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Abstract

The Radio Neutrino Observatory Greenland (RNO-G), an in-ice radio neutrino
detector, is currently being built to detect ultra-high energy (UHE) neutrinos
above 10PeV by measuring radio waves, which are created via the Askaryan effect
when UHE neutrinos interact in the ice. Located at Summit Station in Greenland,
RNO-G is designed as a wide-spread station array, where each station is equipped
with several radio antennas, which are positioned either close to the surface or
deep in the ice.

Despite the remote and relatively radio-quiet location at Summit, various back-
grounds, often of anthropogenic origin, occur in the radio frequency regime. Fur-
thermore, there is a rather unexplored background that appears only during time
periods of high wind speed. These “wind events” are impulsive signals of unknown
origin, appear in different forms, and can in some stations make up the majority
of impulsive signals triggered by the shallow part of a station during high-wind
periods. Since only little is known about this wind-related background and other
backgrounds are present in the data, it is difficult to analyze wind events separately
from other events. Therefore, an artificial neural network, namely a variational
autoencoder (VAE), is used in this thesis to represent measured events in a low-
dimensional space of features. Events are then clustered in this space using the
clustering algorithm HDBSCAN. The obtained clusters are analyzed, primarily
with respect to wind speed, to extract wind event clusters from the bulk of avail-
able data. Various wind clusters are found for three stations, where the number
of clusters and their characteristics strongly vary among different stations. Fur-
thermore, a still unknown background class, which occurs periodically and only
during daytime, is found for one station.

During high wind speed periods, wind events can pose a considerable background
and might interfere with analyses. Hence, another VAE is trained on previously
selected wind events of a single station to discriminate between wind events and
non-wind events via anomaly detection. For the station the VAE is trained on,
the method allows the separation of wind events from non-wind events, including
other backgrounds and cosmic ray simulations. It is for example possible to reject
95% of test wind data while less than 1% of cosmic ray simulations are falsely
classified as wind. However, an evaluation of other stations suggests that a VAE
trained on one station is not usable for other stations, since wind events appear
to vary across stations.
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1. Introduction

Of all the elementary particles of the Standard Model neutrinos are among the
most elusive ones. Appearing in three flavors, neutrinos interact only via the weak
interaction and gravity. Their masses are not yet known but are so small that only
upper limits were experimentally determined [1], making the impact of gravity for
a single neutrino negligible. Furthermore, neutrinos do not carry electric charge
and are thus not deflected by magnetic fields. Since neutrinos do not interact via
the strong and electromagnetic forces, they interact only very rarely with matter.
But it is precisely these properties that make neutrinos very important particles for
multi-messenger astronomy since the arrival direction of neutrinos points straight
back to their sources.

Over the past decades, multiple neutrino observatories have been built, including
IceCube [2] and KM3NeT [3]. Since neutrinos interact so rarely with matter, huge
volumes or a large neutrino flux are required to detect neutrinos. Hence, either
water (KM3NeT) or ice (IceCube) is usually chosen as a detection medium, since
both are abundant and inexpensive. When high-energy neutrinos interact with ice
(water), charged leptons are created which can emit Cherenkov radiation that is
then captured by the detector. However, this technique requires a rather dense
array of detection modules. For ultra-high energy (UHE) neutrinos, the predicted
flux is even smaller, and therefore large volumes must be covered by the detector
to be able to detect UHE neutrinos within a reasonable amount of time.

This is where radio detectors such as the Radio Neutrino Observatory Green-
land (RNO-G) [4], which is aimed to detect neutrinos via Askaryan radiation in
ice, start to shine since the attenuation length of radio waves in ice is up to ∼ 1 km
[5]. Therefore, a single radio detection station by itself can cover a huge volume,
allowing a sparse but in return wide-spread station array to cover immense vol-
umes of ice.

However, in the radio frequency regime, a lot of background noise is present,
including man-made backgrounds emitted by e.g. hand-held radio devices but also
signals from e.g. the station’s wireless communication system [6]. Furthermore,
not all backgrounds are anthropogenic: it has been observed that the event rate
increases with increasing wind speed [7]. In [7] the authors investigate the possi-
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1. Introduction

bility that these “wind events” are linked to the triboelectric effect and that radio
signals are emitted from coronal discharge due to electrostatic potentials forming
between air and ice/snow layers. However, so far no explicit measurements that
try to simulate the conditions using e.g. a wind tunnel and snow were performed.
Still, these events pose a considerable temporary background up to the point where
wind-correlated events make up the majority of impulsive shallow-triggered events
that triggered various RNO-G stations during high-wind periods.

The aim of this thesis is to investigate and learn more about these seemingly
wind-induced events for RNO-G and find a method (here using artificial neural
networks and machine learning algorithms) to discriminate them from other events
so that they do not interfere with other analyses.

Therefore, RNO-G is introduced in chapter 2 and known background events
(especially wind-induced events) are presented in more detail in chapter 3. Arti-
ficial neural networks and machine learning methods are introduced in chapter 4.
Chapter 5 describes how wind events were identified and chapter 6 presents the
method chosen to filter wind events. Finally, a summary as well as conclusions
and an outlook can be found in chapter 7.
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2. The Radio Neutrino
Observatory Greenland

In this chapter, the Radio Neutrino Observatory Greenland (RNO-G) is presented.
RNO-G is an in-ice neutrino detector that is currently being built to detect UHE
neutrinos above 10PeV energies using the in-ice radio detection technique de-
scribed in the following [4].

2.1. Radio detection of neutrinos

If a UHE neutrino interacts with particles in the ice via deep inelastic scattering,
a shower of secondary particles is created. This is shown in Figure 2.1. The
incoming neutrino propagates through the ice and undergoes a weak interaction
process at the vertex. The created secondary particles (represented by yellow
circles in Figure 2.1) propagate through the ice and create radio emission primarily
due to the Askaryan effect [8]: The positrons created in the shower annihilate
with electrons of the surrounding medium. Additionally, the medium is further
ionized due to scattering processes such as Compton scattering. This results in an
immobile positive net charge (ionized medium) and a moving negative net charge
(shower front) leading to the emission of electromagnetic radiation in the radio
frequency regime (from ∼MHz up to ∼GHz). The radiation is coherent near the
Cherenkov cone (shown in blue in Figure 2.1) and strongly polarized. Coherence
is lost when going away from the cone, where the high frequencies are affected
first [4]. This is shown in Figure 2.2 for a radio signal originating from a hadronic
shower, where the power in the higher frequencies decreases with increasing angle
away from the Cherenkov cone. Apart from the Askaryan effect, geomagnetic
emission can create radio emission as well: Charged particles are deflected by
Earth’s magnetic field due to the Lorentz force, resulting in radio emission due to
charge separation, since particles with opposite charge are deflected in opposite
directions. In ice, however, the radio emission is dominated by the Askaryan effect
[4]. A radio signal detected at a detector station (composed of a shallow and a
deep part) has either propagated on a straight or bent path, depending on the
varying index of refraction of ice.
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2. The Radio Neutrino Observatory Greenland

Figure 2.1.: Sketch of a neutrino interaction and subsequent radio emission due
to the Askaryan effect in ice. The polarized radio signal propagates on straight or
bent trajectories to the detector (here composed of deep and surface antennas).
Figure taken from [4].

Figure 2.2.: Electric-field waveforms (left) and spectra (right) of a radio signal
created by a hadronic shower with deposited energy of 1EeV. Shown are signals for
different viewing angles relative to the Cherenkov angle. The waveforms have been
offset in time for better readability. Propagation effects and detector responses
have not been included. Figure taken from [4].
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2. The Radio Neutrino Observatory Greenland

Figure 2.3.: Map of the planned RNO-G station layout. Seven of 35 stations are
already built, where the color encodes the year of deployment. The figure shown
here is cropped and the original figure is created by the RNO-G collaboration.

2.2. Layout of the RNO-G detector

RNO-G is located at Summit Station (Greenland), on top of the ice sheet at a
height of more than 3 km. The location is fairly isolated from human civilization
so external man-made backgrounds are reduced to a minimum. Figure 2.3 shows
the planned RNO-G detector layout. Of the 35 planned stations, 7 have already
been deployed in 2021 and 2022, namely stations 11 (Nanoq, 2021), 12 (Terianniaq,
2022), 13 (Ukaleq, 2022), 21 (Amaroq, 2021), 22 (Avinngaq, 2021), 23 (Ukaliatsiaq,
2022) and 24 (Qappik, 2022), where the spacing between neighboring stations is
1.25 km. The attenuation length of radio signals in ice is up to ∼ 1 km [5].
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2. The Radio Neutrino Observatory Greenland
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Figure 2.4.: Schematic of the layout of an RNO-G station. The shallow part
consists of a calibration pulser and nine log-periodic dipole antennas (LPDAs)
arranged in groups of three and oriented as depicted in the legend. The deep
part consists of horizontally and vertically polarized antennas (Hpol and Vpol)
distributed across three antenna strings (power and two helper strings) up to
100m deep in the ice. Additionally, each of the helper strings is equipped with a
calibration pulser. Figure created by the RNO-G collaboration.

The layout of an RNO-G station is sketched in Figure 2.4. It consists of a
shallow and a deep part. The deep part is composed of three antenna strings that
carry horizontally and vertically polarized antennas (Hpol and Vpol) at various
depths as well as calibration pulsers. The power string features the phased array
that is able to determine the inclination of an arriving signal, while the azimuth is
determined using the helper strings. The shallow part consists of nine log-periodic
dipole antennas (LPDAs) arranged in groups of three antennas per string buried
in trenches about 1.5 m deep in the ice/firn. Per group, the antennas are oriented
in such a way that the one in the center is pointing upwards and the outer ones are
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2. The Radio Neutrino Observatory Greenland

RNO-G Channel Mapping Top View
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Figure 2.5.: Top view of the shallow part of an RNO-G station. The LPDAs
(rectangles) are arranged in sets of three with two downward-facing antennas and
one upward-facing antenna per set. Per group, the antennas are placed in a line
roughly perpendicular to the connection between its nearest antenna string and
the center of the triangle spanned by all antenna string points. Figure created by
the RNO-G collaboration.

pointing downwards with an inclination of 30 ◦. A top-down view of the shallow
part is shown in Figure 2.5. The antennas of each of the three sets are positioned
in a line that is roughly perpendicular to the connection between their nearest
antenna string point and the center of the triangle spanned by the three string
points. The channel numbers assigned to each LPDA are denoted in Figure 2.5 as
well, whereby the channel numbers of the upward-facing antennas are 13, 16, and
19. In terms of power management, stations are equipped with solar panels and/or
wind turbines, where the wind turbines are required to increase active observation
time during winter.

2.3. Cosmic rays

The upward-facing shallow antennas are not meant to measure neutrinos. This is
the purpose of the deep antennas and downward-facing LPDAs since the interac-
tion point of a neutrino is expected to lie somewhere in the ice and the sensitivity
of the LPDAs is low at the backside. Instead, the upward-facing antennas act as
a veto for signals coming from above, which are not created by UHE neutrinos.
Among the sources of these signals are cosmic rays, high-energy charged particles,
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2. The Radio Neutrino Observatory Greenland

which originate from outside or within our galaxy. When cosmic rays interact with
Earth’s atmosphere, extensive air showers of secondary particles are created. In
contrast to ice, the radio emission for cosmic rays in air or rather their secondary
particles is dominated by the geomagnetic effect [4]. Therefore, the upward-facing
antennas can be used to indirectly detect and study cosmic rays in the radio
regime. The expected rate at which cosmic rays are detected strongly depends on
the trigger and is estimated to be ∼ 1 cosmic ray per day per station [9].

2.4. Triggers and saved data

The signal recorded with an antenna – the waveform (also called trace) – is an
amplitude (corresponding to voltage) as a function of time. Since the antenna
output is not saved continuously, a trigger system is required to initiate the saving
process for a signal for all antennas. Per station, there are multiple triggers active
with the most important ones being the force trigger, the deep trigger, and the
radiant (surface/shallow) trigger:

• The force trigger triggers a recording at a constant frequency of 0.1Hz re-
gardless of whether there is a signal or not, and therefore most events trig-
gered by the force trigger are thermal noise.

• The radiant (surface/shallow) trigger triggers if the approximated Hilbert
envelope of a signal exceeds a certain threshold within a coincidence window
of 50 ns in either two out of six downward-facing LPDAs or two out of three
upward-facing LPDAs. Hereby the trigger rate is tried to be kept constant,
so the trigger thresholds are adjusted per channel via a PID1 controller to
meet a certain target trigger rate, which is different across stations.

• The deep trigger is a two out of four channels coincidence trigger of the four
lowest antennas of the power string (the phased array) with a coincidence
window of 30 ns.

Due to strongly varying cable lengths and resulting varying signal runtimes, the
timing between shallow and deep channels is not ideal, so if the shallow trigger
fires, the actual signal is not present in the recorded data of the deep antennas.
This problem is planned to be solved in the near future.

At the moment, waveforms are recorded with a sampling rate of 3.2GHz and
have a length of 2048 samples or 640ns. An example waveform and spectrum of

1A proportional–integral–derivative (PID) controller is a mechanism that uses a feedback con-
trol loop to approximate a measured variable/quantity to a chosen setpoint by adjusting
controllable parameters based on the error between setpoint and measured variable [10].
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Figure 2.6.: Waveform and corresponding frequency spectrum of an event trig-
gered by the radiant (shallow) trigger and captured by channel 13 of station 23.
Note that the signal is cut off at the end.

an impulsive event that triggered the shallow (radiant) trigger and was recorded
with channel 13 is shown in Figure 2.6. One can immediately see that the signal
is cut off at the end. This is due to the position of the trigger resulting in the
actual signal appearing only in the second half of the recorded waveform. Longer
waveforms are therefore clipped at the end. To counter this problem, the sampling
rate will be reduced to 2.4GHz in the future, increasing the time interval of saved
waveforms. Currently, the channels are not yet calibrated, so waveform amplitudes
in this thesis are given in arbitrary units but are of the same scale.

The antenna signals are amplified between 80MHz and 800MHz and filtered
outside of this band as can be seen in the spectrum. Furthermore, the LPDAs
are more sensitive to lower frequencies around 100MHz than to higher frequencies
due to the LPDA’s vector effective length, i.e. the conversion between E-field and
voltage.

Data is split up into runs, where one full run equals two hours of data under
normal conditions. The data is saved to disk at Summit Station but the full data
can not be transmitted via satellite due to transfer rate limitations. Therefore,
the full data is hand-carried to one of RNO-G’s institutions after a deployment
season to transfer them onto a server. Only a small fraction (e.g. 5%) of the data,
the sub-sampled data, is transferred directly via satellite. This data set is free to
use for analyses, while the rest of the data is usually hidden (blinded) to prevent
potential biases created from knowledge about the full data. Furthermore, trigger
information of the full data set is stored in header files, which are transferred via

9
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satellite as well.

In this thesis, the reconstruction framework NuRadioReco [11] is used to handle
RNO-G data.
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3. Backgrounds

As noted in chapter 2, the upward-facing shallow antennas are intended to mea-
sure and veto signals coming from above. Apart from cosmic rays, these signals
are mainly backgrounds from non-astrophysical sources. The main backgrounds
observed so far are discussed in this chapter with a special focus on wind-correlated
events.

3.1. Thermal noise

The background that occurs in all antennas at any time is thermal noise. It is
created by electrons in a conductor moving due to their thermal energy indepen-
dent of the applied voltage. For thermal noise, each frequency is equally likely
resulting on average in a flat frequency spectrum. Thermal noise is always present
in recorded waveforms and can sometimes randomly exceed the chosen trigger
threshold, triggering an event if the coincidence condition is satisfied. To study
thermal noise, the force trigger periodically triggers an event, regardless of the
signal amplitude. An example waveform and corresponding frequency spectrum
of an event triggered by the force trigger is shown in Figure 3.1. This event is
assumed to be dominantly thermal noise.

Apart from pure thermal noise, the upward-facing antennas measure contribu-
tions from galactic noise as well [12].

3.2. Anthropogenic backgrounds

In this part, some man-made background noises are presented, including battery
charging, Long Range Wide Area Network (LoRaWAN), wind turbine noises, and
continuous wave (CW) events.

3.2.1. Battery charging and LoRaWAN noise

For stations deployed in 2021, an increase in event rate was observed during day-
time and battery charging from solar panels was identified as the source of these
events (see example in Figure 3.2). Furthermore, impulsive events (example in Fig-
ure 3.3) occurring every minute were observed, which correspond to data-sending

11



3. Backgrounds

0 100 200 300 400 500 600
time [ns]

0.04

0.02

0.00

0.02

0.04

0.06

am
pl

itu
de

 [a
.u

.]

channel 13

0.00 0.25 0.50 0.75 1.00 1.25 1.50
frequency [GHz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

am
pl

itu
de

 [a
.u

.]

station 23 | run 1005 | ID 157 | force_trigger

Figure 3.1.: Channel 13 waveform and frequency spectrum of an event triggered
by the force trigger. The signal is assumed to be dominantly thermal noise.
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Figure 3.2.: Channel 13 waveform and frequency spectrum of an event attributed
to battery charging.

intervals of the LoRaWAN communication system that transfers data from the
detector station to the main station at Summit. Changes to the station hardware
were made so that stations deployed in 2022 (12, 13, 23, 24) and station 11 should
not show these backgrounds anymore.

3.2.2. Wind turbine noise

Stations 11 and 12 are equipped with wind turbines to increase active observa-
tion time during winter. However, these wind turbines caused increased shallow
trigger rates (independent of wind speed) and so far all attempts to remove this
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Figure 3.3.: Channel 13 waveform and frequency spectrum of an event attributed
to LoRaWAN noise.

background failed. New attempts to eliminate wind turbine noise are planned for
2024.

3.2.3. Continuous wave events

Another class of anthropogenic backgrounds is continuous wave (CW) events,
which exhibit a narrowband spike at a certain frequency in the spectrum (see
example in Figure 3.4). Known sources are air traffic at ∼ 125MHz, handheld
radio devices (Walkie-Talkies) at ∼ 136MHz and ∼ 152MHz and the weather bal-
loon at 403MHz. Furthermore, additional CW lines at e.g. 200MHz and 480MHz
are observed, some of which might be station-induced but their sources and origin
remain unknown [12].

