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Abstract

With the discovery of neutrino oscillations by Super-kamiokande and SNO it has
been shown that neutrinos have mass. This conflicts with the current formulation of
the Standard Model of particle physics, where neutrinos are assumed massless. This
makes neutrinos an excellent candidate to explore multiple topics in physics beyond
the Standard Model, like understanding neutrino oscillations, determining the neutrino
mass hierarchy, probing Lorentz invariance or measuring Quantum decoherence.
For the detection of neutrinos, the KM3NeT collaboration is currently building two
water Cherenkov telescopes named ORCA and ARCA. With a spacing of 10 m to 20 m
between its detection units KM3NeT/ORCA excels at the detection of atmospheric
neutrinos in the GeV range. Since KM3NeT/ORCA is still under construction, this
thesis uses data for only 6 of the planned 115 detection units.
All of the just mentioned use cases of atmospheric neutrinos require an accurate energy
reconstruction to give significant results. The best energy reconstructions in KM3NeT
can at the moment be achieved with Graph Neural Networks (GNN).
This thesis tests the effects and possible benefits of applying sample weights in the
training of GNNs. Therefore, three different options to calculate the weights are
evaluated. The best-found configuration is then compared to the likelihood-based
reconstruction algorithms JShower and JMuon, as well as a previous GNN energy
reconstruction by Daniel Guderian. The 3 test sample weight options are the ratio of
standard run-by-run simulations to additional single-run simulations by Lukas Hennig,
the ratio of physical to flat weights for interaction types, and the ratio of physical to
flat weights for the spectrum of energy and arrival direction.

iii





Contents

1 Introduction 1

2 Neutrino physics 3

2.1 Neutrinos as a part of the Standard Model . . . . . . . . . . . . . . . . 3

2.2 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Atmospheric neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Neutrino detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Cherenkov radiation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Event topologies . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 Neutrino notation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 KM3NeT 13

3.1 Detector design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Detector sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Background sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Deep Learning 19

4.1 Basics of artificial neural networks . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Artificial neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Dense layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Optimiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.3 Batch normalization . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.2 Graph convolutions . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Deep learning in KM3NeT . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 OrcaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Particle Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



Contents

5 Data preparation 33
5.1 Monte Carlo Data production . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Weighted training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Physical simulation weight . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Sample weight options . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Source datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Interaction types . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.3 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Implementation drawbacks . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.1 Dominated batches . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5.2 Reduced topology variance . . . . . . . . . . . . . . . . . . . . 42
5.5.3 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Manual hyperparameter optimisation 45
6.1 Network score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Event error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2 Network score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Estimate for network uncertainty . . . . . . . . . . . . . . . . . . . . . 49
6.3 Basic hyperparameter optimisation . . . . . . . . . . . . . . . . . . . . 51
6.4 Learning rate optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Sample weight testing 59
7.1 Sample weight tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1.2 Interaction types . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.3 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Dataset comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Standard networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3.1 Comparison with other reconstructions . . . . . . . . . . . . . . 70
7.3.2 2D energy histogram . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3.3 Energy correction . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3.4 Data/Monte Carlo ratio . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Summary and Outlook 79

A Event numbers 89

B OrcaNet tomls 91

C Relative fractional error for analysis 93

vi



Acronyms

adam adaptive moment estimation

ANTARES Astronomy with a Neutrino Telescope and Abyss environmental Research
project

ARCA Astroparticle Research with Cosmics in the Abyss

BAIKAL-GVD Baikal Gigaton Volume Detector

DG Daniel Guderian

DMCR Data/Monte Carlo ratio

DOM digital optical module

DU detection unit

elu exponential linear unit

GNN Graph Neural Network

KM3NeT Cubic Kilometre Neutrino Telescope

LE logarithmic error

LH Lukas Hennig

MEOC main electro-optical cable

MHPO manual hyperparameter optimisation

ORCA Oscillation Research with Cosmics in the Abyss

P-ONE Pacific Ocean Neutrino Experiment

PMT photomultiplier tube

PWS Physical weight share

relu rectified linear unit

RFE relative fractional error

selu scaled exponential linear unit

SGD stochastic gradient descent

TRIDENT The tRopIcal DEep-sea Neutrino Telescope

vii



1 Introduction

Neutrinos are fascinating particles, allowing for advances on multiple fronts in as-
troparticle physics. Generated in the most violent processes in the universe, cosmic
neutrinos improve on cosmic rays and gamma rays as very potent messenger particles
in astrophysics. As neutrinos are uncharged particles, they are, in contrast to cosmic
rays, not deflected by (inter-)galactic magnetic fields and point directly back to their
source. Gamma rays also do not suffer from a deflection but are easily absorbed by
matter like gas clouds and galaxies, resulting in a quite opaque view of the universe.
Since neutrinos only interact weakly, they traverse most matter without interacting.

The greatest problem in the research of neutrinos is given by their extremely small
cross-section. To illustrate this, one can look at the solar neutrino flux, interacting
with the human body. Even though about 700 billion solar neutrinos pass through
the tip of a finger each second, no effects on one’s general health can be observed
since almost no neutrinos interact. To still detect a significant amount of neutrinos,
enormous detector volumes are required. Furthermore, neutrinos can only be detected
indirectly based on the particle cascade produced by their rare interactions. The
detector used in this thesis is the water Cherenkov detector KM3NeT/ORCA6 located
on the floor of the Mediterranean Sea and operated by the KM3NeT collaboration.

Additionally, neutrinos have great potential to advance our understanding of particle
physics. Due the discovery of neutrino oscillations by Super-kamiokande and SNO it has
been shown that neutrinos have mass. As this conflicts with the current formulation of
the Standard Model of particle physics, where neutrinos are assumed massless, it makes
them an ideal candidate to probe our understanding of physics beyond the Standard
Model. Be it further constraining the factors contributing to neutrino oscillations,
determining the correct neutrino mass hierarchy, investigating CP-violations, or testing
concepts of Grand Unified Theory to combine gravity (General relativity) with the
other three fundamental forces of electromagnetism (Quantum electrodynamics), weak
(Electroweak theory) and strong (Quantum chromodynamics) force, by probing for
example Lorentz invariance or quantum decoherence.

For the multitude of these topics, an excellent energy reconstruction of the detected
particles is of considerable importance. This thesis will try to improve the performance
of the Graph Neural Network (GNN) based energy reconstruction in KM3NeT/ORCA6.
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1 Introduction

To do this different options of sample weights will be discussed, together with their
effects on the performance of the evaluated neural networks.

