi is then divided by its uncertainty σi, which is calculated using a propagation of errors from
the uncertainties of the bin counts ndata,i and nMCtotal,i. As before, the uncertainty of the bin
count is given by the standard deviation of a Poisson distribution with the expectation value of
the observed bin count.

The above calculation yields the weighted residuals δi / σi for each bin i. The squared sum over
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Figure 8.18.: Data-MC comparison of the re-
constructed muon multiplicity us-
ing the GST 3-gen weights, before
any fitting is done.
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Figure 8.19.: Cosmic ray particle flux over the
true primary energy. The GST 3-
gen model is shown as the solid
lines, while the cH3a model is
plotted with dashed lines.

all bins results in r2, which is minimized with respect to the scales sprim using the Levenberg-
Marquardt algorithm [107]. In addition to the fitted scales, an estimation of their covariance can
be obtained from this as well. The squared diagonal entries of the covariance matrix are used to
estimate the standard deviation of the fitted scales. It is important to note that the uncertainties
σi are dominated by the uncertainty from the simulations up to muon numbers of about 60. So
even though the detection rates of muons on data are high at low multiplicities, low statistics
of the Corsika dataset in this range prevent a precise measurement of the proton and helium
component.

The result of the fit is shown in Figure 8.20a. In comparison to the situation before the fit
shown in Figure 8.18, the data-MC agreement is improved significantly for multiplicities above
four. At the lowest muon numbers, the fit produces a severe overestimation of the rates due
to an overly large proton fraction. This is likely caused by the low Corsika statistics leading
to large uncertainties per bin, in combination with the fact that the proton curve is essentially
constrained by only two bins (i.e. events with one or two muons). Starting at muon numbers as
low as three, helium replaces proton as the main contribution to the overall flux (see Figure 8.17).

A strategy to mitigate this problem is to make use of the zenith dependence of the primary
composition shown in Figure 8.15. Proton events are encountered more often than those from
other primaries close to the vertically downward direction. The fit procedure described above
can be conducted for two zenith intervals at the same time. For this, the events are split in two
groups, one each for events above or below a reconstructed cosine zenith angle of 0.8. Several
thresholds were tested, and this value was found to work best in practice. The result is two
sets of histograms, for which a combined fit can be done like described above in order to better
constrain the proton curve. For this, the sum of squared weighted residuals is calculated over
the bins in both histograms, and then minimized using the Levenberg-Marquardt algorithm as
before.

This will also provide additional bins in which helium is dominant, further contributing to the
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(a) Fit done using all events independent of their
reconstructed zenith angle.
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(b) Fit done using two zenith bins for events above

and below a reconstructed cosine zenith angle of
0.8. An improvement of the data-MC agreement
is visible for low multiplicities.

Figure 8.20.: Result of the least squares fit of the reconstructed muon multiplicity distributions
from Corsika to data. The curve of each primary is multiplied by the correspond-
ing fitted scale. Both plots only show events that have an uncertainty of the zenith
angle reconstruction σzenith below 0.16 rad.

overall stability of the algorithm. In the future, larger event numbers in the Corsika simulation
at low multiplicities could stabilize the fit and make this procedure unnecessary. The result of
the fit using the two zenith bins is shown in Figure 8.20b. Compared to the previous approach
without the split in the zenith angle (Figure 8.20a), the data-MC agreement is improved for low
muon numbers, but very slight worse in the 10 to 30 range. In Table 8.1, the fitted fractions as
well as the correlation matrices of the fitted parameters are compared between the approaches
with and without using the zenith angle. Since the proton and helium contribution are anti-
correlated, the improved lower proton fraction of the two bin fit also results in a higher helium
fraction as in the one bin fit, and a slightly reduced contribution for iron. The table also shows
the energy-integrated composition of the GST 3-gen model. Compared to it, the two bin fit
shows a similar proton fraction, but a significant increase of the flux for helium and reduction for
iron. However, since these values are integrated over the entire energy range, it is not possible
to determine in which energy region the differences occur.

Energy dependence

It is worth noting that the described fit procedure does not change the dependence of the flux on
the energy, as it still uses the parametrization of the GST 3-gen model for that (see Figure 8.21).
The fit merely changes the overall normalization of the individual primaries or, in other words,
the spectra in Figure 8.21 are shifted up or down, but keep their shape. However, it is very useful
to measure the composition not only for the integrated flux, but for different energy intervals, as
the primary composition changes significantly over the range of the cosmic ray energy spectrum.

A first look into how the energy dependence influences the fit can be obtained by varying
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Table 8.1.: Results of the composition measurements which do not use the zenith angle (one bin),
and which make use of two zenith bins to improve the fit. Both use the GST 3-gen
model for the energy dependence of the flux.