To identify CW events, one can use the L1 score, which was developed for
ARIANNA [13]. For each frequency bin of a frequency spectrum, the fraction
of the power in that bin compared to the total power of the whole spectrum is
calculated. The L1 score is then the maximum over these ratios. If the L1 score
exceeds a certain threshold (e.g. 0.6) in any of the channels, the event is classified
as a CW event.

3.2.4. Other anthropogenic backgrounds

Apart from CW, battery charging, LoRaWAN, and wind turbine noise, there are
further backgrounds originating from human activity, including airplanes, heavy
machinery, and snowmobiles [6]. Snowmobiles are used e.g. as part of the IceSat-2
mission [14], where snow depth measurements are taken once a month.
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Figure 3.4.: Channel 13 waveform and frequency spectrum of an event identified
as narrowband (CW) noise.

3.3. Physics backgrounds

Besides the anthropogenic backgrounds, cosmic ray air showers and solar flares
can create radio emission as well [6]. Furthermore, radio signals stemming from
cosmic-ray-induced atmospheric muons may look similar to neutrino events in ice
[15]. Moreover, as mentioned before, galactic noise is detected in the upward-facing
antennas.

3.4. Wind-correlated background

Lastly, backgrounds correlated with high wind speed are discussed. In [7], the
authors report that all radio neutrino experiments noticed the appearance of sig-
nals in the radio regime when the wind velocity exceeded a certain threshold. This
threshold varies from experiment to experiment, potentially dependent on antenna
type and trigger threshold, but lies at around 10m/s for most experiments with
some experiments reporting lower thresholds of 6−8m/s and some reporting higher
thresholds up to 12m/s. Triggered event rates were observed to increase with in-
creasing wind speed after a turn-on, where the wind speed exceeded a threshold.
Furthermore, some experiments found that wind-correlated signals were stronger
for higher wind velocities [7].

As described in [7], a possible explanation for the occurrence of these wind-
correlated events is a displacement of charges by wind blowing over snow via the
triboelectric effect. This can create an electric field and can lead to the emission
of electromagnetic radiation after a coronal discharge. Accumulation of charges on
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blocks of ice and development of electrostatic potentials due to the wind blowing
over ice/snow was indeed measured by various experiments, which report wind
speed thresholds similar to those described above [16–19]. Using laboratory tests,
the authors of [7] demonstrated that a coronal discharge (simulated by spark dis-
charge) can emit a signal in the radio regime with a time duration of the order of
10 ns, corresponding to the expected timescale of a neutrino or cosmic ray signal
measured by radio detectors.

For some radio neutrino detectors, it was possible to reconstruct the source lo-
cation of wind-correlated events to be mostly at or near man-made structures,
which are (partially) made of metallic material. Interestingly, similar observations
were made in aviation, where airplanes flying through precipitation experienced
radio noise that interfered with communication systems. The noise was attributed
to frictional charging by precipitation particles and subsequent discharges [20].
However, apart from discharges on metallic surfaces, it is still possible that events
originating from the triboelectric effect are produced somewhere on the snow/ice.
In this case, a homogeneous distribution of the source location would be expected.

Independent of how these wind-correlated events are created, they pose a signif-
icant temporary background and may interfere with analyses that use the upward-
facing antennas e.g. cosmic ray analyses. For RNO-G at Summit Station (Green-
land), the fraction of time the wind speed was ≥ 10m/s in 2021 and 2022 is 11%.
If a more pessimistic turn-on of 7m/s is assumed, this fraction increases to 35%.
Hence, it is crucial to further investigate this phenomenon and find a way to reject
this background without rejecting the total high-wind time period.
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4. Machine learning

In this thesis, artificial neural networks (ANNs) and machine learning algorithms
are used to identify and discriminate wind events. At first, the structure and
training of ANNs are presented in general. Additionally, two machine learning
algorithms, UMAP and HDBSCAN, are introduced. After that, autoencoders and
variational autoencoders are discussed. Parts of this chapter (sections 4.1 to 4.6
and 4.9) follow the lecture by Florian Marquardt [21].

4.1. Structure of artificial neural networks

An ANN is a (typically non-linear) function Fθ(xin) = yout with parameters θ =
(θ1, θ2, θ3, ...) that maps an input xin to an output yout and aims to approximate a
target output ytarget. On a more fundamental level, ANNs are composed of layers
of neurons (nodes) that have a value (usually a real number) and are connected
to other neurons via weights.

Figure 4.1 shows the structure of a basic ANN. From left to right there is first
the input layer consisting in this case of three neurons (depicted as circles). The
input layer is connected to the next layer via weights (here depicted as lines).
The second layer is then connected to the third layer until the penultimate layer
is connected to the output layer on the right. Layers that are neither input nor
output layers are called hidden layers. In this example, all neurons of one layer
are connected to all neurons in the next layer. Therefore, these layers are called
fully-connected (FC) layers. ANNs that consist of fully-connected input, output,
and at least one hidden layer are called multilayer perceptrons (MLPs). If, as is the
case in this example, the information in an ANN flows exclusively in one direction,
i.e. from the input layer through hidden layers to the output layer (from left to
right), such an ANN is called feedforward neural network.

The flow of information between two fully connected layers n and n+1 is given
as follows: The value of neuron i of a layer n is denoted y

(n)
i . The weight that

connects neuron y
(n)
i to neuron y

(n+1)
j is denoted w

(n+1,n)
ji . Additionally, a bias may

be assigned to each neuron, where the bias of neuron y
(n+1)
j of layer n+1 is called

b
(n+1)
j . Together, weights and biases compose the parameters θ of the ANN. To

17



4. Machine learning

input hiddenhidden output

Figure 4.1.: Structure of an ANN (here: multilayer perceptron) with input, out-
put, and two hidden layers. Neurons are depicted as circles and weights as lines.

compute the value of neuron y
(n+1)
j of layer n+1 the quantity z

(n+1)
j is calculated:

z
(n+1)
j =

∑
i=1

y
(n)
i · w(n+1,n)

ji + b
(n+1)
j (4.1)

This can also be written in terms of vectors and matrices:

z(n+1) = W (n+1,n) · y(n) + b(n+1) (4.2)

y
(n+1)
j is then given as

y
(n+1)
j = an+1(z

(n+1)
j ), (4.3)

where an+1(z) is called the activation function of layer n+1. The activation func-
tion is typically non-linear, but sometimes the (linear) identity function an+1(z

(n+1)
j ) =

z
(n+1)
j is chosen. Commonly used non-linear activation functions are the rectified

linear unit (ReLU) and its variants and the standard logistic function (often re-
ferred to as sigmoid):

ReLU(x) = max(0, x) (4.4)

sigmoid(x) =
1

1 + e−x
(4.5)

18



4. Machine learning

4.2. Parameter adjustment for artificial neural
networks

The goal of an ANN F is to take an input and produce an output close to a target
output i.e. the ANN aims to approximate a target function Ftarget:

Fθ(xin) = yout
!
≈ ytarget = Ftarget(xin) (4.6)

Here xin (yout) are vectors, where each component [xin]g ([yout]g) represents the
value of a neuron of the input (output) layer.

To achieve a close approximation of the target function, one can repeatedly
adjust the parameters θ of the neural network and compare the produced output
to the target output. This process is called training. To compare yout and ytarget,
a cost function C(xin, θ) (also referred to as loss function) is chosen. Common
choices for floating-point outputs are the mean squared error (MSE) and the mean
absolute error (MAE):

MSE(xin) =
〈
(Fθ(xin)− Ftarget(xin))

2
〉

(4.7)
MAE(xin) = ⟨ |Fθ(xin)− Ftarget(xin) | ⟩ (4.8)

Typically, the cost function is defined such that it is minimal if the neural
network output is closest to the target output. Therefore, the goal is to minimize
the cost function by adjusting the trainable parameters θs according to

θs → θs + δθs (4.9)

using an optimizer such as gradient descent. Using gradient descent, the update
of parameter θs is given by

δθs = −η
∂C(xin, θ)

∂θs
, (4.10)

where η is the so-called learning rate. As a real-world analogy, one can think of this
as moving down a hill or potential, where the learning rate determines the size of
the steps. Choosing a suitable η is crucial because if it is too small, training might
be slow and one may be trapped in a local minimum. This is because, coming back
to the analogy of the potential, the energy required to overcome a local maximum
to move from a higher to a lower local minimum might not be high enough. If,
on the other hand, the learning rate is too large, one may overshoot and not
converge to a minimum. Furthermore, very large learning rates are problematic
in combination with activation functions a(z) whose derivative converges to zero
for z → ∞ and/or z → −∞. If the update step is too large and the network

19
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falls into one of these vanishing-derivative regions, the gradient and therefore the
parameter update is vanishingly small and the network is then trapped in this state
as it has no chance of leaving the zero-gradient zone. This problem is known as
the vanishing gradient problem and occurs e.g. for the ReLU activation function.
To prevent the gradient from vanishing, the ReLU is, if possible, modified into a
LeakyReLU:

LeakyReLU(x;α) =

{
x if x > 0

αx otherwise
(4.11)

α can be adjusted and as long as α ̸= 1, the LeakyReLU still remains non-linear.

Usually, a large number of inputs and target outputs is available for training.
However, the cost function is usually defined to average over all possible training
samples, so a single update step can become computationally very expensive. This
problem is solved by randomly dividing the training data into batches of Nbatch

(the batch size) training samples. A training step is then performed on each batch
rather than all samples at the same time. To update the trainable parameters,
one averages over a batch:

δθs = −η

〈
∂C(xin, θ)

∂θs

〉
xin∈ batch

(4.12)

This method is called stochastic gradient descent. Apart from stochastic gradient
descent, other so-called optimizers are available such as the AdaGrad, RMSProp,
Adadelta, and Adam optimizers [22]. The Adam [23] optimizer is based on the
stochastic gradient descent, but includes a couple of modifications. Adam calcu-
lates exponential moving averages of both the gradient and the squared of the
gradient, where the decay is controlled by some chosen parameters [23]. These
moving averages estimate the mean and variance of the gradient. In the update
rule, the fraction of the estimated mean and variance of the gradient is used instead
of the raw gradient, whereby a parameter ϵ is introduced to avoid division by zero.
Adam is robust and often computationally more efficient than other optimizers
such as AdaGrad and stochastic gradient descent [23].

4.3. Backpropagation

Modern ANNs often consist of up to millions of trainable parameters, making the
numerical differentiation of the cost function, which is required for e.g. gradient
descent, very slow and inefficient. To tackle this problem, one first considers that
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C(xin, θ) = C(xin, Fθ(xin)) and makes use of the chain rule:

∂C(xin, θ)

∂θs
=

∂C(xin, Fθ(xin))

∂Fθ(xin)

∂Fθ(xin)

∂θs
(4.13)

On the level of neurons, this equation is given as

∂C(xin, θ)

∂θs
=

∑
g

∂[C(xin, Fθ(xin))]g
∂[Fθ(xin)]g

∂[Fθ(xin)]g
∂θs

, (4.14)

where [Fθ(xin)]g = [yout]g = anout(z
(nout)
g ) denotes the value of neuron g in the

output layer nout. If θs is not a parameter of the output layer, the chain rule
must be applied to ∂[Fθ(xin)]g/∂θs and its derivatives until one arrives at the layer
that contains parameter θs. For efficiency it is useful to order the parameters
θs according to their respective layer, from the last to the first layer, because to
calculate the derivatives of the cost function with respect to the parameters in
layer n− 1 one can reuse the derivatives with respect to the parameters of layer n
due to the chain rule. Going through the layers from output to input and storing
the derivatives per layer makes it possible to efficiently calculate all parameter
updates δθs in one go. In other words, one propagates the deviation from output
to target backwards (against the forward direction of the flow of information) and
therefore this process is called backpropagation.

4.4. Convolutional layers

So far, only fully-connected layers have been introduced. However, constructing a
deep ANN (ANN with many hidden layers) using only fully-connected layers leads
to extremely large numbers of trainable parameters as the number of weights
between two layers of N and M neurons is given by N ·M , casting fully-connected
deep neural networks extremely slow. Alternatively, so-called convolutional layers
can be used instead of fully-connected ones. The differences between the two
are first that for convolutional layers, a neuron of layer n is only connected to
a small set of neighboring neurons of layer n − 1 and second that all neurons
in a convolutional layer share the same weights. This is illustrated for the one-
dimensional case in Figure 4.2. One exemplary neuron and the neurons it is
connected to are marked in green. The three weights are called the kernel and
are the same for all neurons in this layer. The number of weights in the kernel
along one dimension is called kernel size and is a tuple for higher dimensions.
Conventionally, a single integer kernel size k denotes a kernel, where the kernel
size along all dimensions is k. A 2D convolution operation for 4 × 4 input and
2×2 output neurons and a kernel size of 3 is sketched in Figure 4.3a. As the name
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kernel

Figure 4.2.: Sketch of a 1D convolutional layer with a kernel size of 3. All neurons
share the same kernel. The forward direction is here from bottom to top.

(a) No padding, stride s = 1.

(b) Padding, stride s = 1.

(c) Padding, stride s = 2

Figure 4.3.: Convolution operation of an a) (4 × 4) and b), c) (5 × 5) input
with a (3× 3) kernel with and without padding and different strides. The forward
direction is here from bottom to top. Taken from [24].
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suggests, convolutional layers perform a (discrete) convolution of the layer neurons
with the kernel, where the boundaries of the layers can be padded e.g. with zeros
to conserve the layer size (see Figure 4.3b). Since the weights per neuron are the
same across a layer, if an input is shifted by several neurons, the output is also
shifted but otherwise the same, allowing convolutional layers to be translationally
invariant. Often a convolutional layer has multiple channels (or filters) with their
own kernel weights and bias. In two dimensions these channels can be understood
as the red, green, and blue channels in an RGB color image such that the image
is described by a (nx × ny × 3) matrix. For convolutional layers, channels have
their own trainable kernel and bias and allow the extraction/processing of multiple
features at the same time, which is why channels are sometimes called feature maps.
In contrast to the spatial dimensions of the layer (e.g. image height and width), the
channels of two convolutional layers are fully-connected. Thus, the total number
of trainable parameters in a convolutional layer with nch channels, (k1×k2) kernel
and nch, input input channels is given by:

nparameters = (nch · k1 · k2 + 1) · nch, input (4.15)

where the +1 comes from the bias that is trainable for each channel.

To decrease spacial dimensions using convolutional layers, one can use strided
convolutions. The stride s denotes the distance between the neurons the kernel is
applied to. For a stride of s = 1, the kernel is applied consecutively to all neu-
rons, preserving spacial dimensions in combination with padding. In contrast, for
a stride of s = 2, the kernel is applied to every second neuron, cutting even spacial
dimensions in half. An example of a 2D convolution operation with padding and
stride s = 2 is depicted in Figure 4.3c.

A method to increase spacial dimensions is transposed convolutions. The sim-
plest way to increase dimensions is to use padding as shown in Figure 4.4a, however
padding alone is not effective for larger layers. Another method sketched in Fig-
ure 4.4b is to choose a stride s and stretch the input into an intermediate grid with
optional padding, such that the distance between neurons in the intermediate grid
is s. Then, the convolution operation is applied to the intermediate grid with a
stride sgrid = 1.

4.5. Training

As described above, the learnable parameters of an ANN are adjusted using an
optimizer via backpropagation to minimize a loss function. This process is called
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(a) Padding, stride s = 1.

(b) Padding, stride s = 2

Figure 4.4.: Transposed convolution operation of an a) (2×2) and b) (3×3) input
with a (3× 3) kernel with padding and different strides. The forward direction is
here from bottom to top. Taken from [24]

training and ANNs are in this context often referred to as models. The set of
training samples is divided into batches, where parameter updates are done per
batch. A so-called epoch is completed after all samples were used for training once
since the end of the last epoch or, in the case of the first epoch, the start of training.

Since a neural network consists of many adjustable parameters, overfitting is
a common problem. Overfitting occurs if the model can produce accurate and
meaningful predictions for the data it was trained on but fails to do so for new,
unseen data. This indicates that the ANN is too biased towards the training data
and has not learned to adapt to new data. To assess, whether overfitting occurs
during training, one splits the available data into a training set and a validation
set, where the size of both sets depends on the individual problem and the number
of available data. The ANN is then exclusively trained on the training set, but at
the end of each epoch, the loss of the validation set (validation loss) is evaluated.
The behavior of both training and validation loss can then provide information
about possible overfitting. Ideally, both validation and training loss should be
similar in value, decreasing with an increasing number of epochs and eventually
reach convergence if one trains long enough.

In reality, the model may develop some small bias towards the training set, re-
sulting in a lower training loss. However, this is not a big problem as long as both
training and validation loss are decreasing. In case of heavy overfitting, the valida-
tion loss might increase after some time while the training loss further decreases,
since the model strengthens its bias towards the training data. This is sketched
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minimum validation loss

validation

training

lo
ss

epochs

Figure 4.5.: Exemplary behavior of training and validation loss with overfitting,
where the validation loss increases while the training loss decreases. The minimum
validation loss is marked in red.

in Figure 4.5. Marked in red is the minimum of the validation loss. Since then
the ANN experienced overfitting and the final model has significantly higher vali-
dation loss. To obtain the “best” model i.e. the model with the lowest validation
loss, one can save checkpoints of the model (model checkpointing) after each epoch
and then choose the one where the validation loss was lowest. Furthermore, to
decrease unnecessary training time, one can end training if the validation loss has
not decreased for a certain number of epochs. This is called early stopping. If the
model with the lowest validation loss is selected, there may be a small bias towards
the validation data. Hence, a third data set, the test set, is required if one wants
to evaluate the model on completely unseen data.

In this thesis, the python frameworks tensorflow[25] and keras[26] (now part
of tensorflow) are used to build and train ANNs. keras provides a variety of pre-
built layers, loss functions, and optimizers, among others the Adam optimizer that
is used in this thesis. Furthermore, so-called callbacks that incorporate methods
such as model checkpointing and early stopping are implemented.