The thesis starts by explaining the relevant aspects of neutrino physics in chapter 2
followed by a discussion on KM3NeT in chapter 3. Next chapter 4 gives an introduction
to Machine learning, starting with the concept of artificial neurons, leading up to the
working principle of Graph Neural Networks. chapter 5 will then introduce the concept
of weighted training and explain the different options of sample weights. chapter 6 will
discuss the way networks are evaluated throughout the thesis and establish a basic
agreement with the previous work on GNNs in KM3Net. The main analysis will then
be presented in chapter 7. It is comprised of a variation of the sample weight options
and an in-depth analysis of networks trained on the best configuration found. At last
chapter 8 will conclude this thesis and give an outlook on what can and should be
investigated further.
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2 Neutrino physics

This chapter will give an overview of the relevant concepts regarding neutrinos in
physics by starting with the role of neutrinos in the Standard Model of particle physics
(SM), which is followed by an explanation of neutrino oscillations as well as the
production process of atmospheric neutrinos. The last section of this chapter will
discuss the detection principle utilised by water Cherenkov telescopes and the different
types of interactions neutrinos can undergo together with the shape of the respective
particle cascade.

2.1 Neutrinos as a part of the Standard Model

Figure 2.1: Overview over the Standard Model of particle physics. Shown are the
most basic particles of matter (Fermions), together with the force carrying bosons. The
faint brown lines indicate, with boson interacts with which fermion. The respective anti
particles of the fermions are not shown. From [1].
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2 Neutrino physics

Postulated by W. Pauli in 1930 in order to ensure the conservation of energy, mo-
mentum, and angular momentum in the double beta decay [2], evidence for its existence
has only been found in 1956 by F. Reines and C. Cowan with their discovery of the
electron anti-neutrino via the inverse beta decay [3, 4]. Shortly after 1962, L. Lederman,
M. Schwartz and J. Steinberger discovered the muon neutrino [5]. Both discoveries
were awarded Nobel prizes in 1995 [6] and 1988 [7], respectively. It took, however,
another 40 years from the discovery of the muon neutrino, until the existence of the
tau neutrino was proven in 2000 by the DONUT collaboration [8]. It was the discovery
of the last fermion of the Standard model with three particle generations, predicted by
the line width of the Z0 decay spectrum [9]. An overview of the currently discovered
particle zoo is given Figure 2.1.

All neutrinos, νe, νµ, ντ have a spin of 1/2 and carry neither electromagnetic nor colour
charge, therefore interacting only via the weak force and gravity. The weak force
is mediated through the W ± and Z0 gauge bosons, while gravity is not modelled
in the SM, as no model could unit gravity with the current formulation of the SM
yet. Assuming neutrinos are Dirac particles, as will be done for this thesis, their
antiparticles νe, νµ, ντ vary by opposingly signed lepton number, weak isospin and
chirality, showing right-handed instead of left-handed behaviour, as is the case for
normal neutrinos. If they were Majorana particles instead, they would be their own
antiparticles.

2.2 Neutrino oscillations

One of the reasons why neutrinos are so interesting to physics is that they are assumed
with zero mass by the SM. However, the observation of neutrino oscillations, by
Kamiokando in 1998 [10] and SNO in 2002 [11], requires all three neutrinos to have a
different non-zero mass. The discovery of the anti-electron and muon neutrino, this
discovery was awarded a Nobel prize in 2015 [12], constituting the total 4th Nobel
prize in the field of neutrino physics.
Neutrino oscillations describe the process of a neutrino being generated with one flavour
να, but being measured with a potentially different flavour νβ, with α, β ∈ {e, µ, τ}
and therefore changing its flavour during its journey through space. Describing the
neutrino in terms of their flavour eigenstates does not solve the Dirac equation for
free particles. Instead, the flavour eigenstates of the system are understood as a linear
combination of a different set of states, the mass eigenstates νi, i ∈ {1, 2, 3}.

να =
∑

i

Uα,iνi (2.1)

4



2.2 Neutrino oscillations

Using the mass eigenstates of the neutrino as a base, the Dirac equation can be solved,
for a propagating neutrino as a plane wave:

|νi(L, E)⟩ = exp

(
− im2

i L

2E

)
|νi⟩ , (2.2)

with m2
i the squared mass of the neutrino, L the distance traveled since its production

and E its energy.
While the flavour eigenstates of a neutrino are responsible for its interactions, the
mass eigenstates govern its propagation. The general relation between both sets of
eigenstates is given by the PMNS-matrix, a complex, unitary 3x3 matrix named after
Pontecorvo [13], Maki, Nakagawa, and Sakata [14].




νe

νµ

ντ


 =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 (2.3)

It is typically parameterised in terms of three rotations determined by the three mixing
angles θ12, θ13, θ23 and the CP-violating phase δCP , reducing the nine correlated entries
of the PMNS-matrix down to only four independent values. In the case of Majorana
particles, two additional phases would occur. cij and sij denote cos (θij) and sin (θij).

UPMNS =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e−iδCP

0 1 0
−s13eiδCP 0 c23







c12 s12 0
−s12 c12 0

0 0 1


 (2.4)

Without explicit derivation, from the plane wave description in Equation 2.2 and the
relation of flavour and mass eigenstate given by the PMNS matrix in Equation 2.3,
the probability for a neutrino to oscillate from flavour α into β, is given by

Pα→β(L, E) = |⟨νβ|να(L, E)⟩|2 =
∑

i,j

UαiU
∗
βiU

∗
αjUβj exp

(
−i

∆m2
ijL

2E

)
, (2.5)

with Uα,β|i,j the elements of the PMNS-matrix, ∆m2
ij = m2

i − m2
j the squared mass

difference of the relevant neutrino mass states, L the distance travelled since its
production and E its energy.
The expression in the sum of the oscillation probability can be divided into two
parts. First come the components of the PMNS-matrix UαiU

∗
βiU

∗
αjUβj and therefore

a combination of the mixing angles θij and the CP-violation phase, determining
the amplitude of the oscillation. Secondly, the exponential term including the mass
differences ∆m2

ij , together with the factor L
E , determines the oscillation phase. In order

5



2 Neutrino physics

Parameter Bfv ± 1σ 3σ Range

θ12 [deg] 33.45+0.77
−0.75 31.27 → 35.87

θ13 [deg] 8.62+0.12
−0.12 8.25 → 8.98

θ23 [deg] 42.1+1.1
−0.9 39.7 → 50.9

δCP [deg] 230+36
−25 144 → 350

∆m2
21 [1 × 10−5 eV2] 7.42+0.21

−0.20 6.82 → 8.04∣∣∆m2
31

∣∣ [1 × 10−3 eV2] 2.510+0.027
−0.027 2.430 → 2.593

Table 2.1: Best fit values (Bfv) for oscillation parameters in normal ordering and their
3σ confidence intervals.