Fractions proton helium iron
default GST 3-gen 73% 25% 2.15%

fit (one bin) 140% ± 25% 24.8% ± 2.7% 0.87% ± 0.05%
fit (two bins) 68% ± 15% 38% ± 3% 0.83% ± 0.05%

Correlation (one bin) proton helium iron
proton 0.18 -0.05 -0.0021
helium 0.019 -0.0007

iron 0.0007

Correlation (two bins) proton helium iron
proton 0.07 -0.026 -0.0009
helium 0.02 -0.0012

iron 0.0009
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Figure 8.21.: Cosmic ray particle flux over the true primary energy using the GST 3-gen model.
The left plots shows the flux of primaries arriving at Earth according to the formulas
of the GST 3-gen model. The right plots shows the rate of atmospheric muon
events produced in showers of the corresponding primary at trigger level using the
Corsika simulations.
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the flux model of the Corsika simulation. This can easily be done at trigger level without the
need to simulate any additional events, as the flux model can be applied to each event using the
weight_w2 parameter of the Corsika simulation, together with the primary type and energy.
The Python package cr_flux1 contains the functions of several flux models, and can be used
to conveniently re-weight the existing dataset. The models can differ substantially, especially at
higher energies. A selection of these models is summarized in the following:

• The poly-gonato model [54] proposed in the early 2000s provides a comparatively simple
description of the primary spectra by parametrizing them with powerlaws and a cutoff
depending on their gyroradius (see subsection 2.1.4). This model was only intended to
describe the spectrum up to and at the knee.

• GST 3-gen [55] assumes three populations of cosmic rays, representing supernova rem-
nants below the knee, galactic sources above the knee, as well as extragalactic sources at the
ankle. Each population contains a mixture of five different nuclei (proton, helium, carbon,
oxygen, iron). Similar to poly-gonato, the nuclei in each population exhibit a cutoff de-
pending on their gyroradius. GST 4-gen is an extension to GST 3-gen with an additional
fourth population of protons at high energies of about 1010 GeV. The model parameters
were constrained via a fit to the measured low-energy flux of individual primaries from
CREAM, as well as the total cosmic ray flux measured by several experiments at higher
energies.

• H3a and H4a [56] (sometimes referred to as HGm and HGp) follow a similar idea as
the GST 3-gen model, as they describe the cosmic ray spectrum with three populations
of particles. However, the nuclei species used in the model are different (proton, helium,
carbon-nitrogen-oxygen, magnesium-silicon, iron). H4a is a variation of H3a which has
only protons in the third component.

• cH3a and cH4a [16] combine the Gaisser Honda (GH) model [108] for lower energies below
104 GeV with H3a and H4a for higher energies.

In Figure 8.19, a comparison of the flux according to the GST 3-gen model used for the Cor-
sika simulations so far, and the cH3a model is plotted. The models differ especially at energies
beyond the knee and for iron nuclei. Using the cH3a model for the simulations, a composition
measurement with two zenith bins like described above can be conducted (see Figure 8.22). The
lower proton flux at high energies in cH3a is reflected by the smaller proton contribution at high
multiplicities. The data-MC agreement is decent after the fit, showing a slight improvement in
the 10 to 30 multiplicity range compared to the fit with the GST 3-gen model in Figure 8.20.

After the fit, the measured event rate for each primary can be calculated by integrating the
scaled distribution over the multiplicities. In order to quantify the composition, these rates can
be divided by the overall rate on data. The uncertainty is obtained via propagation of error
of the uncertainty of the fitted primary flux and of the total flux on data. As the latter is
comparatively small, the resulting uncertainty is dominated by the uncertainty from the fit. For
example, the fit using the GST-3 model results in a rate of 4.1 ± 0.9 proton events per second.
Since the overall rate of triggered events on measured data is 6.0130 ± 0.0007 events per second,
the proportion of proton in the composition is given by 68% ± 15%.

The result of the composition fit using all of the flux models listed above is plotted in Figure 8.23
and summarized in Table 8.2. The flatter iron curve of the non-GST models leads to a better
quality of the fit and a reduced iron contribution to the overall flux. This suggests that the energy
spectrum of these models can better describe the cosmic ray flux as measured by Km3net/Orca.
Since there is a significant overlap and therefore anti-correlation between the different primaries,
a lower rate of iron induced events leads to a slight increase of the rate for helium and decrease

1https://pypi.org/project/crflux/
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Figure 8.22.: Result of the least squares fit sim-
ilar to Figure 8.20b, except that
the cH3a flux model was used for
the energy spectrum of the cosmic
rays.

40%

60%

80% proton

35%

40%

45%

fr
ac

tio
n helium

GST 3-gen
GST 4-gen

cH3a
cH4a

H4a
poly-gonato

0.6%

0.8%
iron

Figure 8.23.: Measured composition of the cos-
mic ray flux using different mod-
els for the energy spectrum. The
error bars are obtained from the
standard deviation of the least
squares fit.

for proton. For future studies, it will be very interesting to measure the energy dependence of
the composition directly instead of assuming one of the described models. However, this likely
requires a reconstruction of the primary energy, which poses multiple issues and could not be
successfully completed within the scope of this thesis. These problems are discussed to greater
detail in subsection 8.4.4.