4.6. Further aspects of machine learning

In this section, additional aspects of machine learning, such as regularization,
hyperparameters and data preparation are described.
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4.6.1. Regularization layers

To fight overfitting, one can make use of regularization layers such as dropout
layers and Gaussian noise layers. The dropout layer randomly sets the value of a
fraction of neurons to zero, whereby the fraction is called the dropout rate and can
be chosen. This ensures that the model does not rely too heavily on certain neurons
and learns to produce reasonable output using only a fraction of neurons. Gaussian
noise layers add normal distributed noise to each neuron, where the variance can be
chosen. This way, the model has to deal with small variations in the data and may
learn to adapt to unseen data, reducing overfitting. It is important to note that
the dropout and Gaussian noise layers do not change the shape of their input. For
the keras implementation of these two layers, there are two modes, training mode
and inference mode. During the training of the ANN, the training mode is active
and the regularization layers operate as described above. The inference mode is
active during the evaluation of the ANN after training, where the regularization
layers are no longer needed. Therefore, a regularization layer in inference mode
does absolutely nothing, i.e. its output is identical to its input.

4.6.2. Hyperparameters

Apart from the trainable parameters i.e. the weights and biases of each layer,
there are other parameters such as layer size, number of channels of a convolu-
tional layer, dropout rate, batch size, number of epochs, and learning rate. These
so-called hyperparameters are not learned during training and have to be cho-
sen before training. Still, they do have a significant impact on the training and
specific combinations of hyperparameters can drastically improve training time,
convergence, and model performance and may reduce overfitting. Therefore, tun-
ing of these hyperparameters is often recommended. Since the search space can
become very large, finding the optimal set of hyperparameters is difficult or al-
most impossible. However, automated tuning algorithms such as KerasTuner [27]
can cover a considerable fraction of the search space and return the parameter set
that came closest to the chosen objective. This, however, requires a well-defined
objective, which is not always the case.

4.6.3. Data preparation and augmentation

Before training a neural network, it is important to prepare the training data,
depending on the task and network structure. This includes preparing the data into
a format so it can be used as input, normalizing and shifting data to lie in a desired
interval, and reducing resolution to reduce network size and training time. Apart
from that, operations such as rotation, magnification, and translation may be
applied to copies of samples to increase the number of samples and introduce more
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variation in the data. This is called data augmentation. However, augmentation is
only recommended if it does not change the nature or the physics of the sample.

4.6.4. Supervised and unsupervised learning

So far, it has been assumed that the target output is always known and accessible.
This scenario is called supervised learning since the ANN requires supervision
(target output) to be trained. Depending on the specific task, the input is e.g.
a set of images depicting various animals and the target output is a set of labels
denoting the respective species. However, there are situations, where a target
output is not known, accessible, or existent. Thus, one cannot train the model
directly as described before, since a target output is required. This problem can
be solved by unsupervised learning : One adapts the architecture of the ANN in
such a way that it can do successful training using just the (unlabeled) training
samples without any supervision (target outputs). An example of unsupervised
learning is the autoencoder (see section 4.9).

4.6.5. Regression, classification and clustering tasks

Three of the major types of machine learning tasks are regression, classification,
and clustering. Clustering tasks are those, where the model tries to find patterns
or similarities in the data to group similar samples together. Depending on the
algorithm, this is done with or without known labels. For classification tasks,
the model is trained to predict a label (usually integers) for a given input and
compares them to target labels. Lastly, regression tasks usually predict a real-
valued continuous output that may be constrained to some interval, depending
on the individual goal. The predicted output of the regression task can then be
compared to a target, if available.

4.7. Hierarchical density-based spatial clustering
of applications with noise

In this thesis, the clustering algorithm HDBSCAN (Hierarchical density-based spa-
tial clustering of applications with noise)[28] is used to identify event clusters. This
section follows the description of HDBSCAN in [29].

Compared to many other clustering algorithms, HDBSCAN does not require the
number of clusters as an input parameter. Furthermore, HDBSCAN allows noisy
data points i.e. data points not assigned to any cluster.
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The HDBSCAN algorithm clusters points according to their density, which can
be approximated using the so-called core distance dcore. For a core point x, dcore(x)
is the distance to its ms nearest neighbors, where ms denotes the minimal number
of samples for x to be considered a core point. Using the core distance, the mutual
reachability distance dmreach(a, b) of two points a and b is defined as the maximum
over the core distances of the individual points and the metric distance between a
and b. This dmreach metric then spreads points in low-density regions further apart,
while points in high-density regions are not affected. After that, the data is treated
as a graph with dmreach as weights on the edges between two points. From this
graph, the minimum spanning tree is calculated, that is a graph consisting of only
a subset of edges without any loops and minimal sum over all used edge weights.
The tree edges are then sorted in increasing order with respect to their weight,
creating a hierarchy. Removing all edges above a certain chosen threshold on
the edge weight would split the minimum spanning tree into smaller disconnected
sub-graphs and sometimes individual points.

This alone could already provide a clustering, however, the threshold is not easy
to choose intuitively. HDBSCAN solves this by introducing a minimum cluster size
mcl. While steadily lowering the threshold on the edge weights, a parent cluster
is at some point split into two child clusters. If one of the child clusters contains
fewer points than mcl, the split is not considered a proper split and the smaller
child cluster is not considered anymore for lower thresholds. On the other hand,
if both child clusters contain at least mcl points, the split is a proper split and
the child clusters are considered for lower thresholds until the next split appears.
HDBSCAN then introduces a cluster stability, which measures how persistent a
cluster is with respect to its size and how long it lives with respect to the thresh-
old on the edge weights. Then, going from low to high thresholds, if the sum of
the stabilities of child clusters at a proper split is higher than the stability of the
parent cluster, the stability of the parent cluster is set to the sum of the stabilities
of its child clusters and one proceeds to the next proper split. On the other hand,
if the sum of the stabilities of the child clusters is lower than the stability of the
parent cluster, the parent cluster is considered a proper cluster. The procedure
is finished until one arrives at the first proper split at the highest threshold. The
final clustering consists then of all proper clusters and all remaining points not
assigned to any proper cluster are called unclustered.

In this thesis, the HDBSCAN implementation hdbscan [30] is used. Here, ms is
controlled by min_samples and mcl is adjusted by min_cluster_size.
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4.8. Uniform Manifold Approximation and
Projection

To represent high-dimensional data points in a low-dimensional space, one can use
dimension reduction algorithms. In this thesis, the algorithm UMAP (Uniform
Manifold Approximation and Projection) [31] is used to visualize high-dimensional
data in a two-dimensional space. One advantage of UMAP over some other algo-
rithms is that it tries to preserve global structure [31].

Given a set of high-dimensional data points, UMAP first constructs a graph
in this high-dimensional space, where per point only its nneighbors nearest neigh-
bors are considered. Then the distances between connected points are calculated
according to some metric. These distances are then used to compute a similar-
ity score of one point to another point. These scores are then used as weights
for the graph edges. After that, a low-dimensional embedding is initialized. The
goal is now to optimize this embedding with respect to an objective function so
that the relations between points in the high-dimensional graph resemble the low-
dimensional embedding. This can be done using stochastic gradient descent with
a certain number of optimization steps.

In this thesis, the UMAP implementation umap [32] is used, where the param-
eter nneighbors is called n_neighbors and the number of dimensions of the low-
dimensional embedding is controlled by n_components.

4.9. Autoencoders

In this part, an unsupervised artificial neural network architecture, the autoencoder
(AE), and its applications are introduced.

4.9.1. Autoencoder structure and feature extraction

Consider having access to a set of unlabeled training samples e.g. grayscale images
each containing a square in white on a black background. The image is then fully
described by four parameters: position (x and y), side length, and rotation. A
human is most likely able to determine these parameters. But it is also possible to
extract the parameters using an ANN. A suitable architecture is the autoencoder.
Its task is to produce an output as close as possible to the original input. The
trivial way to solve this problem is to simply copy the input. However, one does
not gain any useful information about the properties of the data. The idea is
to force the autoencoder to extract the most important features (here ideally side
length, rotation, and position of the square) of the data by introducing a bottleneck
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Figure 4.6.: Structure of an autoencoder. The input is compressed by the encoder
into a lower-dimensional representation, the bottleneck z, which is then passed to
the decoder that produces an output.

layer between the input and output layer. Figure 4.6 shows the structure of such
an autoencoder, which consists of two ANNs, encoder E(x) and decoder D(x).
The bottleneck layer z is the output layer of the encoder and the input layer of
the decoder. The input of the encoder and output of the decoder have the same
shape and format (equal to that of the images). The task of the autoencoder F (x)
is then given by

F (xin) = D(z) = D(E(xin)) = yout
!
≈ xin. (4.16)

Here input and target are known and one can train the AE as described in sec-
tion 4.2 and 4.3 by minimizing a loss function. In the context of autoencoders, the
loss function, i.e. the error between input and output, is also called reconstruction
loss. Since one wants the autoencoder to extract the most important features of
the data, one chooses the number of neurons in the bottleneck layer to be (signifi-
cantly) less than the number of neurons in the input layer (e.g. the number of pixels
in the image). In this case, one speaks of an undercomplete autoencoder. Thus,
the autoencoder is forced to compress the data into a lower-dimensional space in
such a way that the decompression yields an output close to the input. As a result,
autoencoders are also used for dimensionality reduction of high-dimensional data.
In this context, the neurons in the bottleneck are often referred to as latent vari-
ables, where latent means that the variables are hidden and can not be inferred
directly from the data. The low-dimensional space in which the data is represented
is often called latent space. In the example from above one knows that the data
can be fully described by four parameters (three, if one chooses the position to be
the index of the flattened image). Therefore, following the principle of Occam’s
razor, one would choose the number of neurons in the bottleneck to be four, i.e.
the minimum number of parameters to describe the data. For more complex prob-
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lems, the ideal number of parameters is often not known and has to be estimated
or guessed. If the bottleneck size is too small the autoencoder may not be able to
accurately reproduce the input data. On the other hand, choosing the bottleneck
size too large may tempt the autoencoder into simply copying parts of the input
that contribute most to the value of the cost function and not learning the features
of the data. For more complex and abstract data, assessing and understanding the
learned features may become difficult.

4.9.2. Denoising autoencoders

Now, consider the case, where there is random Gaussian noise on the images from
the example above. Since the noise is randomly distributed and the noise in one
pixel is unrelated to the noise in neighboring pixels, it is not possible to compress
the images without loss of information. However, if the noise is not too large
compared to the noiseless images, the autoencoder may still be able to extract the
features of the images. As the autoencoder cannot encode the noise, the output
will likely be a cleaned version of the noisy input, potentially plus some offset to
account for the mean of the noise. Thus, autoencoders can also be used to denoise
noisy data.

4.9.3. Anomaly detection

In the sections above, three applications of autoencoders were introduced: feature
extraction, dimensionality reduction, and denoising. Another application that will
be discussed in the following section is anomaly detection [33].

Consider having access to a set of data from a detector containing samples from
multiple event classes. However, it is not known whether the set contains all pos-
sible event classes. Furthermore, one is interested in selecting only one specific
class from newly added unlabeled data. This problem can be solved using an au-
toencoder. The idea is to train an undercomplete autoencoder exclusively on data
from the desired class. Ideally, if trained correctly, the autoencoder will then learn
to compress and decompress the data of this class in such a way that the recon-
struction loss is minimized, while the other classes remain unknown (anomalous)
to the AE. That way, the AE has never learned to encode and decode data of other
classes and hence it is not able to accurately reconstruct samples of other classes,
resulting in a higher reconstruction loss for samples of unseen classes. By choosing
a reconstruction loss threshold and discarding samples that exceed this threshold,
it is possible to separate data of the desired class from the remaining classes. The
choice of threshold usually depends on the chosen metrics and can be adjusted for
individual analyses. Note, that the anomaly detection method only works if the
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samples of the target class are sufficiently different from samples of other classes.
Furthermore, a high noise level in the data of the target class may negatively im-
pact the separation. If that is the case, preparing the data in such a way that
the impact of noise on the reconstruction loss is minimized is recommended. For
example, if the noiseless signal is stronger than noise, using the square of the noisy
signal should suppress noise compared to the noiseless signal. The separation per-
formance of this method also heavily depends on the purity of the training data
and the size of the bottleneck. If the training set contains sufficiently many events
from other classes and there are some free parameters in the bottleneck (if it is
chosen too large), the autoencoder might learn to reconstruct those event classes
as well. In the worst case, if the autoencoder has too many free parameters, the
training data is very impure and the classes are sufficiently similar, no (or weak)
separation may occur.

4.10. Variational autoencoders

This section follows the original article that first introduced variational autoen-
coders (VAEs) in 2013 [34]. First, a short motivation of VAEs is presented and
after that, the mathematical concepts of VAEs are derived in more detail.

Standard autoencoders are deterministic neural networks, where the encoder
maps an input sample to a single point in the latent space. This way, the latent
space of an autoencoder is not necessarily organized because samples with com-
pletely different properties may be close to each other in the latent space. This
becomes a problem, if one would like to use the latent space to either cluster sim-
ilar samples into groups or generate new data by sampling from the latent space.
Hence, an organized latent space is necessary for clustering and sampling tasks. A
VAE tries to achieve an organized latent space by encoding samples as probabil-
ity distributions rather than deterministic points. Since probability distributions
have a variance, a sample is not always mapped to the same point in the latent
space. This forces the VAE to organize the latent space in such a way that similar
samples are closer in latent space and dissimilar samples are far apart.

With the goal of sampling new data from the latent space in mind, consider
the likelihood pθ(x) of some data x given (trainable) parameters θ. pθ(x) is here
assumed to be a Gaussian N (µ, σ) that can be expressed by mean µ and standard
deviation σ. The goal is to sample data x from some random variable z (the latent
variable), hence one can write

pθ(x) =

∫
pθ(x, z) dz =

∫
pθ(x|z)pθ(z) dz. (4.17)
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Figure 4.7.: Structure of a variational autoencoder. The encoder returns a mean
µ and standard deviation σ that is then used to sample the latent variable z from
a corresponding Gaussian distribution. z is then given as input to the decoder.

Here, pθ(x, z) denotes the joint probability distribution of x and z, pθ(x|z) is the
conditional distribution of x given z and pθ(z) denotes the probability distribution
of z. Using Bayes’ theorem, the posterior distribution is

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
, (4.18)

that is the probability distribution of z given x. In this context, pθ(z) is called
the prior distribution. pθ(z|x) is often not accessible and is approximated by the
conditional distribution qϕ(z|x).

The original goal of variational autoencoders is that the decoding part learns
to generate new data, similar to data x by sampling from a random variable z.
Thus, the encoder has to learn how to represent the data x into the latent space
z. Therefore, the encoder is expressed by the approximate posterior distribution
qϕ(z|x) and the decoder is represented by the likelihood pθ(x|z). The prior dis-
tribution pθ(z) of the latent space is here chosen to be a multivariate Gaussian
N (µ = 0, σ = 1) and from now on denoted by p(z), omitting the θ. The encoder,
which is also assumed to be a multivariate Gaussian N (µ, σ), is implemented such
that it returns two layers, one for µ and one for σ. z is then sampled from N (µ, σ)
by a sampling layer and given as input to the decoder. The structure of such a
variational autoencoder is depicted in Figure 4.7.

Variational autoencoders are trained by maximizing the variational lower bound,
also called the evidence lower bound (ELBO), on the marginal log-likelihood of the
data [34–36]:

L(θ, ϕ;x) = −DKL(qϕ(z|x)||p(z)) + Eqϕ(z|x) [ln pθ(x|z)] (4.19)

The second right-hand side term is the expectation value of ln pθ(x|z) with respect
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to qϕ(z|x) which can be interpreted as a reconstruction likelihood and its negative
is interpreted as a reconstruction error commonly implemented by a regression loss
function, usually either the mean squared error or mean absolute error. The first
right-hand side term is the Kullback-Leibler divergence (KL divergence) that mea-
sures the difference between the posterior distribution and the prior distribution
[34]:

DKL(qϕ(z|x)||p(z)) =
∫

qϕ(z|x) ln
(
qϕ(z|x)
p(z)

)
dz (4.20)

As noted above, both prior and posterior distributions are assumed to be multi-
variate Gaussians:

qϕ(z|x) = N (µ, σ) (4.21)
p(z) = N (0, 1) (4.22)

In this case, the KL divergence (often called KL loss) is given by [34, 36]:

DKL(qϕ(z|x)||p(z)) = −1

2

(
1− σ2 − µ2 + ln

(
σ2
))

(4.23)

The loss function of a standard variational autoencoder can then be written as

total loss = reconstruction loss +DKL(qϕ(z|x)||p(z)). (4.24)

Note that the objective of the VAE is to minimize the loss function, hence the plus
sign is required in front of the KL divergence in contrast to the minus sign in the
ELBO in Equation 4.19 which should be maximized.

Usually, the magnitude of the loss differs for different reconstruction loss func-
tions e.g. if the input and output are constrained to [0, 1], the mean squared error
is less or equal to the mean absolute error. Therefore, it is useful to introduce a
weight β for the KL loss to be able to increase or decrease the influence of the KL
divergence on the total loss:

total loss = reconstruction loss + β ·DKL(qϕ(z|x)||p(z)). (4.25)

Such a variational autoencoder is also called β-VAE [37].

So far, the latent variable z is sampled from the posterior distribution. This,
however, is a problem as there is the probabilistic layer z between the encoder and
decoder, which does not allow to differentiate a loss function and use backprop-
agation for training. This problem is solved by the reparameterization trick [34]:
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Figure 4.8.: Scheme of the reparameterization trick. In the original form (left),
z is a random node and one cannot use backpropagation. By reparameterization,
the random element is outsourced into a random number generator ϵ allowing
backpropagation. Taken from [35].

Instead of sampling z from a distribution qϕ(z|x) (here Gaussian N (µ, σ)), one
can use a random number generator to compute ϵ ∼ N (0, 1) and express z via

z = g(ϕ, x, ϵ) = µ+ σ · ϵ. (4.26)

That way, as sketched in Figure 4.8, the loss becomes differentiable, since µ and
σ, which depend on trainable parameters, are deterministic and backpropagation
is possible again.

Instead of µ and σ or σ2, one can choose the encoder to output µ and ln(σ2).
This ensures that the variance is positive and non-zero. The latent variable z is
then given by

z = µ+ σ · ϵ = µ+ e
1
2
ln(σ2) · ϵ. (4.27)
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5. Investigation of
wind-correlated events

In this chapter, events recorded with RNO-G that appear during high wind speed
periods are examined. First, shallow trigger rates of station 23 are investigated
and compared to wind speed. Afterwards, a machine learning method is used to
cluster wind events to analyze potentially wind-induced event classes and obtain
a data set to train a discriminator to reject this background (see chapter 6).