to maximise the oscillation probability, one aims for an oscillation phase satisfying

(k · 2 + 1) · π = 1.27 ·
∆m2

ij

eV 2

L

km

GeV

E
(2.6)

with k ∈ N0 and not given in natural units. For experimental design only L and E
can be influenced. The other values need to be determined in experiments.
Only two of the three mass differences are independent, since the third can be calculated
from the other two by ∆m2

31 = ∆m2
21 + ∆m2

32. Since ∆m2
21 << ∆m2

32, it holds that
∆m2

31 ≈ ∆m2
32. In addition to this, the sign of ∆m2

32 is currently unknown, allowing
for two possible orderings of the neutrino masses, namely normal ordering and inverted
ordering, as is illustrated in Figure 2.2. In the case of normal ordering, the squared
masses are increasing in natural order m2

1 < m2
2 < m2

3, while for the inverted ordering
m2

3 < m2
1 < m2

2 holds. The current best-fit values of these parameters are given in
Table 2.1 [15].

The results presented until now only cover neutrino oscillations in vacuum. By including
matter effects like the effective potential A in the Ansatz, the oscillation probability
from νµ to νe becomes approximately:

Pµ→e(L, E) ≈ sin2θ23 · sin22θm
13 · sin2

(
∆mm2L

4E

)
, (2.7)

with

sin22θm
13 ≡ sin22θ13 ·

(
∆m2

31

∆mm2

)2

(2.8)

∆mm2 ≡
√(

∆m2
31 · cos2θ13 − 2EA

)2
+
(
∆m2

31 · sin22θ13
)2

. (2.9)

While adding a considerable amount of complexity to the expression, the general
structure is still the same. For a detailed discussion on the effects of matter on
oscillation probabilities see [17] and for discussion on this particular transition see [18].
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2.3 Atmospheric neutrinos

Figure 2.2: Shown are the 3 mass eigenstates of the neutrinos in the configuration of
normal and inverted ordering, caused by the unknown sign of ∆m2

31
. Indicated are also

the ratios of neutrino flavour of each mass eigenstate. From [16].

2.3 Atmospheric neutrinos

Neutrinos are produced in a multitude of different processes by even more different
objects, over a tremendous energy range, ranging from cosmological neutrinos with
energies of meV up to cosmogenic neutrinos with energies of EeV, shown in Figure 2.3.
The type of neutrino that is most interesting for this thesis, is the atmospheric neutrino,
most prominent at GeV energies.
As the name suggests, atmospheric neutrinos are generated in the Earth’s atmosphere
during collisions of cosmic rays with the atoms in the atmosphere, typically at a height
of 15km [20]. In the particle cascade following these collisions, large amounts of charged
pions π± and kaons K± are produced, first decaying into muons

π±, K± → µ± +
(—)

ν µ, (2.10)

which then decay into electrons

µ± → e± +
(—)

ν e +
(—)

ν µ. (2.11)

During these two decays, a total of two muon neutrinos and 1 electron neutrino is
produced. As atmospheric neutrinos are almost exclusively produced in these two decay
processes, the expected ratio of neutrino flavours in the resulting flux is approximately
1:2:0 (νe: νµ: ντ ). Due to the positive charge of the cosmic rays, in these decays more
π+ than π− are created, resulting in a ratio of neutrinos to antineutrinos greater than
1 να

να
> 1. The ratio of generated muon to electron neutrinos increases with increasing

energies since more muons can reach the Earth before decaying, thereby only producing

7



2 Neutrino physics

Figure 2.3: Overview of various neutrino sources, showing the expected or measured
flux over energy. From [19].

a single muon neutrino [20]. Tau neutrinos are only generated at much higher energies,
in the decay of other baryons than pions or kaons. Therefore, any ντ measured in the
detector must have oscillated into this flavour from either a νe or νµ.
The model of the atmospheric neutrino flux resulting from the cosmic ray flux used
for this thesis has been published by the ’HKKM’ group [21]. It accounts for seasonal
changes in atmospheric density, as well as varying solar activities in multiple sites on
the earth’s surface. The site used for the flux model of this thesis is the Frejus site
located near the KM3NeT/ORCA detector in the south of France. Next to the Honda
flux model used in KM3NeT and therefore also this thesis, other neutrino flux models
have been calculated, namely the Bartol model by Barr et al. [22] and the FLUKA
model by Battistoni et al. [23]. Even though the models agree on the general shape of
the atmospheric neutrino flux, they vary up to 15% on the absolute normalization [22].

2.4 Neutrino detection

Carrying no electromagnetic and colour charge, neutrinos interact only via the weak
force and can therefore not be detected directly. However, when colliding with nucleons,
particle cascades are induced. These particles can then be detected in various ways:

• Scintillators as used by Cowan and Reines [3],

8



2.4 Neutrino detection

Figure 2.4: Illustration of Cherenkov radiation. Left: State of polarisation of dielectric
particles. Symmetric for v < c and asymmetric for v > c.
Right: Interference of emitted radiation waves. Destructive for v < c and constructive for
v > c, leading to the formation of a Cherenkov cone with opening angle θ. From [27].

• Cherenkov radiation used by neutrino telescopes such as KM3NeT [18] or IceCube
[24],

• Askaryan effect utilised by RNO-G [25].

The extremely small cross-section of about 1 × 10−38 cm2/GeV allows neutrinos to
travel through matter almost untouched, but also makes the task of detecting neutrinos
at a reasonable rate very difficult. It therefore requires the use of detectors with a
cheap, abundant detection medium of high density, which for detectors based on
Cherenkov radiation simultaneously needs to allow for the production and propagation
of Cherenkov light [26].

2.4.1 Cherenkov radiation

As illustrated in Figure 2.4 charged particles, moving through a dielectric medium,
such as water, cause a polarization in the particles in close proximity to them. Once
these particles fall back into their ground state they emit electromagnetic waves. If
the particle is moving with a speed v < c, these waves, interfere mostly destructively,
resulting in no total emission of radiation. However, if the particle is travelling at
a speed of v ≥ c, the individual waves interfere constructively, combining into a
cone-shaped wavefront, the so-called Cherenkov cone. The opening angle θ of this
cone is dependent on the speed of light in the medium, determined by its refractive
index, as shown in Equation 2.12. For water, this angle is 42°.