8.4.2. Bundle diameter

Next to the muon number, the diameter of the bundle also has a strong connection to the mass
of the primary. In Figure 8.24, a data-Monte Carlo comparison of the reconstructed bundle
diameter for proton, helium and iron induced events is shown. The cut on the reconstruction
quality of the diameter introduced in subsection 7.3.2 ensures that most of the single muon events
are removed from the selection.

flux model proton helium iron reduced χ2

GST 3-gen 68% ± 15% 38% ± 3% 0.83% ± 0.05% 1.72
GST 4-gen 71% ± 17% 38% ± 3% 0.89% ± 0.06% 1.75

cH3a 59% ± 11% 39% ± 3% 0.58% ± 0.03% 1.51
cH4a 58% ± 11% 39% ± 3% 0.59% ± 0.03% 1.50
H4a 58% ± 11% 39% ± 3% 0.59% ± 0.03% 1.50

poly-gonato 53% ± 11% 45% ± 3% 0.63% ± 0.03% 1.45

Table 8.2.: Result of the primary composition measurement using different models for the energy
spectrum. The reduced χ2 gives the total squared sum of residuals of the fit divided
by the degrees of freedom, and is thus a measure of the quality of the fit.
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Figure 8.24.: Data-MC comparison of the reconstructed bundle diameter for events with σdiameter
< 0.15.

In the region below a diameter of 70 meters, the rate on data is higher than the rate in Corsika
by a factor of about two. This is caused by the flux of single muons remaining after the quality
cut. They make up about 14% of the total rate, and as mentioned in subsection 8.2.3, the rate of
single muons is underestimated by the used Corsika production relative to what is measured.

For events with a diameter of more than 70 meters, the simulated distributions appear to fall
off much more rapidly than what is measured on data. While the low statistics in this region
make a definitive statement difficult, this could be indicative of an underestimation of the iron
contribution to the cosmic ray flux in the simulations, as iron induced events are most common in
this interval. Interestingly, this seemingly goes against the result based on the muon multiplicity,
which suggests that the iron contribution is overestimated in the simulations (see Figure 8.18).
As it turns out, both of these observations are true at the same time, as the excess of iron events
is present for events which are reconstructed with a high multiplicity and a low diameter.

For this, consider the data-MC comparison of the diameter for events with a low or high
multiplicity shown in Figure 8.25. The large excess of events with a data/MC ratio above 100 is
present only for events with a high diameter and a multiplicity below 30. For events with a high
diameter but a multiplicity above 30, no such increase is visible. High multiplicity events barely
affect the overall distribution of the diameter due to their low flux, and high diameter events in
turn barely affect the overall multiplicity distribution. Therefore, both effects can be present at
the same time. In summary, the iron component in Corsika is underestimated for events with
a high diameter and low multiplicity, and overestimated for events with a high multiplicity but
low diameter at the same time.

As can be seen in Figure 8.24, heavier primaries tend to become more prominent at higher
diameters: The most common primary is proton at diameters below 10 meters, helium between
10 and 40 meters, and iron above 40 meters. The diameter can therefore provide an additional
way of measuring the cosmic ray composition, and improve upon results when used in conjunction
with the muon number.

Similar to before, the individual primary curves can be scaled using a least squares fit in order
to match the bin counts on measured data to the ones on the total simulation. The result from
this is a measurement of the composition of the primary cosmic rays. However, no successful
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Figure 8.25.: Data-MC comparison of the reconstructed bundle diameter using the Corsika
simulations. The plots use only events with a reconstructed muon multiplicity of
below (left) or above (right) 30.

attempts could be made to bring the fit to convergence. A combined fit of the diameter together
with the multiplicity and zenith angle did not produce satisfying results either. This is likely
caused by the low statistics of events with high weights, which results in the large error bars
seen in Figure 8.24. While the errors for six months of measured data are smaller than the dots
visible in the plot, the fluctuations in the simulated distributions make it difficult to achieve a
meaningful separation between the three different primaries. Larger Corsika productions are
likely to improve this situation in the future.

8.4.3. Seasonal variation

It has been established by various experiments like Minos [109], Opera [110], Nova [111] and
IceCube [112] that the rate of atmospheric muons at the surface and below varies periodically
over the course of a year. In [113], an overview over the results from various experiments over
the last decades is presented.

This effect is mainly caused by temperature variations of the atmosphere from season to season,
which in turn affect the density profile of the air in which the cosmic ray air showers develop [5].
For example, the highest overall rate of single atmospheric muons is typically observed across
experiments during the summer, when the temperature is highest. The hot air expands compared
to the colder seasons, which reduces the air density and thus makes it more likely for mesons in
the hadronic component of the air showers to decay into muons instead of interacting with an air
molecule. The opposite effect is visible during the winter, where the rate at which atmospheric
muons can be measured is lowest.

Different amplitudes of the variation of the muon rate are observed for the different experi-
ments, typically in the range of a few percent. For example, Opera reports a seasonal change
of the single muon rate of 1.55 ± 0.08 % compared to the average [110]. On the other hand,
IceCube reports an annual variation of about 8% over the course of the seven years between 2011
and 2017 [112]. A cause for the difference in amplitudes is the locations of the detectors, which
come with stronger or weaker annual changes of the air temperature. Additionally, they have
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higher or lower energy detection thresholds for measured muons due to their different depths.
As a consequence, deeper detectors are expected to measure a larger seasonal variation of the
muon flux [113].