5.1. Weather data

The weather data used for this thesis is provided by NOAA[38] and is measured at
the main building at Summit Station (“Big House”, SUM), up to several kilometers
away from the RNO-G stations. Since the terrain at Summit is mostly flat, it is
assumed that the weather is the same within a few kilometers around Summit
Station and the RNO-G stations. The official NOAA files include minute averages
for wind speed in m/s, temperature in °C at 2m above ground, wind direction in
degrees (zero is true north), barometric pressure in hPa, and relative humidity in
%. The data is given for UTC time.

5.2. Investigation of station 23

To investigate wind events, station 23 is selected, since, compared to stations 11,
12, 21, and 22, it should not show strong battery charging (21, 22), LoRaWAN (21,
22), and wind turbine (11, 12) noise. Furthermore, out of the remaining stations
(13, 23, 24), station 23 has the lowest trigger threshold, which increases trigger
rates and allows to study lower amplitude wind events at the cost of having more
thermal noise events that coincidentally met the trigger condition. Data-taking
for station 23 began in the last half of 2022 and continued in the spring of 2023.
However, due to some unknown reason, shallow trigger rates of 2023 show a signif-
icant and constant increase compared to 2022, although no changes to the trigger
settings were made. As a result, this investigation is restricted to 2022 data. Due
to satellite transfer rate limitations, only the sub-sampled data is used for this
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Figure 5.1.: Station 23: shallow (radiant) trigger rates (in counts per 120 minutes,
logarithmic scale) as well as the mean wind speed over 120 minutes. Time intervals
where the mean wind speed is greater or equal to 10m/s (marked by a horizontal
line) are shaded in gray. Time is given in UTC.

analysis. An exception are trigger rates, which are available for the full data set.

In 2022 station 23 took data from the end of June to the beginning of October.
However, during the first month, shallow trigger rates are very unstable (see Fig-
ure A.1 in appendix), since suitable trigger settings had to be found first. Thus,
only the time period from August to October 2022, where the trigger rates are
stable, is selected. Furthermore, only those runs that behaved as usual, i.e. runs
that ran for the full two hours, are considered and shorter runs, including calibra-
tion runs, are excluded.

Figure 5.1 shows the radiant (shallow) trigger rate (full data from the header
files) of station 23 between 2022-08-01 and 2022-10-01 as well as the mean wind
speed ⟨vwind⟩. In [7], a turn-on wind speed of roughly 10m/s was observed for
RNO-G, hence the time intervals where the average wind speed was greater or
equal 10m/s is shaded in gray for better visualization. In most of the cases, a
strong increase in the event rate coincides with ⟨vwind⟩ ≥ 10m/s. However, trigger
rates do not always increase if the wind speed crosses the threshold (see 2022-
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08-05). Another interesting aspect is that on 2022-09-25 the trigger rate is one
order of magnitude higher compared to 2022-08-30 and 2022-09-19, although the
average wind speeds only differ by ∼ 1m/s. Furthermore, an afterglow-like effect
can be observed where for very-high-wind days, event rates, although decreasing,
are still above baseline even a few hours after ⟨vwind⟩ has fallen below the 10m/s
threshold. Noticeable is also a periodic behavior of the trigger rate during August,
where the trigger rates exhibit a roughly constant increase exclusively during the
day. This behavior may be connected to the charging of solar panels, which hap-
pens exclusively during daytime and becomes weaker towards the end of the year
when the sun is lower. Apart from the solar panels, human activity could also be
responsible for this behavior. Although the source of this behavior is not known,
it shows that there are still other event classes apart from wind and CW present in
the data. Therefore, to obtain a high-purity data set of wind events, wind events
must be separated from other backgrounds and one can not rely solely on the wind
speed at the time of the event.

5.3. Event clustering using a variational
autoencoder

As described above, other backgrounds are present in station 23 data and thus
events that appear during high-wind periods are not necessarily wind-induced.
Furthermore, event rates stay high after the wind speed has dropped, indicating
that wind-correlated signals can under some circumstances appear at lower wind
speeds. Therefore, a method to group events of the same class together is required.
For this thesis, a machine learning clustering method inspired by [39] was chosen
and is presented in the following.

5.3.1. Strategy

The goal is to find similarities and differences between events to group similar
events into clusters. The trivial solution that results in the highest purity is
to assign each event its own cluster, but one does not gain anything by doing
that. Therefore, the number of clusters should be much smaller than the number
of events. There are already numerous clustering algorithms available but these
methods usually require a vector of features as input. It is possible to use the raw
waveforms as input, but the individual samples do not resemble the features of the
waveform, especially since the signal can be shifted in time. Thus, one first has to
compress event data into a set of features to effectively use a clustering algorithm.
As described in section 4.9, autoencoders and especially variational autoencoders
can be used to compress high-dimensional data into a vector of features i.e. the
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bottleneck or latent space. Furthermore, the clustering algorithm HDBSCAN is
chosen as it is fast, does not require a fixed number of clusters as input, and
allows outliers i.e. events not assigned to any cluster. Variational autoencoders
are expected to work well, especially in combination with density-based clustering
algorithms such as HDBSCAN, since the latent space is modeled according to a
chosen probability density function. For an RNO-G station S, the strategy is then
to

1. train a variational autoencoder on station S data (optimize hyperparameters)

2. for all station S events: compute the mean latent space vector (µ in Equa-
tion 4.27) instead of the sampled latent variable z to obtain a deterministic
clustering

3. obtain clusters using HDBSCAN with the mean latent space vectors (µ in
Figure 4.7) as input (target high clustering efficiency) and visualize results
using UMAP

4. assess clusters by inspecting individual events and investigating wind speed
distribution per cluster

5. optimize HDBSCAN parameters or adjust the size of the bottleneck if clus-
ters are not meaningful

5.3.2. Data preparation

As input, the square of the short-time Fourier transform (STFT) magnitude (also
known as spectrogram) of the waveform is chosen. To obtain the STFT, the
waveform is divided into time intervals using a window function, where the intervals
can overlap. Then, the frequency spectrum per interval is computed using the
Fast Fourier Transform (FFT). In the end, one obtains a frequency spectrum as a
function of time, which can be represented by a 2D matrix with frequency on one
axis and time on the other axis. One advantage of the STFT is that the STFT
makes it easy to determine at which time and frequency the signal has considerable
power. The 2D matrix format makes it very suitable for machine learning, as both
time and frequency information can be processed in the same layer. Furthermore,
thermal noise is suppressed compared to the actual signal waveform, since thermal
noise has a flat frequency spectrum at all times, leading to a baseline offset with
random fluctuation in the STFT. The element-wise square of the STFT magnitude
is used in this analysis to further suppress the influence of thermal noise. Due to
the trigger, the signal appears always in the second half of the waveform, hence
the first part is not used. The STFT magnitude is calculated using the scipy [40]
function scipy.signal.stft. The segment size can be controlled by nperseg
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Figure 5.2.: Waveform, frequency spectrum and spectrogram (|STFT|2) of an
example event recorded with channel 13 of station 23.

and the overlap between segments by noverlap. Small segment sizes give low
resolution in the frequency domain and high resolution in the time domain and
vice versa for large segment sizes, however, it is possible to artificially increase the
number of frequency bins using the nfft parameter. Increasing nfft leads to more
smoothness in the frequency domain but does not increase resolution. In this thesis
the following values are chosen: nperseg = 128, noverlap = nperseg − 1 and
nfft = 2048. An example of the spectrogram for a waveform and corresponding
frequency spectrum is shown in Figure 5.2.

Furthermore, only the first half of the STFT in the frequency domain is used, as
this represents the frequencies from 0Hz to 800MHz where the signal is amplified.
The resulting STFT is then downsampled to 128× 128 pixels. Per event, all three
upward-facing LPDAs are used and their STFT magnitudes are stacked into a
128 × 128 × 3 matrix. This matrix is then squared element-wise, normalized to
[0, 1], and converted into 32 bit floats to be used as a tensorflow input. The
normalization is an element-wise division by the maximum of all elements of the
matrix.

Usually in machine learning, one can use data augmentation to generate new
data by modifying existing data, e.g. by rotating, magnifying, or shifting the image.
However, in this case, rotation and magnification are not meaningful as this would
change the physical properties of the data. Although translation is a physically
valid and meaningful operation, translation is disfavoured, since the waveforms
are often clipped at the end. To still have some variation in the data, a Gaussian
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noise layer is included directly after the input of the VAE as well as several dropout
layers for regularization.

For the training and validation data, only shallow-triggered events from August
to October of 2022 were chosen, since wind events are assumed to be produced
near the surface. The force triggers are excluded from training since they include
mostly thermal noise, which is random and cannot be compressed into a few pa-
rameters in a meaningful way. Depending on the trigger threshold, thermal noise
can occasionally trigger an event, hence events with a weak signal are not desired
for training. Therefore, the signal-to-noise ratio (SNR) is introduced, where the
SNR for a noisy waveform x and noise r is defined as

SNR(x) =
max(|x|)
RMS(r)

, RMS(r) =
√
⟨r2⟩ (5.1)

RMS denotes here the root mean square. The noise RMS can be obtained by taking
the median over many force trigger events, which are mostly pure thermal noise.
The median is here chosen over the mean to reduce the impact of rare outlier
events, such as CW signals that may appear coincidentally in force trigger events.
For station 23, a median SNR of 3.8 is obtained for force-triggered events. To filter
out weak signals and thermal noise from the shallow triggered events, an SNR cut
is applied, where events must satisfy SNR≥ 5 in two out of three upward-facing
channels.

5.3.3. Model architecture

The variational autoencoder is implemented using tensorflow and keras. The
basic framework of the model is adapted from [41] and the structure of the encoder
(decoder) is shown in Table A.1 (Table A.2). The input layer just handles the
input data and sends it to the next layer, a Gaussian noise layer that adds some
variation to the data. After that, there are a series of convolutional layer blocks
consisting of two 2D convolutional layers (Conv2D in keras), activation functions
(here LeakyReLU with α = 0.3), and a dropout layer (except for the last block). In
general, the strategy is to decrease layer size along spatial dimensions (nx, ny) and
increase the number of channels (filters) nch to extract features, where the output
shape of such a 2D convolutional layer is (nx, ny, nch). The first convolutional
layer in each block increases the number of channels (filters) by a factor of 2
starting from 16 and uses a kernel size of 1 while the second convolutional layer
reduces spatial dimension by a factor of 2 using stride s = 2 and kernel size 3,
except for the first block where the kernel size is 5. By separating the increase in
channels and decrease in spatial dimensions over two layers, the network becomes
deeper and an additional non-linearity (activation) is introduced between these
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operations. The dropout rate is here 0.3 for all blocks. The output of the last
convolutional layer is flattened into a vector and then passed to an intermediate
fully-connected layer (Dense in keras) that is connected to the mean and log-
variance latent space layers of length 9, both fully-connected. The latent variable
z is then computed in the sampling layer according to Equation 4.27. The decoder
is mostly a mirrored version of the encoder without sampling, except that 2D
convolutions are replaced by transposed 2D convolutions (Conv2DTranspose) and
the intermediate fully-connected layer is missing to reduce the number of trainable
parameters in the decoder. The output of the decoder is a 2D convolutional layer
with three channels and a ReLU activation that is limited to [0, 1] to match the
input data.

5.3.4. Results for station 23

Now, the training of the VAE and clustering results for station 23 are presented.

5.3.4.1. Training

The data is split into 70% training and 30% validation data without test data
as the loss is not evaluated after training since only the encoder is of interest.
For the reconstruction loss function, the mean absolute error (mean over batch)
is chosen with a weight β = 0.99 on the KL divergence. The Adam optimizer
is used with a learning rate of η = 2 × 10−4 and otherwise default parameters.
The model is then trained for at most 200 epochs with a batch size of 16, model
checkpointing, and early stopping. During training the learning rate is reduced
according to η → 0.3η if the total validation loss has not decreased for 10 epochs.
In the end, the model with the minimal total validation loss is saved. Training and
validation loss for the VAE trained on station 23 data are shown in Figure 5.3.
Both validation and training loss show very similar decreasing behavior with the
training loss being slightly lower than the validation loss as one would expect. The
sudden drop in the loss after epoch 125 is presumably due to a change in learning
rate. The minimum validation loss is marked by a red vertical line. After that,
the validation loss does not decrease but it does not increase noticeably either.

From first clustering attempts it was observed that for station 23 there is one
cluster that contains substantially more events than other clusters and appears only
during one specific high-wind day. To reduce potential bias and focus of the vari-
ational autoencoder on this dominant cluster, three data runs (1015, 1016, 1017)
are excluded from the final training of the VAE but are still used for the analysis.
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Figure 5.3.: Total loss of the variational autoencoder trained on station 23 data
for event clustering. The reconstruction loss is the mean absolute error.

5.3.4.2. Clustering results

After training of the VAE, the mean latent vector (directly from the z_mean
layer) is computed for all shallow- and force-triggered events in the investigated
time period. The vectors are then given as input to the HDBSCAN cluster-
ing algorithm. After that, the minimal cluster size (min_cluster_size) as well
as the parameter cluster_selection_epsilon is tweaked while the resulting
clusters are manually investigated to get an accurate and efficient clustering.
cluster_selection_epsilon controls here how close clusters must be to com-
bine them into one cluster. The parameter min_samples is set low so that more
data points are core points and fewer data points are classified as noise in the end.
Furthermore, the parameter cluster_selection_method is set to “leaf”, which
returns more fine-grained clusters [30].

To qualitatively assess clustering accuracy and efficiency, the bottleneck vectors
are represented in a two-dimensional space using the dimensionality reduction al-
gorithm UMAP that allows to visualize the data in a scatter plot and mark the
clusters obtained by HDBSCAN. It is then possible to select an individual point
in that two-dimensional space and investigate the corresponding event including
its waveform, spectrum, and STFT per channel. Since UMAP tries to conserve
both global and local structure, events of the same class should lie close together.
To assess the clusters, it is first investigated whether clusters found by HDBSCAN
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Figure 5.4.: UMAP representation of the mean latent vectors of station 23
shallow- and force-triggered events with the corresponding wind speed encoded
by color.

do cluster in the UMAP embedding as well. After that, individual events of each
cluster are inspected in terms of waveform, spectrum, and STFT. Then the borders
of each cluster are examined and events that are near a cluster but not assigned to
any cluster are investigated to judge clustering efficiency. If some clusters are split
in the UMAP and contain more than one visually different event class, the HDB-
SCAN parameters are tweaked again. The min_cluster_size is kept low to allow
small clusters and the cluster_selection_epsilon is slowly altered to combine
close clusters if their events are visually very similar to avoid having hundreds of
small clusters.

For station 23 the UMAP representation with wind speed encoded by color is
shown in Figure 5.4 and with the final clustering in Figure 5.5. In the appendix,
the event density in the UMAP representation is depicted in Figure A.4 and the
final non-default HDBSCAN parameters are found in Table A.3.

At first, the UMAP representation without the clusters found by HDBSCAN is
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Figure 5.5.: UMAP representation of the mean latent vectors of station 23
shallow- and force-triggered events overlayed with clusters found by HDBSCAN.
Cluster -1 denotes those events that are not assigned to any cluster.

considered. Here one can already make out multiple clusters by eye. Furthermore,
there appear to be clusters that consist almost exclusively of events appearing
at high wind speeds above 10m/s and there are also those which contain mostly
lower wind speeds. There is also a less separated group of potential clusters in the
middle, which appears to contain wind speeds both a bit lower and higher than
10m/s. Interestingly, for the high-wind cluster in the lower right of the UMAP
representation, events with very high wind speeds (> 17m/s) are positioned on
the edge of the cluster. It is important to mention here that neither the variational
autoencoder nor the UMAP and HDBSCAN algorithms have access to any weather
or wind information.

By investigating the HDBSCAN clustering as well, one finds that the clearly
separated clusters observed in the UMAP representation are indeed found to be
separate clusters by HDBSCAN, although sometimes a potential cluster in the
UMAP is split up by HDBSCAN. The group of clusters in the middle is separated
into multiple clusters of different sizes. Almost all events in the clusters found
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by HDBSCAN are also grouped together in the UMAP representation, indicating
that the clusters are indeed reasonable.

Another interesting aspect of the HDBSCAN clustering is that not all events
are assigned to a cluster. By comparing event IDs, it is found that two potential
cosmic ray candidate events ((station 23, run 1091, ID 1718) and (station 23, run
793, ID 748)) are assigned to cluster −1 i.e. not clustered. Given the expected
small number of cosmic ray events in the sub-sampled data, these events are indeed
true outliers and HDBSCAN classifies them as such. However, these two candidate
events may be just by chance assigned to cluster −1. This is unlikely, since the
probability of coincidentally assigning both events to cluster −1 is 0.9%, where
the probability is estimated by the square of the ratio of the number of events in
cluster −1 (4247) to the total number of events (45177).

5.3.4.3. Analysis of event rates and the number of events of identified
clusters with respect to wind speed

To identify wind clusters, the number of events (cluster size) as a function of the
wind speed is investigated per cluster. For this purpose, the (empirical) cumu-
lative distribution function (CDF) of each cluster is plotted (Figure 5.6) against
wind speed. One can see that there are different turn-ons for different clusters:
some clusters (1, 4, 5, and 7) start to appear already at 0m/s, while others fea-
ture a turn-on between 2m/s and 7.5m/s. Three clusters (6, 9, and 10) show a
clear turn-on at around 10m/s, whereby solely cluster 6 contains a considerable
fraction of events at very high wind speeds of 17.5m/s and above. The behavior
of the CDF curves is for most clusters very similar to that of the CDF of a nor-
mal distribution: a continually increasing slope up to some inflection point after
which the slope steadily decreases and converges to zero. However, for clusters 11
and 13, there appear three inflection points instead of one so it looks like these
clusters have two turn-ons, the first between 3m/s - 5m/s and the second around
10m/s. Apart from coincidence, this might come from the (unknown) nature of
the underlying production process of these events, if they are indeed wind-induced.
However, it is also possible that these clusters contain events of two different event
classes that feature two different behaviors as a function of wind speed. To study,
whether or not a single cluster is made up of multiple event classes, mean fre-
quency spectra are investigated per cluster for different wind speed intervals in
subsubsection 5.3.4.4.