θ = arccos

(
1

v
· c

n

)
(2.12)

The blue Cherenkov light emitted by the charged particles can then be measured by
photomultiplier tubes (PMT), capable of detecting even single photons.

9



2 Neutrino physics

Figure 2.5: Overview over the different interactions neutrinos can undergo. Mediated
by the W ± boson in the charged current channel, emitting the respective lepton, as well
as a hadronic jet and by the Z0 boson, resulting in only a hadronic jet. From [28].

2.4.2 Event topologies

Depending on the neutrino flavour and the gauge boson mediating its interaction
(with a nucleus), four different types of particle cascades are produced, as illustrated
in Figure 2.5. Interactions mediated by the Z0 boson are called neutral current
interactions, creating only a hadronic jet, independent of the flavour of the neutrino.
If the interaction is instead mediated by a W ± boson, it is called a charged current
interaction, creating a hadronic jet, as well as a lepton corresponding to the neutrinos
flavour, resulting in different types of particle cascades. For νe it results in an
electromagnetic shower, for νµ it results in a track-like event and for ντ we observe
so-called double bang events. In all of these interactions, the incoming neutrino is
called the primary particle and all subsequently produced particles are called secondary
particles. All four topologies will now be described.

Hadronic jets Hadronic jets are produced in all neutrino interaction types by the
initial energy transfer from the neutrino to a quark inside the nucleus, generating a
large amount of further hadrons, which generally travel in the direction of the primary
particle. Many of the secondary particles in the hadronic jet are uncharged pions,
which decay after only a short time span of 8.5 × 10−17 s into two photons, adding
an electromagnetic component to the particle cascade. This becomes increasingly
significant for higher energies of the primary particle, approaching an identical cascade
structure as generated by a νe. The attenuation length of the hadronic jet in water,

10



2.4 Neutrino detection

meaning the length over which 1/e% of the particles lose enough energy so they can
no longer emit Cherenkov radiation, is about 83 cm [29].

Electromagnetic showers The emission of an electron in the interaction starts
a so-called electromagnetic shower. It interacts with its environment mostly via
Bremsstrahlung creating photons and thereby losing energy [30]. The emitted photons
produce, via pair production and Compton scattering, electrons and positrons, which
again interact via Bremsstrahlung and so on. The Cherenkov light emitted by an
electromagnetic shower is with an error of 1% proportional to the energy of the
neutrino [29], allowing for a very good energy reconstruction given the whole shower is
contained in the detector. Compared to the hadronic jet, the attenuation length of the
electromagnetic shower is shorter at 36 cm [30], even though the Cherenkov threshold
of electrons of 0.8 MeV is considerably lower, than that for protons with 1.4 GeV [31].

Tracks In contrast to the short attenuation lengths of hadronic and electromagnetic
interactions, muons travel large distances of about 4 m/GeV in water until they decay,
emitting radiation along their path [30]. This elongated shape of the released energy
allows for a good direction reconstruction but is also often the reason for a worse
energy reconstruction since the muon can leave the detector volume before depositing
all of its energy inside. At higher energies (TeV), muons lose their energy in bursts
by creating small electromagnetic showers along their way, while at low energies (few
GeV), the constant emission of Cherenkov radiation becomes the dominant process of
energy loss.

Double Bang If a ντ interacts via the charged interaction channel, it creates a τ
lepton that travels about 5 cm/TeV in water until it decays into any of the three
already discussed particle cascades.

τ− → hadronic jet : 64.8%

τ− → ντ + e− + νe : 17.8%

τ− → ντ + µ− + νµ : 17.4%

Since the decay of the τ creates a second interaction vertex, from which radiation
is emitted, these events are called double bang events. For the GeV energies of
atmospheric neutrinos, the decay of the created τ is effectively instantaneous, leaving
no possibility to spatially resolve this phenomenon.
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2 Neutrino physics

2.4.3 Neutrino notation

In the following thesis, the just discussed interaction types will be denoted as νCC
e ,

νCC
µ , νCC

τ and νNC
x , by the neutrino’s flavor and interaction channel. Since the neutral

current interaction is independent of the neutrino flavor, it only shows the interaction
channel. In order to ensure visibility in plots and equations, the short notation of
νe, νµ, ντ and νNC is used. If not stated otherwise, form here on antineutrinos and
neutrinos are referenced together by this notation.
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3 KM3NeT

KM3NeT [18] is an international research collaboration for neutrino physics, acting as
the successor experiment for ANTARES [32], which was moved into legacy mode in
2022 [33]. At the moment of writing this thesis, KM3NeT has 48 member institutions
comprised of 45 postdocs, 81 PhD students and 36 master’s students [34]. It is currently
building two next-generation water Cherenkov detectors in the Mediterranean Sea.
Namely ORCA, short for "Oscillation Research with Cosmics in the Abyss", and ARCA,
which stands for "Astroparticle Research with Cosmics in the Abyss". An overview of
the member institutions and detector site locations is presented in Figure 3.1.

Figure 3.1: Overview of the member institutes of the KM3NeT collaboration (white
dots) and the operated sites near France and Italy (yellow dots). From [34].
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3.1 Detector design

In order to detect neutrinos with energies up to MeV, as is necessary for reactor
experiments like Daya Bay [35] and MiniBooNE [36] or solar neutrino experiments
like Super-Kamiokande [37], the most common type of detector is a tank filled with a
suitable detection medium and surrounded by a large number of PMTs to detect the
emitted Cherenkov radiation. The typical interaction medium used is water, which can
be doped with gadolinium to further enhance its detection qualities. At the moment
the largest of these artificial tanks is employed by Super-Kamiokande, containing
about 50 kTons of water.
However, if the energy of neutrinos one wants to measure increases to GeV and above,
much larger detector volumes are required, to still generate a high amount of iden-
tifiable neutrino events, even though at higher energies the neutrino flux is much
lower. Building larger and larger tanks, however, is only feasible up to a certain point.
Therefore, the science community has turned to natural media, such as freshwater
lakes, oceans and the ice caps at the poles to measure high-energy neutrinos. The two
detectors build by KM3NeT for instance use the water of the Mediterranean Sea as
their detection medium. It has to be noted, that Super-Kamiokande is also able to
measure the atmospheric neutrino flux at GeV energies, as used in the discovery of
neutrino oscillations, but the amount of measured events is much lower compared to
natural medium detectors.
Even though ORCA and ARCA are optimised for different science cases (see sec-