Several experiments have reported that events with higher muon multiplicities show a stronger
seasonal variation in their rate than single muon events. Nova reports an amplitude of the
variation of 5.11 ± 0.10 % for events with 15 to 19 muons, and 6.73 ± 0.13 % for events with 39
to 100 muons [111]. Similarly, Minos also has measured a stronger seasonal change of the muon
rate for events with multiple muons [109]. Since the muon multiplicity is the main observable used
for the cosmic ray composition measurement presented in this thesis, the seasonal fluctuation has
to be considered as a source of systematic uncertainty. The goal of this section is to investigate
its impact on the presented study.

Interestingly, both Nova and Minos have found that events with multiple muons have the
maximum of their rate in the winter, as opposed to the summer maximum of single muon events.
The reason for this is still under debate, but a potential explanation is that multi muon events
at lower energies could mostly get produced by interactions of mesons in the air shower [113].
On the other hand, single muon events originate primarily from decays of the mesons. Since the
air density is lower during the summer and the probability of decay is therefore increased, this
would lead to a higher single muon rate, but a reduced multi muon rate. Similarly, the opposite
would be true for the winter months.

An unpublished study with the Macro detector has not found a winter maximum for the multi
muon rate, and instead measured the maximum to be in the summer just like for single muons
[113]. The reason for this could be the large difference in terms of the depth of the detectors:
Minos lies at a depth of 225 meters water equivalent (w.e.), while Nova has merely 3.6 meters
w.e.. In contrast, Macro has a rock overburden of 3.8 kilometers w.e., being in a similar order
of magnitude as the 2.4 kilometers w.e. of the Km3net/Orca detector. Due to the larger depths
of these detectors, only muons with high energies can be detected. If these high energy muons
get produced from meson decays directly even for multi muon events, it would explain why no
phase shift was measured with a deep detector like Macro.

Muon rate in KM3NeT/ORCA

In Figure 8.26, the rate of triggered events for six months of Orca4 data between August 2019
and February 2020 is plotted for each run. When using all runs and events, as is shown in blue,
significant variations in the rate can be observed from run to run on top of a slowly changing
baseline. A cause for these upward and downward spikes is the variation of the rate at which the
bioluminescence background in the water triggers the detector. In order to filter out runs with
a particularly high background activity, the so-called high rate veto fraction can be used.

If a photomultiplier records hits at a rate higher than a set threshold (more than 2000 hits in
a 100 ms period), some of the data it has recorded is deleted due to the high rate veto [114].
The average fraction of time in a run that the photomultipliers in the detector have undergone
a high rate veto is called the high rate veto fraction. The source of these high rates is typically
background in the form of bioluminescence. Consequently, if the veto was active for a large
fraction of the photomultipliers, this is indicative of a high noise background. In order to select
runs with a high quality, only physics runs with a high rate veto fraction smaller than 0.1 and a
livetime of more than 20,000 seconds are chosen for this study.

Since the goal is to investigate the trigger rate of atmospheric muon events, a cut is used
to remove events triggered by background sources instead of a muon. For this, the cut on the
reconstruction quality of the zenith angle described in subsection 7.2.3 is used. With this cut,
only events that have an uncertainty σzenith of less than 0.16 rad are added to the muon rate.
The trigger rate of events that pass the described selection criteria for both the run and the event
quality is shown as the orange curve in Figure 8.26. Compared to the rates calculated from all
events shown in blue, the selection is much more stable, and makes the downward trend in the
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Figure 8.26.: Overall rate of triggered events on
measured data in the given time
period, for all events (blue) and
selected high quality events and
runs (orange, see definition in the
text). Each dot represents a sin-
gle run.
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Figure 8.27.: Rate at which selected high qual-
ity events and runs are triggered.
The orange curve represents the
rate on measured data (same as
in Figure 8.26), while the green
curve uses the Mupage run-by-
run simulation instead.

rate toward the winter months clearly visible.
However, it is important to note that the observed change in rate over time is not only caused

by the variation of the atmospheric density. The bioluminescence background rate decreases in
the winter, similar to the rate of atmospheric muons. While the described cut on the zenith
reconstruction quality can be used to remove events without a muon track, a higher background
rate still has an impact on the measured muon rate. For example, a higher background can let
the trigger fire for barely visible tracks that would have gone unnoticed otherwise, or lead to hits
being randomly recorded in just the correct place and time to make it seem like they are part of
a track.

In order to determine what fraction of the change of the muon rate is caused by air density
variations instead of the background, the procedure described by Mulder [115] can be used. It
makes use of the fact that the Mupage run-by-run simulations include the variation of the
background, but not of the atmospheric density. By applying the aforementioned selection
criteria on the run-by-run simulations, the change in the muon rate due to the background
alone can therefore be estimated. It is important to note that three quarters of the run-by-run
simulation were used for the training and validation of the network, and can thus not be used
anymore for this comparison. As a consequence, the livetime for Mupage runs has to be scaled
up according to how many of their events are in the test set, and some runs even have to be
removed entirely as all of their events were used during training.