One problem with the raw CDF in Figure 5.6 is that, as shown in Figure 5.7,
the wind speed distribution in the investigated time interval is not flat so some
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Figure 5.6.: Cumulative distribution of the number of events (cluster size) as a
function of the wind speed per cluster found for station 23. Cluster −1 denotes
all events not assigned to any cluster. The total number of events per cluster is
shown in the legend

wind speeds are over- or underrepresented. To counter this imbalance, a data-
normalization is introduced: for a chosen binning, a histogram with counts ni in
bin i of the weather quantity of interest (e.g. wind speed) is computed, whereby
the weather data is taken every minute for the whole investigated time interval.
After that, each bin count of the cluster histogram ni, cluster, from which the CDF
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Figure 5.7.: Histogram of the wind speed taken every minute at Summit Station
for the investigated time interval.

is computed, is divided by ni to obtain the normalized cluster size per bin

nnorm
i, cluster =

{
ni, cluster

ni
, ni ̸= 0

0, ni = 0
(5.2)

The data-normalized cluster size as a function of the weather histogram should
ideally be flat/uniform for an event class independent of the investigated weather
quantity. However, for a limited time interval, statistical fluctuations will lead to
deviations from the flat distribution.

To better compare multiple cluster sizes as a function of e.g. wind speed, the
data-normalized empirical cumulative distribution is computed. Ideally, the data-
normalized CDF of a cluster that does not depend on some weather quantity
should be linear with respect to said quantity, whereby the zero point of the dis-
tribution should lie at the smallest value observed for the respective quantity and
the CDF should reach 1 at the greatest observed value. However, the investigated
time interval of two months is rather short so some fluctuations and deviations
may occur. The reason for this is that not all possible weather configurations are
included and random coincidences may happen, e.g. an event class of man-made
origin that does occur only during a single day coincidentally appears during a
high-wind period. Additional fluctuations may also be created due to the sub-
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Figure 5.8.: CDF of the number of events (cluster size) as a function of the wind
speed (data-normalized) per cluster found for station 23. The data-normalization
takes the actual distribution of wind speed in the investigated time period into
account. The total number of events per cluster is shown in the legend.

sampling of the data, since per run only about 3-5% of all events are transferred
via satellite and available for this analysis.

The data-normalized CDF of the cluster size of clusters found for station 23 as
a function of wind speed is shown in Figure 5.8 with the total number of events
per cluster written in the legend. Again, cluster −1 denotes all unclustered events.
There are mainly three classes of clusters arising from the plot:

• Clusters that show a turn-on at wind speeds between ∼ 7m/s − ∼ 12m/s
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and furthermore have a mostly convex curve. This is the case for clusters
−1, 0, 2, 3, 6, 8, 9, 10, 11, 12, 13 and 14. The turn-on is here defined as the
wind speed, where the CDF reaches 1%.

• Clusters that have a linear behavior as a function of wind speed. As described
before, such clusters are those that are truly independent of wind speed.
Only cluster 5 shows this behavior. This can be explained by the trigger
information, as cluster 5 contains the vast majority of force triggers which
are taken every 10 seconds and are thus independent of wind speed.

• Clusters that do not have a turn-on at non-zero wind speeds and have a
mostly concave curve. This can be observed for clusters 1, 4, and 7.

Interestingly, the double-turn-on behavior of clusters 11 and 13 shown in Fig-
ure 5.6 is not visible anymore. This is possibly due to the data-normalization, since
the wind speeds around 5m/s to 8m/s are the most prominent in the investigated
time interval and are therefore suppressed by the data-normalization. The first
turn-on of clusters 11 and 13 lies near this region and is presumably suppressed
by the data-normalization.

To further investigate clusters, it is useful to look at event rates vs. time for
each cluster and compare them to wind speed. For station 23, this is shown in
Figure 5.9. To display the full time span of two months, 120 minute bins are
chosen and for the wind speed, the maximum over each time bin (120 minutes)
is plotted. Time intervals where the maximum wind speed is greater or equal to
10m/s are shaded in gray.

The unclustered events (cluster −1) appear almost throughout the entire time
interval with increased event rates during high-wind periods. This indicates that
cluster −1 contains both wind-correlated and wind-uncorrelated events. Cluster
5 (mostly force triggers i.e. thermal noise) shows an almost flat event rate for the
observed time interval, whereby some of the occasional dips are caused by runs
that are filtered out beforehand (calibration runs, short runs). Additional dips are
created by a temporary reduction of force triggers when the shallow trigger rate is
too high for a short amount of time. Apart from the dips, fluctuations in the event
rate of cluster 5 can be explained by the sub-sampling of the data. Additionally,
thermal noise can occasionally activate the shallow trigger, adding more statistical
fluctuations. Now, looking at the remaining clusters that do not show a non-zero
turn-on as a function of wind speed, there are two clusters (1 and 7) that show a
periodic behavior of the event rate with time periods of several hours where the
event rate is zero. By investigating the cumulative number of events as a function
of the hour of the day (see Figure A.5 in appendix), one can observe that these
clusters appear exclusively during daytime and are therefore responsible for the
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Figure 5.9.: Station 23: event rate per cluster found by HDBSCAN as well as
wind speed. Time intervals with wind speed ≥ 10m/s are shaded in gray. Time
is given in UTC.
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periodically increased event rate seen in Figure 5.1. As mentioned before, this
background is unknown and may be connected to the station’s solar panels or hu-
man activity. The last cluster featuring a non-zero turn-on in wind speed, cluster
4, seems to appear randomly throughout the entire time interval with some events
coincidentally appearing during/near high-wind periods, indicating that cluster 4
is indeed independent of wind speed.

Among the clusters that do show a non-zero turn-on, there are some, namely
clusters 6, 8, 9, and 10, where the majority of events appear during a single high-
wind period of the length of roughly a day, while events of the remaining clusters
are spread across multiple high-wind periods. Apart from a few events, all events
of these clusters appear during or near the shaded time intervals, which is a strong
indicator that these clusters indeed correlate with wind speed. The fact that some
wind clusters appear almost exclusively during a single day for the investigated
two months gives rise to the hypothesis that other factors besides wind speed in-
fluence the underlying processes responsible for the generation of wind-correlated
events. Such potential quantities may include other weather data such as temper-
ature, wind direction, pressure, and relative humidity. In subsubsection A.2.2.1,
data-normalized cumulative distributions of the number of events per cluster as a
function of these weather quantities are shown. To assess, whether some behaviors
of the CDF are due to the respective weather quantity and not due to the wind
speed, one must disentangle wind speed from other weather quantities. Therefore,
wind speed is plotted against wind direction, temperature, barometric pressure,
and relative humidity in section A.3.

For the wind direction, the wind-correlated clusters seem to appear only at
certain preferred wind directions, resulting in a stair-like behavior of the CDF.
Clusters 6, 9, and 10 appear exclusively in a narrow range from 300 ° to 350 °,
where the exclusiveness is explained by the fact that these clusters appear only
during a single day. By looking at Figure A.80a one can conclude that the stair-
like behavior of the CDFs is likely caused by the wind speed being high only for
certain wind directions and not by the wind direction itself. However, it can not
be excluded that the wind direction influences the wind event production mech-
anisms so that some classes might be suppressed for certain directions. How the
wind direction might influence the production of wind events is not known, but if
some wind events are created at metal structures, there might be some direction,
where the wind has more area of attack. This could then support or prevent the
production of wind events for specific wind directions.

Figures A.80b, A.81a and A.81b show that, taking the linear weather-independent
cluster 5 (thermal noise) as reference, most wind clusters appear at lower temper-
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atures (≲ −20 °C), slightly higher relative humidity (≳ 60%) and slightly lower
pressures (≲ 670hPa) while the other non-wind clusters show the opposite behav-
ior. For the relative humidity, this is likely caused by the wind speed being high
only above RH > 60%, while for temperature and pressure, no clear explanation
is visible.

Given that the investigated time period is only two months, no definite con-
clusions about the influence of other weather quantities can be drawn from the
data, as some weather quantities might be linked or might appear coincidentally
in certain configurations during the investigated high-wind days. Therefore, more
data, especially longer observation time periods are required to further analyze this
phenomenon. Additionally, wind tunnel experiments, where some of the weather
quantities are controllable, can help to understand wind events. Furthermore, it
is possible that over a few years, more wind-correlated clusters arise, if some of
the processes responsible for generating the wind-correlated signals are sensible
to certain wind-weather configurations. Hence, it might be that the wind clusters
found in this thesis do not fully represent the complete spectrum of wind-correlated
events and it might therefore be necessary to redo the clustering analysis from time
to time until the nature of these events is understood.

5.3.4.4. Investigation of mean spectra per cluster

After analyzing cluster sizes and event rates vs. wind speed, the specific event char-
acteristics of each cluster are explored by investigating arithmetic mean frequency
spectra. The mean spectra of all upward-facing channels of all clusters are depicted
in subsubsection A.2.2.2 in the appendix. Additionally, waveforms and frequency
spectra of randomly drawn example events are shown in subsubsection A.2.2.3 per
cluster. For better readability and since the triggering signal always appears in
the second half of the waveform, only the second half of the waveforms are shown.
Note that these example events are solely for visualization purposes and are not
necessarily representative of the cluster, although the example spectra may share
some features with the mean spectra.

Starting with the mean spectra of the wind-independent clusters, it is now pos-
sible to confirm that cluster 5 indeed contains mostly thermal noise events with
some narrowband peaks at ∼ 136MHz, 200MHz, 403MHz and 480MHz, indi-
cating that cluster 5 contains some CW events as well. Since CW events can be
easily filtered out using the L1 score, this is not a problem. The peak at around
136MHz presumably comes from hand-held radio devices. The origin of the spikes
at 200MHz and ∼ 480MHz is not known and the source of the 403MHz line is
the weather balloon. Apart from thermal noise, the spectrum contains a small
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contribution from galactic noise (more information can be found in [12]). Further-
more, it appears that the mean spectrum of channel 16 is stretched compared to
the other channels, but the reason for this phenomenon is not known. Cluster
4 contains exclusively narrowband CW at ∼ 150MHz and can be attributed to
hand-held radio devices. The events in clusters 1 and 7 appear periodically and
exclusively during daytime and both clusters have nearly identical mean spectra
with two dominant sharp but not narrowband peaks at ∼ 80MHz and ∼ 160MHz.

For the wind-correlated clusters, the mean spectra feature various peaks of dif-
ferent widths at different frequencies across clusters and sometimes even across
individual channels within a cluster. Only clusters 9 and 10 show almost identical
mean spectra. In almost all clusters, a significant fraction of the total integrated
spectral power is contained in one or multiple peaks around 100MHz. This region
is amplified due to the LPDA’s vector effective length, which is largest around
100MHz. For cluster 6, the ∼ 100MHz peak is very large and wide compared to
most other clusters, with channels 13 and 16 being much stronger than channel
19. Other notably strong peaks are those around 200MHz (notable in clusters (3),
12, 13, and 14, strongest in channel 16), ∼ 330MHz (clusters 9 and 10, strongest
in channel 16) and ∼ 500MHz (clusters 9 and 10, strongest in channel 13). In all
clusters except for cluster 3, channel 19 shows the weakest mean spectrum. Since
the antenna sensitivity is direction-dependent, this could mean that these events,
at least on average, arrive at channel 19 in a direction where the antenna is less
sensitive. From this, it follows that there might be some dominant direction/solid
angle window from which these events originate since one would expect similar
mean spectra in all channels if the directions were uniformly distributed. These
events may be created at or near man-made structures as suggested in [7]. How-
ever, a detailed direction reconstruction is necessary to obtain more insights into
the origins of each cluster.

As mentioned earlier, a double-turn-on is observable in Figure 5.6 for clusters
11 and 13. A possible explanation is that these clusters consist of two or more
sub-clusters, each having its own turn-on. To investigate this possibility and to
further assess the purity of the found clusters, mean frequency spectra of certain
wind speed intervals are compared per cluster and channel, whereby the plots
can be found in subsubsection A.2.2.4. The investigated wind speed intervals are
n · 5m/s ≤ vwind < (n + 1) · 5m/s for n = 0, 1, 2, 3 (all wind speeds measured
are below 20m/s) and spectra for intervals containing no events are set to zero.
For all clusters, except for −1, 0, 6, and 9, the mean spectra of all wind speed
intervals with at least one event closely match each other within statistical fluc-
tuations, indicating that each of the clusters may indeed contain only a single
event class. Sometimes only a few events are present in an interval resulting in
noise not being completely averaged out. It is however still possible that a clus-
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ter contains multiple event classes both with similar appearance per wind speed
bin. The mean spectra of clusters 11 and 13 are almost identical across different
wind speed intervals, hence the double-turn-on behavior can not be explained by
potential sub-clusters with individual turn-ons. For cluster 9, only four events are
contained in the [5, 10)m/s interval, but some peaks of the full mean spectrum are
already visible but far weaker than in the higher wind speed intervals. A similar
observation can be made for cluster 0, where the mean spectra in the [5, 10)m/s
interval do not show all features of the two higher wind speed intervals, although
the peak at ∼ 100MHz is very similar in all intervals. For cluster 6, the strength
of the ∼ 100MHz peak increases with increasing wind speed. This might indicate,
that there is a connection between signal strength and wind speed. Cluster −1
contains all unclustered events and therefore it is expected that the mean spectra
of different wind speed intervals do not match. For the two intervals with the
highest wind speeds, however, the mean spectra of cluster −1 are very similar.
This means that for wind speeds greater than 10m/s, most events in cluster −1
correlate with wind speed. It is likely that these events correspond to the vari-
ous wind clusters, but show too weak of a similarity to be assigned to these clusters.

5.3.4.5. Analysis of waveform amplitudes per cluster

As observed before, the mean spectrum amplitude of the ∼ 100MHz peak of
cluster 6 increases when going to higher wind speeds. One possible explanation
is that for higher wind speeds, the signal amplitude in the waveform is higher,
resulting in a higher signal peak amplitude in the spectrum, while the contributions
to the spectrum from thermal noise are unchanged. This would also match the
observation reported in [7] and mentioned in section 3.4 that some experiments
found wind-correlated signals to be stronger at higher wind speeds. To study
these findings, in subsubsection A.2.2.5 wind speed is plotted as a function of the
maximum of the absolute waveform in a 2D histogram for each cluster and channel.

Indeed, for cluster 6 a trend of the maximum amplitude towards higher wind
speeds is clearly visible, in particular in channel 16. For some other clusters (2, 3,
8, 11, 12, 13), there are slightly more high-amplitude outlier events at higher wind
speeds above 10m/s. However, the majority of events of wind-correlated clusters
appear above 10m/s, so this could be due to statistics. In contrast, cluster 9
shows a broad band in the plot and the amplitude distribution is similar across
wind speeds, not counting wind speeds with only a few events. This indicates that
events in cluster 9 are neither stronger nor weaker at higher or lower wind speeds.
It is furthermore observable that for many wind-correlated clusters, the events at
the lowest wind speeds occurring in the respective cluster have low maximum am-
plitudes. However, it should again be pointed out that the wind speed is always
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a minute average at a location a few kilometers away from station 23, so the true
wind speed at the exact time and (unknown) location of the event production may
deviate from the values presented here. Therefore, the wind speed of outlier events
in these plots should be treated with caution. For clusters 11 and 13, those that
show the double-turn-on behavior in Figure 5.6, one can observe that there are two
peaks in the wind speed vs. maximum amplitude distribution, one below and one
above 10m/s, both featuring similar numbers of high-amplitude outlier events. It
looks like there are two overlapping distributions, however since the corresponding
mean spectra do not change much as a function of wind speed, both distributions
are expected to originate from the same physical process or at least from similar
ones. The wind-uncorrelated clusters show no dependency of the maximum wave-
form amplitude on the wind speed, as one would expect.

In the section before, it is observed that some clusters have one channel, where
the spectrum amplitude is much smaller than the remaining two. This can also
be seen in the maximum of the waveform amplitudes, e.g. channel 19 for clusters
6, 12, and 14. This indicates a preferred arrival direction of signals of such clusters.

After analyzing all clusters of station 23, clusters 0, 2, 3, 6, 8, 9, 10, 11, 12, 13,
and 14 are identified as wind clusters and are therefore selected for the training of
the wind event discrimination in chapter 6.

5.3.4.6. Comparison of the clustering results to existing work

Before proceeding to the clustering results for other stations, the clustering found in
this thesis for station 23 is briefly compared to the clustering found in [39] for RNO-
G station 23. The clustering methods ([39] and this thesis: VAE and HDBSCAN)
and the investigated time intervals ([39]: July to October of 2022; this thesis:
August to October of 2022) are similar, so a comparison is possible. In [39], three
clusters were identified in total, where two are correlated with high wind speed and
the remaining cluster was attributed to thermal noise. In contrast, eleven wind
clusters are identified in this thesis, where two of them (9 and 10) are very similar.
Furthermore, a thermal noise cluster, a CW cluster, and two very similar non-wind
background clusters of unknown origin, which appear periodically and exclusively
during daytime, are found in this thesis. By analyzing mean frequency spectra and
event rates per cluster, one can conclude that most of the wind clusters found in
this thesis for station 23 represent separate wind event classes. This indicates that
the clustering found in this thesis is more fine-grained than the clustering found
in [39].
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5.3.5. Clustering results for stations 13 and 24

In addition to station 23, event clustering is done for stations 13 and 24 as well.
Both stations were deployed in 2022 and should not suffer from wind turbine,
battery charging, and LoRaWAN noise, just like station 23. The only major back-
grounds expected to appear in stations 13 and 24 are thermal noise, CW, and
wind, hence wind should make up almost all impulsive shallow-triggered events,
apart from a few cosmic ray events. In contrast to station 23, stations 13 and
24 feature a higher trigger threshold and therefore fewer events are expected to
appear compared to station 23. As for station 23, shallow (radiant) trigger rates as
well as the mean wind speed is plotted for stations 13 and 24 in Figure A.3 in the
appendix. For the three major shaded time intervals where the mean wind speed
was over 10m/s an increase in event rates is observable for both stations 13 and
24, however not as high as for station 23, possibly due to the trigger threshold.
Compared to station 23, stations 13 and 24 do not show a periodic increase in
event rates, hence this background is not present or suppressed in stations 13 and
24, since these events have relatively small amplitudes and are not able to trigger
in significant numbers.