tion 3.2), they are built with the same design, varying only by the density of their
instrumentation. In the case values vary, they will be denoted as follows: (ORCA
value; ARCA value). To explain the individual components of the detectors, a sketch
of their design is displayed in Figure 3.2. The main component of the detectors are the
so-called digital optical modules (DOMs), containing 31 PMTs arranged approximately
equidistant to each other, detecting the Cherenkov light emitted by neutrino particle
cascades from all directions. 18 of those DOMs are grouped into a detection unit (DU),
fixed along a line with a vertical spacing of (9 m, 36 m) and anchored to the floor of
the sea with a horizontal distance of on average (20 m, 90 m) to each other [39]. The
DUs are held upright by a buoy made of syntactic foam. The anchors of the individual
DUs are then linked together by junction boxes, relaying the data measured by the
PMTs and DOMs to the control station on shore through the main electro-optical cable
(MEOC) [40]. The exact positions of the DU anchors and cabling for both detectors
can be taken from their footprints provided in Figure 3.3.

As the DUs are not fixated at the top, but only straightened vertically by a buoy
at the top end of each DU, the individual DOM positions are susceptible to sea
currents. In order to measure the 3D drift of the DOMs, a piezo-acoustic sensor is
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Figure 3.2: Sketch of the KM3NeT underwater detector design, including DOMs, DUs,
anchors, junction box and MEOC. From [38].

Figure 3.3: Footprint of the KM3NeT/ORCA (left) and KM3NeT/ARCA (right)
detector, showing relative DU anchor positions and cable routing. DUs 1-6 in the top left
corner of the ORCA detector will be used for this thesis. From [18].
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3 KM3NeT

used in combination with ground-based sonar. Additionally, the tilt, pitch and yaw are
determined by accelerometers. Combining these features allows every PMT to record
the following features for an incoming photon:

• position (pos_x, pos_y, pos_z)

• pointing direction (dir_x, dir_y, dir_z)

• time of hit (t)

• Time-over-Threshold (ToT)

After applying triggers to the received PMT signals, they are grouped into single
events and stored, together with other high level data, like the number of triggered
PMTs in the whole events in the root file format.

3.2 Detector sites

ARCA [18] The site of KM3NeT/ARCA is located 100 km south of the Sicilian coast.
As the experiments of IceCube [24], BAIKAL-GVD [41], P-ONE [42] and TRIDENT
[43], it employs a detector volume of GTons. This massive detector volume allows for
the efficient detection of neutrinos in the energy range of PeV-TeV and, thereby, for a
survey of the neutrino sky. By this new insights for the production sites of neutrinos
in and outside our galaxy will become available. Additionally, the detector is expected
to further extend the catalogue of neutrino sources from the four currently known
sources of our sun [44], the supernova 1987A [45], blazar TXS 0506+056 (ICECUBE,
2017) [46] and NGC 1068 (ICECUBE, 2022) [47].

ORCA [18] KM3NeT/ORCA is located 40 km offshore from Toulon on the French
coast, 10 km west of the ANTARES site. With a detector volume of only 7 MTon
ORCA is much smaller than ARCA, but instead boasts a denser instrumentation,
excelling in the detection of atmospheric neutrinos with energies of 3-30 GeV. Together
with a travelling distance of thousands of km, the L/E for atmospheric neutrinos is
on the order of 1 × 103 GeV/km. Following Equation 2.6, this makes ORCA ideal
to measure ∆m2

31 and therefore determine the correct neutrino mass hierarchy as
explained in section 2.2. Additionally, further constraints on the mixing angle θ23 (see
section 2.2) will be set by this experiment.
Despite the relatively dense instrumentation of ORCA, it is still too sparsely instru-
mented to spatially resolve the neutrino topologies of the hadronic jet, electromagnetic
shower and GeV double bang events (subsection 2.4.2), seeing them as essentially
point-like light sources. Furthermore, due to ORCA still being under construction,
with currently only 18 DUs deployed and operational, this thesis uses data from the
unfinished ORCA6 detector, which has been taking data for a period of 510 days.
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3.3 Background sources

All current neutrino observatories are built under a tremendous amount of mass, be it a
kilometre thick sheet of ice, as is the case for IceCube, Mountains for the Kamiokande
experiments, or the ocean in the case of KM3NeT. This massive amount of matter
provides an excellent shield from most unwanted background signals, like sunlight
and most low energetic muons. However, even through this shield, the greater part of
all events measured in the detector are caused by atmospheric muons with original
energies above 55 GeV. Since muons travel about 4 m/GeV in water, the 2300 m of
water above the ORCA detector reliably only absorb muons with an original energy of
less than 55 GeV [48].
The remaining muons result in an expected ratio of atmospheric muon to neutrino
events measured in the detector of about 10000:1, making it very important to reject
this atmospheric muon. To accomplish this, while retaining the muons generated
during neutrino interactions, most of the time a cut is placed on the reconstructed
arrival direction of the event, requiring a zenith angle of greater than 0. Since no
particle except for neutrinos can travel through the earth, any upgoing event has to
be produced by a neutrino.
In additionally to the contamination with atmospheric muons, the detector also
records pure noise events caused mainly by various processes of bioluminescence [49]
like dinoflagellates and zooplankton [50] and so-called K40-events [51], the decay of
potassium into calcium or argon:

• Beta decay (Branching ratio 89.28%): 40K →40 Ca + e− + νe

• Electron capture (Branching ratio 10.72%): 40K + e− →40 Ar + νe

• Positron emission (Branching ratio < 0.001%): 40K →40 Ar + e+ + νe

They are mostly filtered by a minimum requirement of the number of hits in any given
event and a score of a noise-signal classifier. The level of noise and contamination
events varies throughout the year, depending on for example water temperature and
atmospheric densities.
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4 Deep Learning

Deep learning is a subfield of computer science and more specifically machine learning.
It uses artificial neural networks (ANNs) or just neural nets (NNs) in order to recognise
patterns in raw high level data and extract low level quantities from it.
The first comprehensive summary of deep learning, introducing the concept of the
multilayer perceptron(MLP), was published by Frank Rosenblatt as early as 1962
[52]. The impressive potential NNs have, could however only be shown in recent times
by outperforming most traditional methods of data analysis. The risen popularity
has been enabled by the increase in access to fast, abundant and relatively cheap
computing power, as well as large amounts of raw data. Applications for NNs comprise
for example: making generalised predictions for given data samples as is the case for
AlphaFold, where the researchers managed to predict the folding function of thousands
of previously unknown protein structures [53, 54], discovering optimal strategies based
on the state of a environment or game, with AlphaGo beating the world champion
in 2016 [55] or being able to talk and have seemingly profound discussions as is done
with large language models [56] like GPT [57].
This chapter will start with an explanation of the idea and basic building blocks of
neural networks, namely neurons and the multilayer perceptron. After that, the process
of training a neural network, as well as the special types of neural networks used in
this thesis. It will close with a description of the way deep learning is implemented in
KM3NeT.