The result of the selection on both measured data and the Mupage simulation is shown in
Figure 8.27. Jumps in the rate from run to run are present in a similar fashion in both measured
data and the simulations, as they are not caused by the varying temperature and are therefore
correctly modeled as part of the run-by-run Mupage dataset. Apart from the short scale jumps,
the overall rate is decreasing toward the winter months for both curves. However, the rate
is decreasing more strongly on data. This is because the rate on measured data is not only
impacted by the change of the background rate, but additionally also by the change of the air
density, which is not part of the Mupage simulation. By dividing the rates of the two curves
with each other, an estimate of the variation of the muon rate due to the atmosphere alone can
be obtained.

This is shown in Figure 8.28. While the muon rate on measured data is about 99% of the rate
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in the run-by-run simulations during the summer, this ratio drops to about 95% in the winter.
This yearly variation with an amplitude of about ±2% matches the result obtained by Mulder
[115] for the Orca6 detector in the time period between March and December 2020.

In Figure 8.29, the change of the muon rate compared to the average over the course of the
given six month period is plotted for 20 time bins. The plot shows both the overall change of the
rate for selected events and runs on measured data, as well as the estimate for the change due
to the variation in the atmospheric density, obtained from the ratio to the Mupage run-by-run
simulation. The rate varies with an amplitude of about 3% between August and February (orange
dots), from which about 2% are caused by the variation of the atmospheric density (green dots),
and the remaining 1% are caused by the bioluminescence background.

The muon rate jumps significantly between the different bins in Figure 8.29. Part of this is
caused by the variation of the bioluminescence background. But jumps are still visible even for
the green dots which take the background into account. A potential reason for this is that the
variation in the muon rate is caused by changes of the air temperature and density, as described
above. While the temperature generally decreases towards the winter months, periods with hot
or cold weather can have an influence on the atmospheric density on a short time scale. This
effect is not captured in the presented analysis, as the time of the year is used merely as an
approximation of the air temperature. In order to incorporate these short scale effects, the
dependence of the muon rate on the temperature and air density profile can be investigated
explicitly in future studies (see e.g. [112] for an example in IceCube, or [115] for a first study in
Km3net/Orca).

Influence on the composition measurement

In Figure 8.30, the change in the overall trigger rate of high quality runs and events on measured
data is shown, depending on the reconstructed muon multiplicity. Events with a higher muon
number show a stronger change in the muon rate. The amplitude of the variation reaches from
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Figure 8.30.: Change in the rate of atmospheric muons compared to the average over the entire
six month period on measured data. Each plot shows events with a different number
of reconstructed muons. Note the different ranges on the y-axis for each of the plots.
The same selection as in Figure 8.26 was applied to the runs and events.

about 2% for single muon events, up to 10% or more for events with more than 20 muons. This
variation includes both the change in background as well as the atmospheric air density. Since
events with higher multiplicity consist of more hits on average, the change in background is
likely to be less important for these events. Consequently, the observed seasonal variation of
multi muon events is expected to be mostly caused by the atmospheric density. In contrast,
single muon events are expected to be most affected by the background. In the future, this study
could be repeated on Mupage run-by-run simulations to determine how big of a fraction of this
variation is caused by the change in the air density, similar to the approach discussed above.

The maximum of the muon rate is found during the summer months, for both single and multi
muon events alike. A winter maximum of the multi muon rate like it was measured by Nova and
Minos is not present in the given data. As described above, it is likely that the winter peak for
multi muon events can only be observed in detectors with a significantly lower energy detection
threshold than Km3net/Orca.

The muon multiplicity is the main observable used for determining the cosmic ray mass com-
position in this thesis. The given Corsika dataset does not include the seasonal variation of the
density profile of the atmosphere or the background rate. This would be necessary in order to re-
spect the significant dependence of the muon number on the time of the year. Thus, the described
seasonal variation of the muon rate has to be considered as a source of systematic uncertainty. Its
impact on the composition measurement can be estimated by performing the fit using measured
data from different time periods over the course of the examined six month period. Apart from
that, the measurement is done in the same way as explained in subsection 8.4.1.

Figure 8.31 shows the result of this analysis. The impact of the seasonal variation on the
proton rate is negligible given the current substantial uncertainties from the limited statistics of
the Corsika set. Protons are dominant in the low multiplicity range where the seasonal change
was observed to be the smallest. The impact of the seasonal variation on the proton fraction is
therefore expected to be the smallest of all the primaries. On the contrary, iron and in particular
helium show significant changes over the year, as they are determined by events with higher
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Figure 8.31.: Measured composition of the cosmic ray flux over the time period in which the
corresponding events were recorded. The left plot shows the overall rate of triggered
events with σzenith < 0.16 at the top, as well as the rates of the different primaries
below it as measured by the fit. The plot on the right shows the fraction each
primary contributes to the overall rate on data. It was calculated using the values
from the left plot by dividing the rate of each primary by the overall rate.

muon numbers. Their fraction changes from a maximum of about 50% ± 5% to a minimum
of 40% ± 5% for helium and from 0.8% ± 0.2% to 0.4% ± 0.2% for iron between summer and
winter. In the likely case that the composition can be determined with a higher precision in
the future, dedicated run-by-run Corsika simulations for different periods of the year could be
necessary in order to eliminate the seasonal variation as a source of systematic errors. These
simulations would need to respect both the variation of the background rate as well as of the air
temperature and density to most accurately describe the data. However, it is unclear how large
the uncertainty from the variation of the atmospheric density is in comparison to the one caused
by the different high energy interaction models, which could not be tested within the scope of
this thesis.