For both station 13 and 24, the clustering procedure is the same as for station
23. The bottleneck size is again 9, the weight for the KL loss is now β = 1 for
both stations and parameters used for the HDBSCAN clustering algorithm are
again individually adjusted for each station. The final non-default HDBSCAN
parameters used for stations 13 and 24 can be found in Table A.4 and Table A.5.
The results, including UMAP representations, CDFs of cluster sizes, mean spectra,
and event rates per cluster, are shown in subsection A.2.3 and subsection A.2.4 in
the appendix. For both stations, there is a large thermal noise cluster (station 13:
cluster 7; station 24: cluster 0) and several smaller clusters that feature a turn-on
at around 10m/s (station 13: clusters 0, 1, 2, 3, 4; station 24: clusters 1, 2, 3, 4).
By looking at the event rates per cluster, all those wind clusters appear almost
exclusively during high-wind periods. Additionally, for station 13 two CW clus-
ters (5 and 6) are identified, both having narrowband peaks at 403MHz i.e. the
weather balloon. Comparing wind clusters of stations 13 and 24 to those found for
station 23, one can observe that there are some similarities between clusters: many
clusters show a large frequency content around 100MHz, some exclusively, some in
combination with a considerable frequency content around 200MHz or 500MHz.
Sometimes the dominant channels are different across stations, which could mean
that the arrival direction varies from station to station if those signals stem from
specific structures. Looking at the clusters that feature a peak at around 500MHz
(station 13: clusters 3 and 4, station 23: clusters 9 and 10, station 24: cluster
4), one can see that the spectra deviate across stations. This may be either be-
cause those clusters might not all stem from the same process, or there are minor
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differences across stations that may affect the spectra. Such potential differences
include varying positions of man-made structures (e.g. solar panels) with respect
to the shallow antennas. This could lead to different signal arrival directions,
which might affect the spectra. Moreover, some wind clusters of stations 13 and
24 contain only a few events, so deviations due to low statistics are possible as well.
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6. Wind event discrimination

In the last chapter, wind event clusters of stations 13, 23, and 24 were identified and
analyzed. Now, the goal is to develop a method capable of discriminating between
wind events and non-wind events. This is discussed in the following chapter.

6.1. Strategy

The task can be interpreted as a binary classification problem, where class A are
all wind events and class B are all non-wind events. One could then train a binary
neural network classifier on both classes. However, not necessarily all possible wind
and non-wind event classes are known. A binary classifier trained on the available
event classes might learn to discriminate between both classes by certain properties
that are different between the known subset of classes but would have problems
on unknown classes. Consider the scenario where for the non-wind events, only
thermal noise is known. In contrast to wind events, thermal noise is not impulsive,
making it relatively easy to discriminate between wind events and thermal noise.
However, it might then be difficult for the classifier to classify impulsive non-wind
events, since, for the classifier, they may look more similar to wind than to thermal
noise. Additionally, if one trains a classifier using simulated events (e.g. cosmic
rays) that contain some simulation artifacts, the classifier might have difficulties
recognizing real events without the artifacts.

An alternative approach is to use the anomaly detection technique introduced
in subsection 4.9.3. The idea is to train an autoencoder model exclusively on the
previously selected wind event classes. Since the model never learns to encode and
decode non-wind events, non-wind events should ideally show anomalously high
reconstruction errors compared to the wind event classes the model was trained
on. Discriminating wind events from non-wind events via this method requires
selecting a threshold on the reconstruction loss, where events falling below this
threshold are classified as wind. The value of the threshold is often chosen ac-
cording to some target, e.g. such that a high fraction of wind events is correctly
classified as wind while only a small fraction of (certain) non-wind events is falsely
classified as wind. Although this effectively results in a binary classifier that de-
pends on the knowledge about non-wind events, the threshold can be chosen and
adjusted at all times for individual analyses. Thus, this method is ideally more
robust with respect to unknown or very rare non-wind event classes, where no or

61



6. Wind event discrimination

too little data is available at the time of training.

Therefore, the anomaly detection method is chosen in this thesis to discrimi-
nate wind from non-wind events. A variational autoencoder is used, where the
reconstruction loss is calculated from the mean latent space vector zmean. The
mean latent space vector is chosen over the sampled latent variable z to obtain
deterministic results.

6.2. Selection and preparation of training data

Although there are some similarities between wind clusters of different stations,
they are by no means identical. Furthermore, there is a significant difference in
the number of events between stations. This is at least partially due to different
trigger configurations resulting in station 23 having an order of magnitude more
events than stations 13 and 24. Due to the differences in wind event clusters
between the stations, a variational autoencoder is exclusively trained on data of a
single station. Here, station 23 is picked, since it shows more event classes and also
more events in total than the other two stations. Wind events of other stations
are investigated with respect to the reconstruction loss to test if the variational
autoencoder can be used on other stations as well.

However, in the last chapter, it has been observed that the signals of some clus-
ters may have a preferred arrival direction. If these signals indeed originate from
man-made structures at the station, the arrival direction may vary across stations
if these structures are positioned differently from station to station. It is also pos-
sible that this preferred direction depends on other factors and may change over
time. Apart from varying relative frequency contents in different channels, such
a preferred direction results in a preferred time difference between pulses across
different channels. When training the VAE on all channels at the same time per
training sample, the VAE might develop a bias towards these preferred directions
and the specific timing configuration. Shifting the waveforms in time to eliminate
this bias is disfavored, since, as mentioned before, the waveforms are often clipped.
Thus, to make the VAE more robust against bias from channel configurations, the
waveforms of each channel are treated as individual training samples. Apart from
that, the data is prepared in the same way as described in subsection 5.3.2, i.e. the
squared of the STFT magnitude is computed per waveform, then downsampled
to 128 × 128 pixels and normalized to [0, 1]. Additionally to a two out of three
channels SNR≥ 5 cut, a three out of three channels L1≤ 0.6 cut is applied to filter
out any CW signals from the wind event classes.

As training data, all wind event classes of station 23 are selected. Since the
VAE is evaluated later, a test data set is required apart from the training and
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validation sets. This is necessary since the VAE is selected based on the validation
set, which results in a bias towards the validation set. Here, 60% of the data is
used for training and 20% is used for validation and testing, respectively. However,
the clusters have strongly varying numbers of events, which would result in a
potential bias towards the bigger clusters. To counter this, a method known as
undersampling is used, where the maximum number of samples per cluster used for
training and validation is limited and all remaining samples are used for testing.
Here, the limit for the training data is chosen to be 2000 and the limit for the
validation data is then given according to the proportions of training and validation
data. The number of unique events in the training, validation, and test sets is then

Ntrain, unique = 4983, Nval, unique = 1663, Ntest, unique = 7938 (6.1)

Furthermore, as there are still very small clusters, samples of smaller clusters are
reused n times inside the training and validation sets until either the limits used
for undersampling are reached or n reaches a chosen limit (here 5). This is called
oversampling. The limit on n is here chosen to be small to reduce overfitting. The
combination of over- and undersampling reduces over- and underrepresentation of
certain wind event classes, but can certainly not fully compensate lack of training
data. After applying SNR and L1 cuts as well as over- and undersampling, the
following number of events are available for training, validation and testing:

Ntrain = 12539, Nval = 4193, Ntest = 7938 (6.2)

Since each channel is treated as a separate training/validation sample, the number
of training and validation samples is 3Ntrain and 3Nval.

The waveforms used for training were recorded with a sampling rate of 3.2GHz.
However, it is planned to reduce the sampling rate to 2.4GHz in the future to
allow longer waveforms. Ideally, the waveforms should then no longer be clipped
at the end. Therefore, the whole procedure of data preparation should be redone
once the sampling rate has changed and a new VAE should be trained to be used
with the new format.

6.3. Model architecture

The chosen model architecture (see subsection A.4.1) is the same as described in
subsection 5.3.3, except for some minor changes. The bottleneck size is reduced
from 9 to 6 since the number of channels per individual sample is reduced. Fur-
thermore, the input is now of shape 128× 128× 1 instead of 128× 128× 3. The
dropout rate is increased to 0.7 to increase regularization and reduce overfitting
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because fewer training data is available and some samples appear multiple times
due to the oversampling. Additionally, four instead of five convolutional clocks are
used.

6.4. Training

As the reconstruction loss function, the mean squared error (MSE) is chosen,
since this loss function suppresses thermal noise compared to the main signal.
The weight on the KL loss is now β = 0.1. It is chosen to be small because the
focus now lies on the reconstruction capabilities of the model and a regularization
of the latent space is not of primary importance. Again, the Adam optimizer is
chosen with a learning rate of 4 × 10−4. A batch size of 32 is used as well as
model checkpointing and early stopping. In the end, the model with the lowest
validation MSE loss is used for further analysis. Both total validation and training
loss are shown in Figure 6.1. Validation and training loss decrease at first until
the validation loss reaches its minimum after which the validation loss slightly
increases, whereas the training loss still decreases. Additionally, the training loss
is much smaller than the validation loss. This is a strong indicator of overfitting
during training. It is expected that this problem will be reduced by increasing the
number of training and validation samples.

6.5. Results

In this section, the discriminator trained on wind events of station 23 is tested
with respect to clusters of station 23, cosmic ray simulations, and other stations.

6.5.1. Choice of evaluation loss

Before evaluating the VAE on station 23 clusters, cosmic ray simulations, and
other stations, one must choose how to calculate the evaluation loss. As mentioned
above, the loss function is chosen to be the mean squared error. However, as there
are three upward-facing channels per event, there are also three loss values per
event (one per channel). There are several ways to compute a single loss value
out of these three channel loss values, e.g. by taking the maximum, arithmetic
mean, or minimum. Here it is useful to remember that, depending on the arrival
direction, a signal can hit a channel in a sensitive or insensitive region of the LPDA.
If a signal arrives at an insensitive region, the amplitude of the waveform in that
channel is suppressed and may even fall into the thermal noise regime. Hence, it is
not desirable to use a channel, where the signal is near thermal noise, because the
contribution of thermal noise to the reconstruction loss is high. This comes from
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Figure 6.1.: Total validation and training loss as a function of the training epoch
for the VAE used for the discrimination of wind from non-wind events. The re-
construction loss is here the mean squared error (MSE). Marked are both the
minimum total validation loss and the minimum validation MSE loss.

the fact that the input data is normalized to [0, 1], so if the signal is much stronger
than thermal noise, thermal noise is suppressed in the mean squared error. As a
result, the maximum and mean loss across channels are not used to calculate the
final per-event loss, as both potentially include a channel, where a weak or even
no signal is present, increasing the mean/maximum loss. The remaining choices
include the minimum loss across channels and the mean of the two lowest loss
values of all three channels. The latter is motivated by the fact that at least two
channels are required to have a signal above the trigger threshold to trigger an
event. However, the trigger threshold is variable and may be near the thermal
noise regime. Thus, it is possible that for some events, depending on their arrival
direction, there is only a single channel that shows a clear signal. Therefore, the
minimum loss of all three upward-facing channels is chosen as evaluation loss for
further analysis.

6.5.2. Evaluation of station 23 events

Now, events of station 23 are evaluated per cluster. Since the VAE is trained on
wind clusters of station 23, only the test data per wind cluster is considered. The
empirical CDF of all shallow-triggered events of all clusters as a function of the
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Figure 6.2.: Station 23: cumulative distribution of the minimum mean squared
error (MSE) across all three channels per event cluster. Only shallow-triggered
events are included. Clusters 1, 4, 5, and 7 are identified as non-wind clusters.
Cluster −1 contains all unclustered events, which consist of both wind and non-
wind events. Cluster 5 is mostly thermal noise and has only a few events in the
shown loss interval.

minimum MSE loss is shown in Figure 6.2. Overall the wind clusters (0, 2, 3, 6,
8, 9, 10, 11, 12, 13, 14) show a lower loss than the non-wind clusters (1, 4, 5,
7). The CDFs of some clusters are very jagged because they contain only a few
events in the test data set. For cluster 5, the thermal noise cluster, only a small
fraction of all events are contained in the shown loss interval. Among the wind
clusters, two groups are emerging in the CDF: on the one hand clusters 6, 8, 9,
10, 12, and 14 with the lowest loss and on the other hand clusters 0, 2, 3, 11, and
13 with a slightly higher loss. Although the two day-night variation clusters, 1
and 7, appear at a higher loss than the wind clusters, there is considerable overlap
with some wind clusters. The CW cluster (4) in contrast, is more separated from
the wind clusters since wind events are impulsive and CW events are usually not.
Cluster −1, the unclustered events, contains both wind and non-wind events and
thus some cluster −1 events appear at lower loss values. However, cluster −1 may
contain wind events with a high loss, which do not share similarities with other
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wind clusters.

All in all, these results deviate from the ideal separation of wind and non-wind
clusters without any overlap. In particular clusters 0, 2, 3, 11, and 13 show a
considerable overlap with non-wind clusters. As clusters 0, 2, and 3 contain only a
few events, separation is expected to improve if more data is available for training.
Furthermore, some wind clusters may contain a few non-wind events and vice
versa, resulting in more overlap between wind and non-wind clusters.

Apart from the overlap, it is in principle possible to discriminate wind from non-
wind events, whereby the overlap varies from cluster to cluster and is expected to
decrease if more training data is available. Due to the overlap, a low threshold
of L = 5 on the loss is required, if e.g. a very pure set of wind events without
non-wind backgrounds is desired for analysis.

An illustration of how events with high (> 10) and low (< 2) loss may look is
shown in subsection A.4.2 for example events of the test data set. The left part
of the plots shows the original spectrogram of the waveform of an event that is
then given as input to the discriminator. The output of the discriminator is shown
in the middle of the plots and the absolute of the difference between input and
output is shown on the right.

In Figure A.82, one can see that the reconstruction for the example event with
high loss still shows the characteristics of the input. However, multiple small
deviations between input and output, including contributions from thermal noise
due to the lower SNR compared to the example event with lower loss, still result
in a high loss.

For cluster 12, the plots in Figure A.83 show a low loss example event with
very accurate reconstruction and a high loss event, where the reconstruction is not
successful. Interestingly, the high loss event appears to be of very similar shape
until ∼ 590ns, where a second signal appears, which is cut off at the end. This
might be a rare variation of a cluster 12 event or even a rare superposition of two
signals, which the discriminator is apparently not familiar with. Another example
of a potential variation of an event within a cluster is depicted in Figure A.85 for
cluster 14. Here, both the low and the high loss event show a blob at ∼ 200MHz
followed by a weaker blob at ∼ 100MHz. However, for the high loss event, there
appears to be an additional structure around the ∼ 200MHz blob, resulting in a
high loss.

Apart from smaller variations and contributions by thermal noise, there are
also cases, where there are huge differences between events inside a cluster. An
example of this is shown in Figure A.84, where the high-loss event shows a much
more complex structure than the low-loss event. Whether both events are of the
same class or one of them is an impurity of the cluster is not known.
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Although these example events do not necessarily represent their respective clus-
ter, they indicate that small variations in the spectrogram can cause a huge increase
in reconstruction loss. Therefore, more data is necessary to cover more of these
potential variations.

6.5.3. Evaluation of cosmic ray simulations

As mentioned earlier, the upward-facing LPDAs can indirectly measure cosmic
rays via radio emission of the particle shower created by the interaction with the
atmosphere. For an optimistic scenario, approximately ∼ 1 cosmic rays per sta-
tion per day [9, 42] are expected, depending on the trigger. Hence, finding cosmic
ray signals among the many backgrounds in the data is a difficult task. One way
to search for cosmic rays in the bulk of available data is to prepare a cosmic ray
template waveform from simulations and then perform a template search by ana-
lyzing the correlation of event waveforms with the template [43]. If the simulations
are realistic enough, real cosmic ray events should show a higher correlation score
compared to background events. However, impulsive signals such as wind events
sometimes reach a relatively high correlation score as well, complicating the cosmic
ray search. For such a case, a wind event discriminator can be employed to apply
an analysis cut to reduce interference of wind events with the analysis. Without
such a wind discriminator, one would have to reject all time intervals with high
wind speed, reducing observation time. Furthermore, event rates sometimes stay
high for some time even after the wind speed decreases to lower levels (“afterglow”
effect observed in section 5.2), complicating such a wind speed cut.

To create an analysis cut using the wind event discriminator, one must choose
a loss threshold depending on the desired behavior of the cut. For some cosmic
ray analyses, one may choose a threshold, where only a small fraction, e.g. 1%, of
all cosmic rays are falsely classified as wind events (false positives). On the other
hand, for some analyses, the fraction of wind events correctly classified as wind
(true positives) should be high, e.g. 80%, for an analysis cut to provide a signif-
icant benefit. As the classifier is not perfect, there is always a trade-off between
true and false positives and hence there is no universally correct loss threshold.

To pick a threshold, the discriminator must first be tested on cosmic ray events.
However, cosmic rays in the energy range targeted by RNO-G are rare and only a
few candidate events are found. Therefore, cosmic ray air shower simulations are
used instead. These simulations are created for the RNO-G Collaboration using
CORSIKA [44] for the shower simulation and CoREAS [45] for the simulation of
radio emission, whereby energy and zenith angle of incoming cosmic rays are var-
ied. The zenith angle ranges from 5 to 85 in steps of 0.5 and the energy ranges
from 1016 eV to 1018.5 eV, where the exponent is increased in steps of 0.5. Since
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Figure 6.3.: Cumulative distributions of the minimum loss of full test data (from
all wind clusters) of station 23 and cosmic ray simulations for a 10σ trigger. A
two out of three channels SNR ≥ 5 cut is applied to the data. Two cosmic ray
candidate events (Armstrong and Aldrin) are marked by vertical lines. The test
data is weighted according to the appearance of clusters in station 23 and the
cosmic ray simulations are weighted according to the expected cosmic ray flux per
day. The loss is calculated by taking the minimum MSE across all three channels.

Earth’s magnetic field is almost vertical (≈ 0 zenith) at Summit Station, the im-
pact of the azimuth angle is assumed to be negligible [42]. Therefore, the azimuth
is kept constant for all simulations. For the cosmic ray waveform simulations, a
detector array of all 35 stations is simulated. Each simulated station is modeled ac-
cording to a real RNO-G station, including antenna and hardware response. Per
energy-zenith configuration, the simulation is repeated multiple times, whereby
the detector array is rotated randomly to cover multiple signal arrival directions
and antenna sensitivities. A two out of three channel envelope coincidence trigger
is used for the simulations with a trigger threshold of 10σ, where σ denotes the
RMS of simulated noise after a 80MHz − 180MHz bandpass filter. In total, 1858
triggered cosmic ray simulation events are available for this analysis.