4.1 Basics of artificial neural networks

The digital structure of artificial neural networks is inspired by biological brains.
Combining the in-and outputs of a large number of artificial neurons into so-called
layers and imitating the nonlinear behaviour of neuron cells, complex behaviour
emerges, as is the case for a biological brain. While the imitated biological neurons give
rise to a similar complex structure and behaviour when combined, artificial neurons
by themselves are much less complicated than their biological counterpart.
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4.1.1 Artificial neurons

The idea of artificial neurons is to take input data and compute an output value based
on its internal parameters. This is achieved in three steps. First, the neurons take in
data xM , typically from other neurons. M denotes here the length of the input data
vector. Next, the inputs get multiplied with individual weights wM and summed up.
Then a bias b is added. At last, an activation function ϕ gets applied to the resulting
number. The mathematical expression describing the calculation of the neuron output
looks as follows:

f(x, θ) = ϕ
(
w1×M · xM + b

)
. (4.1)

The set of weights w and bias b together will be addressed as weights θ in the following.
By adjusting the weights for every neuron during the training (see section 4.2), the
neurons are able to adjust and learn from the inputs. An additional prerequisite for the
neurons, in order to be able to learn complex patterns in the data is the non-linearity of
the activation function. If it were linear instead, an arbitrary combination of neurons
could always be reduced down to a single neuron, removing the essential complex
behaviour of NNs. The non-linearity can be seen in two popular activation functions
called sigmoid and rectified linear unit (relu):

relu: ϕ(x) =

{
x if x > 0

0 otherwise
(4.2)

sigmoid: ϕ(x) =
1

1 + e−x
. (4.3)

4.1.2 Dense layer

A set of N neurons, placed in parallel to each other, is called a layer, which can be
stacked on top of each other to form the NN. Each neuron in the i-th layer can be
connected to neurons in the previous (i-1) and following (i+1) layer. The simplest
layer type is called a dense or alternatively fully connected layer. In this layer, each of
the N neurons of the i-th layer is connected to every of the M neurons in the previous
(i-1)-th layer. Extending the formulation for the output of a single neuron into one for
a full layer given by Equation 4.1 and thereby extending 1D vectors to 2D matrices
gives the following:

f (i)(x(i), θ(i)) = ϕ
(
wN×M · xM + bN

)
, (4.4)

with x(i) = f (i−1) the output of the previous layer.
Next to dense layers, other types have been developed, utilising symmetries in the data
or using different ways of data representation, than 1D vectors. The for this thesis
relevant ones will be explained in section 4.4.
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Figure 4.1: Layout of a multilayer perceptron, with an input layer of size 2, one hidden
layer and an output layer of size 1. From [58].

4.1.3 Multilayer perceptron

As just mentioned, by stacking at least three layers on top of each other, as is shown
in Figure 4.1, one can build a mulitlayer perceptron (MLP). The layers in a multilayer
perceptron can be split into three groups of distinct purposes:

Input layer The first layer of the network is called the input layer. It serves as the
entry point for the user, to provide data to the network. The provided data equates to
this layer’s output and no weighting or activation function gets applied.

Output layer The last layer of a neural network is called the output layer. It returns
the network response to a given input and is used to enforce certain boundaries to
the desired output. For example, if one would want to reconstruct a quantity, which
is by definition positive like energy, this could be accomplished by applying the relu
activation function (Equation 4.2). If no adjustment is needed, also a liner activation
function ϕ(x) = x can be used in the output layer, as non-linearity is not required in
this final step.

21



4 Deep Learning

Hidden layer All layers in between the input and output layers are called hidden
layers, as they cannot be accessed or ’seen’ by the user in an easy way. They are the
central part of the network, where it generalises, learns and memorises. Even though
it can be shown, that a single hidden layer with an infinite or at least sufficiently high
number of neurons, can approximate an arbitrary complex function perfectly [59], in
most cases, it is beneficial to use more than one hidden layer. This allows the network
to more easily grasp possible multi-level patterns present in the data, since it can now
extract various relevant information in a first step and only in a second step combine
these intermediate learnings into a final output.

4.2 Training

During the training of a neural net, the weights θ of its neurons are adjusted to
optimally represent the input data given to the network. The term optimal is here
highly dependent on the target of the user as well as the regime of deep learning applied.
In contrast to other regimes like semi-supervised learning, reinforcement learning or
active learning, this section will only cover the training process of supervised learning,
as this is the type used in this thesis.
The goal of supervised learning is to approximate a true quantity yi,true of an input
xi, for a variety of events, as well as possible. In order to achieve this the network is
presented with a large amount of data tuples (xi, yi,true), made up of the input data
and the true desired output. By comparing the output of the network to the true
value via a loss function, the weights of the network are adjusted gradually, until the
average reconstruction of the target quantity is no longer improving. As this thesis
is doing energy reconstruction of data for the KM3NeT/ORCA6 detector, the input
data is the detector response produced by neutrino interactions for xi together with
the neutrino’s corresponding energy for yi,true. The reconstruction of a contiguous
quantity, such as the energy, is called regression, while the reconstruction of a discrete
quantity, like interaction type, is called classification.
During training the user has the option to specify various parameters, that influence
how the training is executed. These parameters are called hyperparameters. In
the following text, they will be highlighted by a dot over the respective symbol e.g.
ȧ. Hyperparameters that were already mentioned in this chapter are the weights θ̇,
activation function ϕ̇ and the number of layers in the network, together with any
specifications of the layer type like the number of neurons Ṅ for dense layers.
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4.2 Training

4.2.1 Loss

In order to be able to adjust the network weights adequately, the loss function L̇
is used. It calculates the error between the true value yi,true of an event xi and the
network’s prediction yi,pred = f(xi, θ). During the training, this function is sought to
be minimised for the average of the training tuples.

min
θ

1

N

N∑

i=1

L(yi,true, f(xi, θ)) (4.5)

Some options for the loss function of a regression problem are the mean squared
error (MSE), mean absolute error (MAE), mean squared logarithmic error (MSLE),
and log-normal loss. The choice of loss function should be done based on domain
knowledge and be verified by performance tests. Domain knowledge describes the
intuitive understanding of problems based on previous experience in any field, resulting
in the ability to infer possibly beneficial adjustments to the network.