8.4.4. Discussion

Even though the available statistics of the Corsika dataset are small, and the detector is still
in an early stage of construction, a fit using the reconstructed muon multiplicity can already
be used to measure the composition, and even shows sensitivity to the choice of the energy
spectrum. It is shown in subsection 8.4.2 that the bundle diameter is also sensitive to the primary
mass. However, the number of simulated events in the present dataset is not enough in order
to determine the composition using the diameter with the presented method. With sufficient
statistics, the precision of the composition measurement could likely be improved by making use
of both the diameter and the multiplicity. A straight forward approach for this is to perform the
fit of the primary distributions using the distributions for both these observables simultaneously
in a single chi squared fit. This approach is successfully used in this work to incorporate the
reconstruction of the zenith angle into the fit. For this, the multiplicity distribution is fitted in
two different zenith bins at the same time. This improves the result, as light primaries contribute
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increasingly little to the overall flux closer to the horizon.
Apart from increasing the statistics available in simulations, a different strategy could be ap-

plied to improve the stability of the fit. In this thesis, the composition measurement is conducted
using the distribution of observables like the multiplicity on a set of Corsika simulations. In
some regions of the phase space, like for low multiplicities or moderate to high bundle diameters,
the low statistics of the simulations posed a significant problem for the stability of the fit. It
could be beneficial to instead follow a different approach for the fit, which has been used by
multiple experiments in the past [116][117]. For this, a theory curve is fitted to the distribution
on simulations for each primary first. Then, the sum of these theory curves is fitted to data like
before. This could eliminate the problem of low statistics in some of the regions. On the other
hand, it requires choosing an appropriate function for the theory curves.

In addition to measuring the primary composition, it is very useful to also reconstruct the
energy of the primary. By combining both of these measurements, the composition can be
determined as a function of the energy. This allows for additional cross checks of primary flux
models and interaction models. A strategy for estimating both the mass and energy of the
primary is presented by the IceCube Collaboration [116]. For this, a small neural network was
trained to estimate the energy and mass of the primary using several lower level observables.
As described above, parametrized theory curves were then fitted to the resulting distributions
for the mass, which in turn were scaled and fitted to the measured data. The estimate for the
primary energy was used to split the data into multiple energy bins, and the composition analysis
was performed for each of them. For Km3net, the direct observables could be the zenith angle
of a muon bundle, the muon number, the diameter, as well as an estimate of the summed up
energy of all the muons. While there is currently no established way of reconstructing the bundle
energy in Km3net, a previous study suggests that this task can be solved very efficiently using
a graph neural network as well [118].

Instead of directly reconstructing the primary energy, the dependence of the composition on
the energy can also be investigated by adding free variables to the chi square fit. These variables
could describe the slopes and cutoffs present in the spectra of the individual primaries, and would
be tuned during the fit exactly like the normalization factors described in this chapter. Using
the available Corsika dataset and its limited statistics, no successful attempt could be made
with this strategy so far.

It is worth noting that Km3net does not have a way of measuring the energy of cosmic
rays independently of the mass, as both of these quantities are reconstructed using the muonic
component of air showers. This is different compared to IceCube, which can additionally make
use of the IceTop detector to reconstruct the energy from the electromagnetic component. It has
been reported that experiments which can only perform a correlated measurement of the energy
show a much weaker effect of the muon puzzle on the rate of high energy events with a high muon
number [15] (see section 2.1.3 for details on the muon puzzle). If this is correct, Km3net/Orca
will likely also exhibit this property.

A source of systematic uncertainty for the measurement of the composition is the high-energy
hadronic interaction model used in the Corsika simulations (see subsection 4.1.1). The dataset
used in this work was simulated with the post-LHC model SIBYLL 2.3c. Alternatives include
EPOS-LHC [119] and QGSJET II-04 [120]. The different models can affect observables like the
muon number or the bundle diameter significantly [17], and are therefore an important source
of systematic errors. However, investigating this requires the production of additional sets of
Corsika simulations, as the interaction model affects the entire evolution of the air shower. It
can thus not be simply changed at trigger level like it is the case with the energy spectrum.