In Figure 6.3, CDFs of the minimum loss of cosmic ray simulations and combined
station 23 test data of all wind clusters are shown. The loss of two cosmic ray
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candidate events is shown as well, where Armstrong denotes (station, run, ID)
= (23, 1091, 1718) and Aldrin denotes (23, 793, 748). Since a two out of three
SNR≥ 5 cut is applied to the test data, the same cut is applied to the cosmic ray
simulation waveforms.

For the raw cosmic ray simulation data sets, the energies and zenith angles are
not represented as expected from their physically expected distributions. Hence,
some energies and zenith angles are over- or underrepresented in the data set.
Therefore, a weighting factor is computed per simulation sample according to
their energy and zenith angle and how often each configuration triggers. For
this purpose, the predicted cosmic ray rate per day per energy and zenith bin is
calculated by Jakob Henrichs from the cosmic ray flux and the detector’s simulated
effective area for a specific trigger threshold. Here, the Auger 2019 cosmic ray flux
[46] is used and the effective area is simulated by Lilly Pyras. Then, the number
of triggered simulations per energy-zenith bin is determined, whereby a simulation
configuration that does not fall into any bin is assigned a weighting factor of zero.
The final weighting factor per energy-zenith bin is given by the expected cosmic
ray rate divided by the number of triggered events in that bin. The code used to
calculate the weighting is adapted from code by Jakob Henrichs.

The combined test data includes the individual test data sets of all clusters.
However, due to the undersampling method, the test data sets do not represent
the true occurrence of clusters in station 23 during the investigated time period of
2 months. Therefore, each event is assigned a weight, such that the relative cluster
sizes within the test data set are representative of the relative cluster sizes within
the full data set, which is composed of training, validation, and test data.

As can be seen in the plot, test data and cosmic ray simulations are separated,
so that a high fraction of test data can be filtered out without touching the cosmic
ray simulations. The candidate events are positioned on the ends of the loss dis-
tribution of the cosmic ray simulations with Armstrong being in the lowest 20%
and Aldrin in the highest 5% of the loss distribution.

In Table 6.1, various loss thresholds L and corresponding fractions of test data
and cosmic ray simulations with loss ≤ L are shown. Events with loss ≤ L are
classified as wind. One can observe that the CDF of the test data initially rises very
fast and allows high fractions of test data to be correctly classified as wind, while
only small fractions of the cosmic ray simulations are falsely classified as wind.
However, further increasing the threshold to increase the fraction of test data
from e.g. 95% to 99% increases the fraction of falsely classified 10σ cosmic ray
simulations from 0.906% to 13.9%. Thus, for a cosmic ray analysis, this suggests
that there is almost no drawback in cutting 95% of the test data, but the last few
percent can cost a high fraction of potential cosmic ray events. Looking back at
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loss threshold L % test data ≤ L % 10σ CR ≤ L

2.16 80.1 0.008
4.37 90.0 0.265
7.15 95.0 0.906
7.48 95.3 1.00
15.3 99.0 13.9

Table 6.1.: Thresholds on the MSE loss and corresponding fractions (in percent)
of test data and cosmic ray (CR) simulations that are below or equal to the thresh-
old i.e. classified as wind. The simulations are produced for a 10σ trigger.

the loss of individual clusters (see Figure 6.2), one can conclude that this behavior
is caused by individual wind clusters that feature a higher loss than others. The
separation between test data and cosmic ray simulations is expected to improve
by using more training data. However, it should be pointed out that the test data
does not necessarily represent all wind events, since cluster −1, which contains
wind and non-wind events, is not used for training, validation, and testing. Hence,
there may be wind events in cluster −1 with a high loss, which would decrease
the fraction of wind events equal or below a loss threshold. Thus, reducing the
number of unclustered wind events is important for future clusterings.

6.5.4. Investigation of other stations

Now, the discriminator is tested on events of other stations. Firstly, station 23 test
data is compared to the event clusters found for stations 13 and 24 in Figure 6.4
and Figure 6.5 for two different loss intervals. The investigated time interval is the
same that is used for the event clustering.

It is immediately visible that for both stations, the wind clusters (station 13: 0,
1, 2, 3, 4; station 24: 1, 2, 3, 4) are strongly separated from the non-wind clusters.
However, this is not surprising since the wind clusters are the only impulsive event
classes found in both stations and the non-wind clusters consist solely of CW and
thermal noise. Comparing the wind clusters of stations 13 and 24 to the combined
test data of station 23, one can see that, except for cluster 3 of station 24, all wind
clusters of both stations have much higher loss than the test data of station 23.
For further comparison, the table of loss thresholds L and corresponding fractions
of station 23 test wind data and cosmic ray simulations ≤ L (see Table 6.1) is ex-
tended by the fraction of wind events of station 13 and 24 equal or below different
loss thresholds (see Table 6.2). Since the cosmic ray simulations are made for the
full planned RNO-G station array instead of a particular station, it is possible to
compare the cosmic ray simulations to stations 13 and 24 as well. Compared to
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Figure 6.4.: CDF of the minimum mean squared error (MSE) loss per cluster
found for station 13 as well as the combined loss of test data of all station 23 wind
clusters. The loss is calculated by taking the minimum of the MSE across all three
channels. Cluster −1 contains all unclustered events and clusters 0, 1, 2, 3, and 4
are identified as wind clusters.
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Figure 6.5.: CDF of the minimum mean squared error (MSE) loss per cluster
found for station 24 as well as the combined loss of test data of all station 23 wind
clusters. The loss is calculated by taking the minimum of the MSE across all three
channels. Cluster −1 contains all unclustered events and clusters 1, 2, 3, and 4
are identified as wind clusters.
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station 23 station 13 station 24 CR simulations
L % test data ≤ L % wind ≤ L % wind ≤ L % 10σ CR ≤ L

2.16 80.1 0.00 7.89 0.008
4.37 90.0 0.716 30.4 0.265
7.15 95.0 7.40 52.0 0.906
7.48 95.3 8.59 53.7 1.00
15.3 99.0 51.4 93.3 13.9

Table 6.2.: Thresholds L on the MSE loss and corresponding fractions (in percent)
of station 23 test wind data, station 13 and 24 wind events, and cosmic ray (CR)
simulations that are below or equal the threshold i.e. classified as wind. The
simulations are produced for a 10σ trigger.

station 23, the fractions of wind events ≤ L are much lower for stations 13 and 24.
This indicates that there are significant differences between some wind clusters of
different stations, as suspected from the comparison of mean spectra in chapter 5.
However, wind events of station 24 have an overall lower loss than wind events of
station 13, so there might be more similarities between wind events of stations 23
and 24 than between stations 13 and 23.

Although no event clustering is done for stations 11, 12, 21, and 22, it is still
possible to qualitatively compare those stations by examining the loss as a function
of wind speed in a 2D histogram. The plots can be found in subsection A.4.3 in
the appendix. Since force-triggered events are mostly thermal noise, only shallow-
triggered events are shown in the plots. Note that all stations are evaluated on
the discriminator that is trained exclusively on wind events of station 23. The
plots show the raw distribution without any weighting or data-normalization. For
stations 12, 13, 23, and 24, a blob-like structure at high loss and lower wind speeds
can be observed, which contains mostly thermal noise events. Since thermal noise
is independent of wind speed, the blob matches the distribution of wind speed in
the investigated time period of two months, which is shown in Figure 5.7. The
shape and position of this structure are, as one would expect, similar across the
stations it occurs, since thermal noise should not be station-dependent. For the
remaining stations, only a few events occur at this position. This is possibly due
to the trigger being tuned in such a way that only a few thermal noise events sat-
isfy the trigger condition of the shallow trigger. Additionally to the thermal noise
blob, some stations show a second blob at lower loss and higher wind speeds. For
stations 13 and 24, this is expected since wind events make up almost all impul-
sive background events in these two stations. Nevertheless, station 23 is the only
station with a high fraction of events in the lowest loss region, indicating again
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that there are differences between wind events of different stations. Whether these
differences stem from different production processes, different arrival directions, or
differences in signal processing of each station is not known.

All in all, these results suggest that, at least as long as the processes and ori-
gins of wind events are not known and understood, per-station data selection and
training are necessary to reject wind events for all stations.
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outlook

In this thesis, wind events, a background class appearing during time periods of
high wind speed, are investigated and identified for RNO-G. Firstly, clusters of
wind events are identified and analyzed for several stations. After that, a neural
network is trained to discriminate between wind events and non-wind events.

Since other backgrounds are present in the data and the physics of wind events is
still unknown, a machine learning method (inspired by [39]) is used to first group
similar events into clusters and then identify wind clusters. For this purpose,
a variational autoencoder (VAE) model is trained on shallow-triggered events of
the RNO-G station, for which clustering is desired. The VAE learns to represent
events in a regularized low-dimensional latent feature space (bottleneck). Events
are then clustered in this low-dimensional space using the clustering algorithm
HDBSCAN. This procedure is done for stations 13, 23, and 24 for a time period of
two months. However, the whole clustering process is not yet fully automated and
requires a human to determine suitable HDBSCAN parameters. The data used in
this thesis is only a small fraction (of the order of 5%) of the total data recorded
at Greenland due to satellite transfer speed limitations. Found clusters are then
analyzed, primarily with respect to wind speed, to identify wind clusters.

Multiple wind clusters are found for the three investigated stations, whereby the
number of events per cluster (cluster size) as well as the mean frequency spectra
per cluster and the behavior of the cluster size as a function of the wind speed
vary strongly across wind clusters within a station and across different stations.
Additionally, the number of found wind clusters varies across different stations as
well. Moreover, some wind clusters appear almost exclusively during a single high-
wind day, while others appear during multiple high-wind periods. These differences
in wind clusters within and across stations indicate that there could be different
processes responsible for the production of wind event signals. Apart from wind
speed, the behavior of clusters with respect to other weather quantities such as
temperature, relative humidity, or wind direction is investigated as well. However,
no conclusions can be drawn from the data about whether or not these quantities
influence the production of certain wind event classes. The reason is that the
investigated time period is rather short and it is not possible to disentangle wind
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speed from other investigated quantities.
Furthermore, it is observable that for some wind clusters, the signal in a specific

channel is often weaker than in the remaining two channels, which indicates that
there is a preferred arrival direction for some clusters. This could mean that wind
events of these clusters are produced at man-made structures, such as a station’s
solar panels. However, a detailed direction reconstruction of the events of found
wind clusters is necessary to support this hypothesis.

Apart from wind event clusters and other known backgrounds, a yet unknown
background class is found for station 23. This background class appears daily and
only during daytime, but starts to disappear in September of 2022. This event
class may stem from the station’s solar panels, since a similar behavior, which is
attributed to battery charging, is observed for other stations as well. Moreover,
human activity during daytime could also be responsible for this background.

Since some wind clusters appear almost exclusively during a single high-wind
day in the investigated time period of 2 months, it is suspected that the found wind
clusters do not represent the full spectrum of wind events appearing over several
years. Hence, more observation time is required to further study wind events.
However, using more data may require training of a new VAE and another tuning
of the HDBSCAN parameters, especially if new event classes arise. As mentioned
before, the clustering process is not yet completely automated and therefore tuning
the parameters by hand may become very time-consuming, in particular for more
stations and significantly more data, which increases computation time. Thus,
finding a way to make the clustering process more or even fully automatable is an
important goal for future work.

Overall, the insights gained in this thesis do not suffice to understand how, where
and under which conditions wind events are produced. Therefore, controlled ex-
periments using e.g. a wind tunnel are required to understand the physics behind
wind events in the future.

In the last part of this thesis, a method to discriminate between wind events
and non-wind events is developed to reduce a potential interference of wind events
with other analyses. Here, the anomaly detection technique is chosen, where an-
other VAE is trained exclusively on wind events of station 23. Events, that are
of the same class as the ones the VAE is trained on, should then show a lower
reconstruction loss than events of classes, which are unknown to the VAE. By
choosing a threshold on the loss, one obtains a binary classifier, where events with
a loss below or equal to the threshold are classified as wind. This threshold can be
chosen for each individual analysis. For later evaluation of wind clusters of station
23, only the test data sets are used. However, only ≈ 5000 and ≈ 1700 unique
events are available for training and validation.

A comparison of the CDFs of the loss of individual clusters of station 23 shows
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that the majority of non-wind events indeed have a higher loss than the majority of
wind events. For some wind clusters, however, there is a considerable overlap with
some non-wind clusters. Therefore, if a very pure set of wind events is desired, a
low loss threshold must be chosen. This overlap is expected to decrease if more
training data is available.

An example of a physics analysis that uses the shallow part of an RNO-G sta-
tion is the search for cosmic ray events. However, wind events can interfere with
this analysis, making the search for cosmic rays during a high-wind period very
difficult. Therefore, the loss of the combined test data of wind events of station 23
is compared to the loss of cosmic ray simulations to investigate if a wind discrim-
inator can provide a benefit for a cosmic ray search. Indeed, a strong separation
of test data from cosmic ray simulations is observed. It is for example possible to
correctly classify ≈ 95% of the test data while falsely classifying only ≈ 1% of
the cosmic ray simulations. This indicates that a wind discriminator can indeed
be very helpful for a cosmic ray search. However, the test data might not neces-
sarily represent all wind events found in the investigated time period, since the
unclustered events (cluster −1) contain a considerable fraction of wind-correlated
events as well. Since cluster −1 is not used for training, validation, and testing,
some of the unclustered wind events may have a high loss. This might reduce
the fraction of all wind events equal to or below the threshold and thus decrease
the effectiveness of the discriminator. Therefore, it is important to find a way to
reduce the number of wind-correlated events in cluster −1 in the future. A first
step in this direction could be to further optimize the parameters of the clustering
algorithm HDBSCAN. Additionally, one could try to find clusters inside the un-
clustered events by running the clustering algorithm separately on the unclustered
events.

Finally, the wind discriminator, which is trained exclusively on wind events
of station 23, is evaluated on other stations as well. Since event clustering is
performed on stations 13 and 24, wind clusters of stations 13, 23, and 24 can
be compared directly. The comparison of clusters of stations 13 and 24 with the
combined test data of station 23 shows that the wind clusters of stations 13 and
24 have mostly a higher loss than the wind clusters of station 23. This means
that the differences in wind events of different stations are so large that the VAE
is not able to accurately reconstruct wind events of other stations. A comparison
of the loss as a function of the wind speed for all deployed stations comes to the
same conclusion, as only station 23 shows a considerable fraction of events at
very low loss and high wind speeds. Why wind events of different stations are
so different is not known. Hence, as long as the physics of wind events are not
understood, a separate wind discriminator is required for each station. As a result,
individual event clustering and identification of wind clusters have to be performed
per station to obtain training data. Since the clustering process is not yet fully
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automated, this task can become very time-consuming, considering that in total 35
stations are planned for RNO-G. Therefore, as pointed out before, finding a way
to fully automate the clustering process would be an important subject of future
work. Additionally, it would be useful to find a way to prevent the production
of wind events directly in the field. If, for example, wind events originate from
metal structures, e.g. parts of the solar panels of a station, one could wrap such
structures in e.g. a non-metal foil to prevent contact between metal and wind.

Although it is overall possible to separate high fractions of wind events from
non-wind events, the results are not perfect and multiple aspects of the method
could be improved. For example, a different set of hyperparameters could provide
more separation and less overlap between wind and non-wind events. Additionally,
different discrimination metrics instead of the mean squared error might lead to
further improvements. It might also be useful to investigate different metrics
for different analyses. Apart from metrics that incorporate the reconstruction
error, one could consider metrics that also take the latent space distribution into
account. As pointed out before, only a small fraction of the recorded data is used
and thus the use of more data for training is expected to improve the performance
of the discriminator significantly. Moreover, a different VAE architecture and/or a
different data preparation method might increase discrimination performance. One
could, for example, try to use the time series (waveform) instead of the spectrogram
of an event and use a VAE built from LSTM [47] layers, which have a memory
and are therefore suitable for time series inputs. In this case, it might also be
useful to investigate denoising techniques to reduce thermal noise in the waveforms.
Furthermore, the sampling rate of the waveforms is planned to be reduced in the
future, so that the waveforms become longer. This, in combination with further
adjustments to e.g. the cable delays, could allow to see the shallow-triggered signals
in the deeper antennas as well, which is currently not possible. Then, one could
use more antennas for the wind discrimination training, which might allow a better
distinction between wind and non-wind events. In addition to changes made to
the waveforms, the number of upward-facing antennas might be changed to four
in the future. This would increase the number of upward-facing LPDAs by one
and thus more waveforms i.e. more data could be available per event.
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A. Appendix

A.1. Trigger rates of stations 12, 23, and 24
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Figure A.1.: Station 23: shallow (radiant) trigger rates between 2022-06-25 and
2022-10-01. Time is given in UTC.
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Figure A.2.: Station 23: force trigger rates between 2022-06-25 and 2022-10-01.
Time is given in UTC.
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Figure A.3.: Shallow (radiant) trigger rates (in counts per 120 minutes, logarith-
mic scale) and the mean wind speed over 120 minutes for stations 13 (top) and 24
(bottom). Time intervals where the mean wind speed is greater or equal to 10m/s
(marked by a horizontal line) are shaded in gray. Time is given in UTC.
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A.2. Event clustering using a variational
autoencoder

A.2.1. Model architecture

Layer Name Output shape Input

InputLayer input_1 (128, 128, 3) -
GaussianNoise gaussian_noise (128, 128, 3) input_1

Conv2D + LReLU conv_1_1 (128, 128, 16) gaussian_noise
Conv2D + LReLU conv_1_2 (64, 64, 16) conv_1_1

Dropout dropout_1 (64, 64, 16) conv_1_2
Conv2D + LReLU conv_2_1 (64, 64, 32) dropout_1
Conv2D + LReLU conv_2_2 (32, 32, 32) conv_2_1

Dropout dropout_2 (32, 32, 32) conv_2_2
Conv2D + LReLU conv_3_1 (32, 32, 64) dropout_2
Conv2D + LReLU conv_3_2 (16, 16, 64) conv_3_1

Dropout dropout_3 (16, 16, 64) conv_3_2
Conv2D + LReLU conv_4_1 (16, 16, 128) dropout_3
Conv2D + LReLU conv_4_2 (8, 8, 128) conv_4_1