L(yi,true, yi,pred) =





(yi,true − yi,pred)2 MSE

|yi,true − yi,pred| MAE

(log(yi,true) − log(yi,pred))2 MSLE

(log(yi,pred) − log(yi,true))
2 LogNormal

(4.6)

4.2.2 Optimiser

The task of adjusting the network weights based on the loss function during the network
training is performed by an optimiser. Since a neural network typically consists of an
immense number of neurons, a complete search of the phase space for the best set of
weights is most often not feasible. Alternatively, one can take an iterative approach,
where a random setting start set of parameters is updated in several steps t, until
solution is found to the problem. While most likely not finding the perfect solution, it
still results in a relatively optimised solution, while requiring much less computation,
than the full search.

Gradient descent A very simple type of iterative minimisation technique is called
gradient descent. It uses the gradient of each weight with respect to the loss function
∇θL, to calculate the optimal change of each weight i.e. in the direction of strongest
decrease. Changing the weights once is called a weight update.
The calculation of the gradients is done today in a process called backpropagation,
which utilises the repeated application of the chain rule to calculate the gradients with
respect to the network output. By calculating the gradients for the individual neurons
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backwards, meaning starting from the output neuron, the calculated gradients can be
reused for the gradients further up the model. Before that, gradients were calculated
starting from the inputs, where for every single neuron all consequent gradients had to
be calculated. Already proposed by Rosenblatt in 1962 [52], backpropagation became
widespread only after the analysis by David E. Rumelhart in 1986 [60].
Based on the weights and gradients of the current time step t, the next set of weights
in timestep t + 1 is calculated, with the update rule:

θt+1 = θt − η · ∇θt
L, (4.7)

with η̇ the learning rate, a hyperparameter used to scale the step size, meaning the
absolute change in weight.

stochastic gradient descent (SGD) In order to get the most accurate weight update
out of gradient descent, the calculation of the average gradient for the whole dataset
is required. This however is not feasible, since the gradients for millions of parameters
for millions of events are very memory intensive. Instead, a slight variation, named
stochastic gradient descent is used. It replaces a single weight update over the whole
dataset, with several weight updates over smaller chunks of the whole dataset, which
approximate the full gradient. These chunks are called batches. The number of events
included in one batch is called the batch size. The training on the whole dataset and
therefore all available batches is called an epoch.

Adam The optimiser used throughout this thesis is adaptive moment estimation
(adam). It is more nuanced than the SGD following the update rule shown in Equa-
tion 4.7, since it adjusts the needed learning rate during the training steps, based on
moving averages of the first and second moments of the gradient. It tries to increase
the step size for large plains of low gradients and decrease the step size in anticipation
of regions of high gradients. Following the original paper [61], the update rule first
calculates biased estimators for the first and second momentum mt, vt:

mt = β1mt−1 + (1 − β1)∇θt
L (4.8)

vt = β2vt−1 + (1 − β2)(∇θt
L)2, (4.9)

with β̇1 and β̇2, determining the rate of decay for previous time steps. Since m0 and
v0 are initialized as 0, the hereby introduced bias gets removed with:

m̂t =
mt

1 − βt
1

(4.10)

v̂t =
vt

1 − βt
2

, (4.11)
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resulting in a final update of

θt+1 = θt − η
m̂t√
v̂t + ϵ

, (4.12)

with ϵ̇ a factor ensuring computational security and as for SGD η̇, the learning rate.

4.2.3 Batch normalization

In an MLP the so-called ’internal covariant shift’ can occur. It describes, when the
average output of a layer for all events shifts on an absolute scale, requiring a re-
optimisation of the weights in all consequent layers, that had been optimised to the old
range of layer output values. In order to combat this batch normalisation, essentially
whitening of the layer output was proposed [62]. Whitening describes the process of
setting the mean µ and variance σ of a distribution to zero and one, respectively. For
the not normalised outputs xi the normalised outputs yi are computed as:

yi = γ
xi − µ√
σ2 + ϵ

+ β (4.13)

In order to reduce computations, this is calculated for each batch and feature individu-
ally. The added ϵ ensures computational robustness, as was explained for the adam
update rule in Equation 4.12. Furthermore, two additional learnable parameters γ and
β are used, so that the layers do not suffer in their representation capabilities.

4.3 Datasets

During training and analysis of a neural network, one should use three separate datasets
generally named training dataset, validation dataset and test, inference or analysis
dataset. This thesis uses a split of 80:10:10 for the three datasets, applicable to the
numbers given in Table 5.1.
The training dataset is used during the training, described in section 4.2. From it, the
network learns and generalises. However, at some point in the training, the network
will stop learning generalisations about the dataset but instead start to remember
each event by some unique characteristic. This behaviour is called ’overfitting’ and
harms the performance on new data, since those unique quirks in the train data used
to memorise, do not translate to new unseen events. In order to start memorising
individual events or small groups of events the network assigns small groups of neurons
to recognise this pattern. Networks tend to show this behaviour only when they
have a high amount of neurons, relative to the complexity and variety of the data, as
then reassigning a few neurons from generalisation to memorisation does not hurt the
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network’s overall capabilities much. In order to combat this behaviour, one can reduce
the number of trainable parameters in the network, which forces the network to use
more neurons for all events and hinders reassignment. This however can also harm the
general potency of the network.
In order to estimate the severance of overfitting occurring in the training, the validation
set is used. This dataset contains additional events that have not been used to adjust
the weights during training. By calculating the performance of the network on this
previously unseen data, an unbiased score can be given to the performance of the
network, called the validation score or validation loss. This is typically done at the end
of every epoch. First, the validation loss decreases alongside the training loss, benefiting
from the generalisation learned at the beginning of the training. If the network then
starts to memorise the individual events and gradually loses its generalisation, the
validation loss starts to increase. With this, the training can be stopped, as the best
possible performance on new data has been reached. One has to ensure, that the
increase of validation loss is due to overfitting and not caused by statistical variation.
Therefore the training should only be stopped if the validation loss increases over
a longer time period. The network of the epoch with the best and therefore lowest
validation score will then be used for any further analysis.
Depending on the complexity of the data and the number of trainable parameters,
the training of a neural network can last for many epochs. As the optimisation of the
network is increasing in smaller and smaller steps the longer it trains, a considerable
number of epochs has a more or less equal degree of optimisation with respect to the
actual data features. The exact epoch, within the about equally well-optimised epochs,
which has the best validation score is mostly determined by statistical fluctuations
fitting the validation data. If one were to use the validation dataset also for the actual
analysis, the result would be biased by the good performance of the network on the
validation data. To remove this bias, the actual analysis should always be done with a
third dataset with new unseen events, the inference dataset.