In the presented study, only proton, helium and iron nuclei were used to describe the observed
distribution of the muon multiplicity. The two additional primaries that are present in the
Corsika dataset (oxygen and carbon) could not be used in the fit, as their scaling factors would
get set to zero during the least squares fit. This is because their overall rates are too small and
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their distributions do not differ significantly enough in shape from those of the other primaries in
order to be reliably identified. The large uncertainty per bin which is caused by the low statistics
of the Coriksa dataset is a potential reason for this. Furthermore, it is likely that the carbon
and oxygen component can be better identified as the Km3net/Orca detector grows in size
and can measure wider bundles more precisely. Other spectral models, like the HXa and cHXa
parametrizations, feature different primary groups in addition to proton, helium and iron than
the GST models. So in order to be able to switch the spectrum to these models for cross checks,
additional primaries would need to be simulated in Corsika.
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Chapter 9.

Graph networks are especially efficient network architectures for analyzing data recorded with the
Km3net detectors. The model design used in this work uses the euclidean distances between the
space and time coordinates of hits to construct a graph, and applies Edge Convolutional layers on
it. While this approach was shown to function well on the given data from the Orca4 detector,
it is not the only available design for graph based models. Other architectures might prove
superior, both in terms of performance as well as memory efficiency, which could be especially
important for larger detector layouts which result in much larger graphs as an input. A study
comparing multiple different architectures is necessary in order to find the one that is best suited
for the given data.

The first application of deep learning algorithms on measured data in Km3net presented
in this work has shown satisfying agreement across the board, suggesting that this method
is robust against deviations between simulations and measurements. In future measurements,
Km3net additionally includes an acoustic positional calibration system, which takes into account
the influence of the movement of seawater on the positions of the photomultipliers. It will be
interesting to see how this affects the agreement between data and simulations of the graph based
approach, and whether dedicated simulations including this movement are necessary to train the
network.

Reconstructions of the incident direction, the muon multiplicity as well as the diameter of
muon bundles have been developed using these graph based networks within the scope of this
thesis. This showcases one of the big advantages of deep learning: Different observables can
be reconstructed using a very similar approach, meaning this method is fast and requires little
resources compared to traditional approaches. Additional reconstructions can easily be included
in the future if need be. For example, another relevant property that can be reconstructed using
graph networks is a measure of the total energy of the bundle, which was successfully developed
within the scope of a separate Bachelor’s thesis [118].

Using the deep learning reconstructions, a measurement of the primary composition was per-
formed for the first time in Km3net. It makes use of the correlation between the muon mul-
tiplicities of events recorded in the detector and the masses of the primary particles that have
produced them. Despite the limited statistics of the available set of simulations, the overall
fractions averaged over the entire energy spectrum were determined with a relative statistical
uncertainty between 22% for proton, down to as low as 6% for iron. An energy dependent mea-
surement of the composition will allow for a more detailed investigation of the highly energetic
particles beyond the knee, whose comparatively low flux makes them contribute little to the
overall rate. While no such measurement could be successfully completed within the scope of
this thesis, larger sets of Corsika simulations and a potentially improved reconstruction quality
from a larger detector are likely to make this possible for future studies. For this, an estima-
tor for the energy of the primary is useful. This could be either determined by making use of
the lower level reconstructions of the deep learning and classical approaches, or alternatively
by training a network on Corsika simulations to let it directly predict the energy. However,
training a network from scratch requires a large set of samples, which are costly to simulate with
Corsika.
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Configuration files
Appendix A.

This chapter lists the configuration files used in OrcaSong and OrcaNet in order to produce the
presented results. They are also included in the respective git repositories.

A.1. OrcaSong

The configuration files can also be found under the given name in the OrcaSong repository in
the configs directory.

Mupage ORCA4

Filename in OrcaSong: bundle_ORCA4_mupage_v5-40.toml

# produce graphs as samples
mode = " graph "
# produce l a b e l s f o r atmospher ic muon bundles
e x t r a c t o r = " bundle_mc "
# only h i t s with in t h i s time window around the f i r s t t r i g g e r e d h i t
# are used f o r the graphs
time_window = [ −250 , 1000 ]

[ ex t ra c to r_con f i g ]
# DU1 was part o f the s imulat ion , but only DU 2 , 3 , 4 and 5 are a c t i v e
inact ive_du = 1
# the cente r o f the de t e c t o r f o r c a l c u l a t i n g the shower plane
plane_point = [ 1 7 , 17 , 111 ]
# save the best downgoing s o l u t i o n o f the c l a s s i c a l r e c o n s t r u c t i o n
only_downgoing_tracks = true

Corsika ORCA4

Filename in OrcaSong: bundle_ORCA4_corsika_sibyll_2-3c.toml

mode = " graph "
e x t r a c t o r = " bundle_mc "
# coord inate system in c o r s i k a i s d i f f e r e n t from the one in mupage
center_hits_to = [ 0 . 0 2 0 , −0.040 , 111 . 186 ]
time_window = [ −250 , 1000 ]

[ ex t ra c to r_con f i g ]
inact ive_du = 1
plane_point = [ 1 7 , 17 , 111 ]
only_downgoing_tracks = true
# s t o r e in fo rmat ion from the primary
i s_c o r s i ka = true
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Measured data ORCA4
Filename in OrcaSong: bundle_ORCA4_data_v5-40.toml

mode = " graph "
e x t r a c t o r = " bundle_data "
time_window = [ −250 , 1000 ]
correct_mc_time = f a l s e

[ ex t ra c to r_con f i g ]
only_downgoing_tracks = true

A.2. OrcaNet
The configuration files can also be found under the given names in the OrcaNet repository in
the orcanet_contrib/configs directory.