Dropout dropout_4 (8, 8, 128) conv_4_2
Conv2D + LReLU conv_5_1 (8, 8, 256) dropout_4
Conv2D + LReLU conv_5_2 (4, 4, 256) conv_5_1

Flatten flatten (4096) conv_5_2
Dense + LReLU dense_1 (64) flatten
Dense + Linear z_mean (9) dense_1
Dense + Linear z_log_var (9) dense_1

Sampling z (9) z_mean +
z_log_var

Table A.1.: Structure of the encoder of the VAE used for event clustering. The
first column specifies the respective layer and its corresponding activation func-
tion if the layer has one. LReLU denotes the LeakyReLU activation. The sam-
pling layer calculates the latent variable z using the outputs of the z_mean and
z_log_var layers and a random number generator according to the reparame-
terization trick (see Equation 4.27). For a 2D convolutional layer, the first two
dimensions of the output shape denote the spatial dimensions and the last dimen-
sion denotes the number of channels/filters.
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Layer Name Output shape Input

InputLayer input_2 (9) z
Dense + LReLU dense_2 (4096) input_2

Reshape reshape (4, 4, 256) dense_2
Dropout dropout_5 (4, 4, 256) reshape

Conv2DTr + LReLU convtr_1_1 (4, 4, 256) dropout_5
Conv2DTr + LReLU convtr_1_2 (8, 8, 256) convtr_1_1

Dropout dropout_6 (8, 8, 256) convtr_1_2
Conv2DTr + LReLU convtr_2_1 (8, 8, 128) dropout_6
Conv2DTr + LReLU convtr_2_2 (16, 16, 128) convtr_2_1

Dropout dropout_7 (16, 16, 128) convtr_2_2
Conv2DTr + LReLU convtr_3_1 (16, 16, 64) dropout_7
Conv2DTr + LReLU convtr_3_2 (32, 32, 64) convtr_3_1

Dropout dropout_8 (32, 32, 64) convtr_3_2
Conv2DTr + LReLU convtr_4_1 (32, 32, 32) dropout_8
Conv2DTr + LReLU convtr_4_2 (64, 64, 32) convtr_4_1

Dropout dropout_9 (64, 64, 32) convtr_4_2
Conv2DTr + LReLU convtr_5_1 (64, 64, 16) dropout_9
Conv2DTr + LReLU convtr_5_2 (128, 128, 16) convtr_5_1

Conv2DTr + max(ReLU, 1) output (128, 128, 3) convtr_5_2

Table A.2.: Structure of the decoder of the VAE- used for event clustering. The
first column specifies the respective layer and its corresponding activation function
if the layer has one. LReLU denotes the LeakyReLU activation and Conv2DTr
means 2D transposed convolutional layer. The activation function of the output
layer is a ReLU limited to 1. For a 2D convolutional layer, the first two dimensions
of the output shape denote the spatial dimensions and the last dimension denotes
the number of channels/filters.
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A.2.2. Clustering results: station 23

Figure A.4.: 2D histogram to visualize the density of the UMAP representation
of latent vectors of station 23 shallow- and force-triggered events.

parameter value

min_samples 1
min_cluster_size 50

cluster_selection_method ‘leaf’
cluster_selection_epsilon 0.615

leaf_size 1

Table A.3.: Non-default HDBSCAN parameters used for the final clustering for
station 23.
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A.2.2.1. CDF of cluster size as a function of different weather quantities
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Figure A.5.: Cumulative distribution of the cluster size as a function of the hour
of the day for station 23.
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Figure A.6.: Cumulative distribution (data-normalized) of the cluster size as a
function of the wind direction for station 23.
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Figure A.7.: Cumulative distribution (data-normalized) of the cluster size as a
function of the temperature for station 23.
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Figure A.8.: Cumulative distribution (data-normalized) of the cluster size as a
function of the relative humidity for station 23.
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Figure A.9.: Cumulative distribution (data-normalized) of the cluster size as a
function of the barometric pressure for station 23.

A.2.2.2. Mean frequency spectra per cluster
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Figure A.10.: Mean frequency spectra per channel for a) cluster −1 and b) cluster
0 (station 23).
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Figure A.11.: Mean frequency spectra per channel for a) cluster 1 and b) cluster
2 (station 23).
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Figure A.12.: Mean frequency spectra per channel for a) cluster 3 and b) cluster
4 (station 23).
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Figure A.13.: Mean frequency spectra per channel for a) cluster 5 and b) cluster
6 (station 23).
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Figure A.14.: Mean frequency spectra per channel for a) cluster 7 and b) cluster
8 (station 23).
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Figure A.15.: Mean frequency spectra per channel for a) cluster 9 and b) cluster
10 (station 23).
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Figure A.16.: Mean frequency spectra per channel for a) cluster 11 and b) cluster
12 (station 23).
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Figure A.17.: Mean frequency spectra per channel for a) cluster 13 and b) cluster
14 (station 23).
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A.2.2.3. Example waveforms and spectra per cluster
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Figure A.18.: Example waveforms and frequency spectra for cluster -1 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.19.: Example waveforms and frequency spectra for cluster 0 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.

96



A. Appendix

400 500 600
time [ns]

0.05

0.00

0.05

0.10

am
pl

itu
de

 [a
.u

.]

channel 13

400 500 600
time [ns]

channel 16

400 500 600
time [ns]

channel 19

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

0

2

4

am
pl

itu
de

 [a
.u

.]

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

station 23 | run 537 | ID 1110 | cluster 1 | wind speed 4.8 m/s

(a)

400 500 600
time [ns]

0.05

0.00

0.05

am
pl

itu
de

 [a
.u

.]

channel 13

400 500 600
time [ns]

channel 16

400 500 600
time [ns]

channel 19

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

0

2

4

am
pl

itu
de

 [a
.u

.]

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

0.0 0.2 0.4 0.6 0.8
frequency [GHz]

station 23 | run 508 | ID 106 | cluster 1 | wind speed 5.1 m/s

(b)

Figure A.20.: Example waveforms and frequency spectra for cluster 1 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.21.: Example waveforms and frequency spectra for cluster 2 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.22.: Example waveforms and frequency spectra for cluster 3 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.23.: Example waveforms and frequency spectra for cluster 4 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.24.: Example waveforms and frequency spectra for cluster 5 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.25.: Example waveforms and frequency spectra for cluster 6 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.26.: Example waveforms and frequency spectra for cluster 7 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.27.: Example waveforms and frequency spectra for cluster 8 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.28.: Example waveforms and frequency spectra for cluster 9 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.29.: Example waveforms and frequency spectra for cluster 10 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.30.: Example waveforms and frequency spectra for cluster 11 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.31.: Example waveforms and frequency spectra for cluster 12 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.32.: Example waveforms and frequency spectra for cluster 13 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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Figure A.33.: Example waveforms and frequency spectra for cluster 14 (station
23). For better readability, only the second half of the waveforms are shown. The
corresponding wind speed is shown in the title of the respective plot.
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A.2.2.4. Mean frequency spectra per cluster for different wind speed
intervals
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Figure A.34.: Mean frequency spectra per channel and wind speed interval for
cluster -1 (station 23).
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Figure A.35.: Mean frequency spectra per channel and wind speed interval for
cluster 0 (station 23).
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Figure A.36.: Mean frequency spectra per channel and wind speed interval for
cluster 1 (station 23).
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Figure A.37.: Mean frequency spectra per channel and wind speed interval for
cluster 2 (station 23).
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Figure A.38.: Mean frequency spectra per channel and wind speed interval for
cluster 3 (station 23).
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Figure A.39.: Mean frequency spectra per channel and wind speed interval for
cluster 4 (station 23).
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Figure A.40.: Mean frequency spectra per channel and wind speed interval for
cluster 5 (station 23).
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Figure A.41.: Mean frequency spectra per channel and wind speed interval for
cluster 6 (station 23).
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Figure A.42.: Mean frequency spectra per channel and wind speed interval for
cluster 7 (station 23).
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Figure A.43.: Mean frequency spectra per channel and wind speed interval for
cluster 8 (station 23).
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Figure A.44.: Mean frequency spectra per channel and wind speed interval for
cluster 9 (station 23).
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Figure A.45.: Mean frequency spectra per channel and wind speed interval for
cluster 10 (station 23).
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Figure A.46.: Mean frequency spectra per channel and wind speed interval for
cluster 11 (station 23).
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Figure A.47.: Mean frequency spectra per channel and wind speed interval for
cluster 12 (station 23).
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Figure A.48.: Mean frequency spectra per channel and wind speed interval for
cluster 13 (station 23).
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Figure A.49.: Mean frequency spectra per channel and wind speed interval for
cluster 14 (station 23).
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A.2.2.5. Wind speed over the maximum amplitude of the absolute of the
waveform per cluster

Figure A.50.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster -1 (station 23).

Figure A.51.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 0 (station 23).
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Figure A.52.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 1 (station 23).

Figure A.53.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 2 (station 23).

Figure A.54.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 3 (station 23).
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Figure A.55.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 4 (station 23).

Figure A.56.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 5 (station 23).

Figure A.57.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 6 (station 23).
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Figure A.58.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 7 (station 23).

Figure A.59.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 8 (station 23).

Figure A.60.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 9 (station 23).
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Figure A.61.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 10 (station 23).

Figure A.62.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 11 (station 23).

Figure A.63.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 12 (station 23).
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Figure A.64.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 13 (station 23).

Figure A.65.: 2D histogram of the wind speed over the maximum amplitude of
the absolute of the waveform for cluster 14 (station 23).

A.2.3. Clustering results: station 13

parameter value

min_samples 1
min_cluster_size 30

cluster_selection_method ‘leaf’
cluster_selection_epsilon 0.495

leaf_size 1

Table A.4.: Non-default HDBSCAN parameters used for the final clustering for
station 13.

124



A. Appendix

Figure A.66.: UMAP representation of the latent vectors of station 13 shallow-
and force-triggered events with the corresponding wind speed encoded by color
(top) and overlayed with clusters found by HDBSCAN (bottom). Cluster -1 de-
notes those events that are not assigned to any cluster.
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Figure A.67.: Station 13: CDF of the cluster size as a function of the wind speed
(data-normalized). The total number of events per cluster is shown in the legend.
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Figure A.68.: Station 13: event rate per cluster found by HDBSCAN as well as
wind speed. Time intervals with wind speed ≥ 10m/s are shaded in gray. Time
is given in UTC.
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A.2.3.1. Mean frequency spectra per cluster
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Figure A.69.: Mean frequency spectra per channel for a) cluster −1 and b) cluster
0 (station 13).
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Figure A.70.: Mean frequency spectra per channel for a) cluster 1 and b) cluster
2 (station 13).
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Figure A.71.: Mean frequency spectra per channel for a) cluster 3 and b) cluster
4 (station 13).
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Figure A.72.: Mean frequency spectra per channel for a) cluster 5 and b) cluster
6 (station 13).
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Figure A.73.: Mean frequency spectra per channel for cluster 7 (station 13).

A.2.4. Clustering results: station 24

parameter value

min_samples 1
min_cluster_size 50

cluster_selection_method ‘leaf’
cluster_selection_epsilon 0.6

leaf_size 1

Table A.5.: Non-default HDBSCAN parameters used for the final clustering for
station 24.
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Figure A.74.: UMAP representation of the latent vectors of station 24 shallow-
and force-triggered events with the corresponding wind speed encoded by color
(top) and overlayed with clusters found by HDBSCAN (bottom). Cluster -1 de-
notes those events that are not assigned to any cluster.
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Figure A.75.: Station 24: CDF of the cluster size as a function of the wind speed
(data-normalized). The total number of events per cluster is shown in the legend.
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Figure A.76.: Station 24: event rate per cluster found by HDBSCAN as well
as the wind speed. Time intervals with wind speed ≥ 10m/s are shaded in gray.
Time is given in UTC.
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A.2.4.1. Mean frequency spectra per cluster
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Figure A.77.: Mean frequency spectra per channel for a) cluster −1 and b) cluster
0 (station 24).
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Figure A.78.: Mean frequency spectra per channel for a) cluster 1 and b) cluster
2 (station 24).
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Figure A.79.: Mean frequency spectra per channel for a) cluster 3 and b) cluster
4 (station 24).

A.3. Various weather quantities vs. wind speed

(a) Wind direction vs. wind speed (b) Temperature vs. wind speed

Figure A.80.: 2D histograms of a) the wind direction and b) the temperature as
a function of the wind speed. A wind direction of 0 ° represents true north.
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(a) Relative humidity vs. wind speed (b) Barometric pressure vs. wind speed

Figure A.81.: 2D histograms of a) the relative humidity and b) the barometric
pressure as a function of the wind speed.
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A.4. Wind event discrimination

A.4.1. Model architecture

Layer Name Output shape Input

InputLayer input_1 (128, 128, 1) -
GaussianNoise gaussian_noise (128, 128, 1) input_1

Conv2D + LReLU conv_1_1 (128, 128, 32) gaussian_noise
Conv2D + LReLU conv_1_2 (64, 64, 32) conv_1_1

Dropout dropout_1 (64, 64, 32) conv_1_2
Conv2D + LReLU conv_2_1 (64, 64, 64) dropout_1
Conv2D + LReLU conv_2_2 (32, 32, 64) conv_2_1

Dropout dropout_2 (32, 32, 64) conv_2_2
Conv2D + LReLU conv_3_1 (32, 32, 128) dropout_2
Conv2D + LReLU conv_3_2 (16, 16, 128) conv_3_1

Dropout dropout_3 (16, 16, 128) conv_3_2
Conv2D + LReLU conv_4_1 (16, 16, 256) dropout_3
Conv2D + LReLU conv_4_2 (8, 8, 256) conv_4_1

Flatten flatten (16384) conv_4_1
Dense + LReLU dense_1 (64) flatten
Dense + Linear z_mean (6) dense_1
Dense + Linear z_log_var (6) dense_1

Sampling z (6) z_mean +
z_log_var

Table A.6.: Structure of the encoder of the VAE used for wind event discrimi-
nation. The first column specifies the respective layer and its corresponding acti-
vation function if the layer has one. LReLU denotes the LeakyReLU activation.
The sampling layer calculates the latent variable z using the outputs of the z_mean
and z_log_var layers and a random number generator according to the reparam-
eterization trick (see Equation 4.27). For a 2D convolutional layer, the first two
dimensions of the output shape denote the spatial dimensions and the last dimen-
sion denotes the number of channels/filters.
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Layer Name Output shape Input

InputLayer input_2 (6) z
Dense + LReLU dense_2 (16384) input_2

Reshape reshape (8, 8, 256) dense_2
Dropout dropout_4 (8, 8, 256) reshape

Conv2DTr + LReLU convtr_1_1 (8, 8, 256) dropout_4
Conv2DTr + LReLU convtr_1_2 (16, 16, 256) convtr_1_1

Dropout dropout_5 (16, 16, 256) convtr_1_2
Conv2DTr + LReLU convtr_2_1 (16, 16, 128) dropout_5
Conv2DTr + LReLU convtr_2_2 (32, 32, 128) convtr_2_1

Dropout dropout_6 (32, 32, 128) convtr_2_2
Conv2DTr + LReLU convtr_3_1 (32, 32, 64) dropout_6
Conv2DTr + LReLU convtr_3_2 (64, 64, 64) convtr_3_1

Dropout dropout_7 (64, 64, 64) convtr_3_2
Conv2DTr + LReLU convtr_4_1 (64, 64, 32) dropout_7
Conv2DTr + LReLU convtr_4_2 (128, 128, 32) convtr_4_1

Conv2DTr + max(ReLU, 1) output (128, 128, 1) convtr_4_2

Table A.7.: Structure of the decoder of the VAE used for wind event discrimi-
nation. The first column specifies the respective layer and its corresponding ac-
tivation function if the layer has one. LReLU denotes the LeakyReLU activation
and Conv2DTr means 2D transposed convolutional layer. The activation function
of the output layer is a ReLU limited to 1. For a 2D convolutional layer, the first
two dimensions of the output shape denote the spatial dimensions and the last
dimension denotes the number of channels/filters.
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A.4.2. Example events with low and high loss

(a)

(b)

Figure A.82.: Example events of cluster 10 of station 23 with a) low and b) high
loss. From left to right: spectrogram of the waveform (prepared as input for the
variational autoencoder (VAE)), output reconstruction of the VAE, absolute of
the difference between input and output.
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(a)

(b)

Figure A.83.: Example events of cluster 12 of station 23 with a) low and b) high
loss. From left to right: spectrogram of the waveform (prepared as input for the
variational autoencoder (VAE)), output reconstruction of the VAE, absolute of
the difference between input and output.
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(a)

(b)

Figure A.84.: Example events of cluster 13 of station 23 with a) low and b) high
loss. From left to right: spectrogram of the waveform (prepared as input for the
variational autoencoder (VAE)), output reconstruction of the VAE, absolute of
the difference between input and output.
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(a)

(b)

Figure A.85.: Example events of cluster 14 of station 23 with a) low and b) high
loss. From left to right: spectrogram of the waveform (prepared as input for the
variational autoencoder (VAE)), output reconstruction of the VAE, absolute of
the difference between input and output.
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A.4.3. Loss as a function of wind speed per station

(a) (b)

Figure A.86.: 2D histograms of log10(loss) vs. wind speed of shallow-triggered
events for a) station 11 and b) station 12. The stations are evaluated on the
discriminator that is trained exclusively on wind events of station 23. The loss is
calculated by taking the minimum over all three channels.

(a) (b)

Figure A.87.: 2D histograms of log10(loss) vs. wind speed of shallow-triggered
events for a) station 13 and b) station 21. The stations are evaluated on the
discriminator that is trained exclusively on wind events of station 23. The loss is
calculated by taking the minimum over all three channels.
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(a) (b)

Figure A.88.: 2D histograms of log10(loss) vs. wind speed of shallow-triggered
events for a) station 22 and b) station 23. The stations are evaluated on the
discriminator that is trained exclusively on wind events of station 23. The loss is
calculated by taking the minimum over all three channels.

Figure A.89.: 2D histogram of log10(loss) vs. wind speed of shallow-triggered
events for station 24. The station is evaluated on the discriminator that is trained
exclusively on wind events of station 23. The loss is calculated by taking the
minimum over all three channels.
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