Direction
Config

Filename in OrcaNet: direction_config.toml

[ c o n f i g ]
ba t ch s i z e =64
l ea rn ing_rate = " l r . csv "
t ra in_logge r_f lu sh = 10
verbose_tra in = 2
v a l i d a t e _ i n t e r v a l = 1
s h u f f l e _ t r a i n = true
cleanup_models = true

sample_modif ier="GraphEdgeConv "
l abe l_mod i f i e r = {name=" Regre s s i onLabe l s " , columns =[ ’ dir_x ’ , ’ dir_y ’ , ’ dir_z

’ ] , model_output=’ dir ’ , s t a ck s =2}
dataset_modi f i e r = " as_recarray_dist "

The following file lr.csv was used to schedule the learning rate:
# epoch f i l e n o s e t l e a r n i n g ra t e to
1 1 1e−3
3 1 1e−4
4 1 1e−5

Model

Filename in OrcaNet: direction_model.toml

[ model ]
type = " DisjointEdgeConvBlock "
next_neighbors = 16
shor t cut = true

b locks = [
{ un i t s =[64 , 64 , 6 4 ] , batchnorm_for_nodes=true } ,
{ un i t s =[128 , 128 , 128 ]} ,
{ un i t s =[256 , 256 , 256 ] , poo l ing=true } ,
{ type="OutputRegNormal " , output_neurons=3, output_name=" d i r " , u n i t _ l i s t

=256 , s igma_act ivat ion=" exponent i a l " } ,
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]

[ compi le ]
opt imize r = ’ keras :Adam’

[ compi le . l o s s e s ]
d i r = { func t i on = ’ lkl_normal ’ , met r i c s =[" mae_err_reco " , " mse_err_reco " ] }

Diameter

Config

Filename in OrcaNet: diameter_config.toml

[ c o n f i g ]
ba t ch s i z e =64
l ea rn ing_rate = [ 0 . 0 0 1 , 0 . 3 3 ]
t ra in_logge r_f lu sh = 10
verbose_tra in = 2
v a l i d a t e _ i n t e r v a l = 1
s h u f f l e _ t r a i n = true
cleanup_models = true

sample_modif ier="GraphEdgeConv "
l abe l_mod i f i e r = {name=" Regre s s i onLabe l s " , columns =[ ’ max_pair_dist ’ ] ,

model_output=’max_pair_dist ’ , s t a ck s =2, log10=true }
dataset_modi f i e r = " as_recarray_dist "

Model

Filename in OrcaNet: diameter_model.toml

[ model ]
type = " DisjointEdgeConvBlock "
next_neighbors = 16
shor t cut = true

b locks = [
{ un i t s =[64 , 64 , 6 4 ] , batchnorm_for_nodes=true } ,
{ un i t s =[128 , 128 , 128 ]} ,
{ un i t s =[256 , 256 , 256 ] , poo l ing=true } ,
{ type="OutputRegNormal " , output_neurons=1, output_name="max_pair_dist " ,

u n i t _ l i s t =[256 , ] } ,
]

[ compi le ]
opt imize r = ’ keras :Adam’

[ compi le . l o s s e s ]
max_pair_dist = { func t i on = ’ lkl_normal ’ }

Multiplicity

Config

Filename in OrcaNet: muon_mutli_config.toml
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[ c o n f i g ]
ba t ch s i z e =64
l ea rn ing_rate = [ 0 . 0 0 1 , 0 . 1 ]
t ra in_logge r_f lu sh = 10
verbose_tra in = 2
v a l i d a t e _ i n t e r v a l = 1
s h u f f l e _ t r a i n = true
cleanup_models = true

sample_modif ier="GraphEdgeConv "
l abe l_mod i f i e r = {name=" R e g r e s s i o n L a b e l s S p l i t " , columns="n_muons_10_mchits " ,

model_output="n_muon_reg " , log10=true }
dataset_modi f i e r = ’ as_recarray_dis t_sp l i t ’

Model

Filename in OrcaNet: muon_multi_model.toml

[ model ]
type = " DisjointEdgeConvBlock "
next_neighbors = 16
shor t cut = true

b locks = [
{ un i t s =[64 , 64 , 6 4 ] , batchnorm_for_nodes=true } ,
{ un i t s =[128 , 128 , 128 ]} ,
{ un i t s =[256 , 256 , 256 ] , poo l ing=true } ,
{ type="OutputRegNormalSplit " , u n i t _ l i s t =256 , output_name="n_muon_reg " ,

output_neurons=1, s igma_unit_l i s t =[256 , 256 ] , s igma_act ivat ion="
s o f t p l u s "} ,

]

[ compi le ]
opt imize r = ’ keras :Adam’

[ compi le . l o s s e s ]
n_muon_reg = { func t i on = ’ mean_squared_error ’ }
n_muon_reg_err = { func t i on = ’ lkl_normal ’ }
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