4.4 Graph Neural Networks

From Equation 4.4 we can see that the number of trainable parameters in a dense layer
scales quadratically with the number of neurons in the current and previous layers.
This can become very computationally intensive very quickly. In order to reduce the
computational impact, the exploitation of data inherent symmetries has proven to be
a viable approach.
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Figure 4.2: Illustration for the calculation of the output of a convolutional layer, for the
first 4 neurons. Nonexistent pixels outside the data frame are padded as 0. From [28]

4.4.1 Convolutional layer

Utilising translational invariance in data is done by convolutional layers. In a convo-
lutional layer, a neuron is only connected to neurons of the previous layer that are
within a specified distance of the original neuron. Therefore, the number of weights is
reduced by replacing the dependence on the number of neurons in the previous layer
with a dependence on the specified distance of interest. Additionally, the weights used
to connect to the previous layer are reused for every neuron in the current layer. This
reduces the necessary memory drastically, as the amount of parameters in a layer is
no longer dependent on its size. The remaining set of weights used to calculate the
output of a neuron is called the kernel with size k̇. The size of the kernel determines
the range over which information can be exchanged in a single convolution. By using
the same kernel for every data point, the same operations are performed, forcing the
layer to capture (spatial) patterns, that are applicable throughout the whole input
data. An illustration of a convolutional layer output calculation is shown in Figure 4.2.
In order for a convolutional layer to be able to accurately represent the data, the data

has to be spatially equidistant. This is trivial for image data, as pixels make up an
orthogonal grid, but is to some degree also satisfied by the DU and DOM locations in
the KM3NeT detectors, being placed on a regular grid (see Figure 3.3) and a regular
vertical placement.
However, this strict requirement of regular equidistant input data also causes problems.
First and foremost, the grid of placed DOMs is not exactly regular, either since the
floor did not allow the placement of line in a strictly regular grid, or as is the case
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Figure 4.3: Graph representation of an exemplary down downing νCC
µ , with location on

the vertical axis and time on the horizontal axis. Blue dots are the nodes representing
PMT hits. Black arrows show the 8 nearest neighbours of each node.

of most water-based detectors, the position of the DOMs gets varied on an event by
event basis, due to the sea current moving and turning the individual modules. The
information on the exact position of the DOMs and PMTs would be lost when using a
fixed kernel.
Additionally, the cascade in a neutrino interaction only triggers a small number of
PMTs in the detector response. The convolutional layer however requires data for every
pixel or DOM/PMT in the detector. This results in so-called sparse matrices as input
data, where most entries are zero. In order to be able to connect a substantial amount
of active neurons, large kernel sizes are required, connecting the neurons to a high
amount of neurons in the previous layer. This negates the advantage of convolutional
layers compared to dense layers of connecting only a small amount of neurons in each
layer.

4.4.2 Graph convolutions

A good way of addressing the problems of convolutional layers is by extending the
concept of kernel convolution from tabular data to graphs. An example of such a
graph is shown in Figure 4.3, it shows the only two components of any graph: nodes
(blue dots) corresponding to pixels in a classical convolution and edges (black arrows)
defining the connections between nodes. Each node represents a PMT hit and the
edges indicate the k nearest neighbours of each node, with respect to a given metric.
An implementation of such a graph convolution for KM3NeT has been done by Stefan
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Figure 4.4: Structure of the EdgeConv block. From [66].

Reck during his PhD [63], named EdgeConv block [64]. It follows the idea proposed
by Wang et al. [65], which has been adopted for particle physics in [66].
A sketch of the architecture of this EdgeConv block is given in Figure 4.4. The block

is provided with a list of the features of every hit in an event, as well as a list of all
the coordinates of the hits. The list of features contains the most recorded properties
described in section 3.1, without the ToT, since it is implicitly contained in the density
of hits in an event. The coordinates of the event are comprised of its position and the
time of the hits.
To calculate the new features of each node nF

i the following steps have to be performed.
First, the k nearest neighbours for each node are calculated, based on the provided
coordinates. The distance between nodes is defined by the Euclidean distance in 4D
spacetime:

dij =
√

(px,j − px,i)
2 + (py,j − py,i)

2 + (pz,j − pz,i)
2 − c2 · (tj − ti)2. (4.14)

Next, for each of the k nearest neighbours nF
j the edge feature eF

i,j is defined as a tuple
of the absolute value of the original node and the difference to its neighbour:

e2F
i,j =

(
nF

i , nF
j − nF

i

)
. (4.15)
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Next, each of these edge feature vectors is fed separately to the same MLP, consisting
of 3 dense layers with sizes C1, C2 and C3. The output of the MLP for each edge eC3

i,j ,

then gets average into the updated new node features nC3

i .

nC3

i =
k∑

j=1

eC3

i,j (4.16)

Note that the size of the updated node feature vector is no longer determined by the
number of measured features as in the original data F , but instead determined by the
number of neurons C3 in the last layer of the MLP.
The last step in an EdgeConv block combines the original node features nF

i with the
updated features nC3

i via a single dense layer, with C3 features, retaining the size of
the updated feature vector. This is called a shortcut connection.

4.5 Deep learning in KM3NeT

This section gives an overview of the software used within KM3NeT to handle the task
of deep learning, as well as a description of the model architecture used throughout
this thesis.

4.5.1 OrcaNet

OrcaNet is an internal framework of the KM3NeT collaboration handling various tasks
needed for deep learning. It has been developed by Michael Moser and Stefan Reck
and is available online under an open source license [67]. It handles a variety of tasks:

• Loading data for training and validation during the training process, as well as
inference afterwards

• Saving the model after every completed epoch, together with metrics on learning
rate and the loss for training and validation data

• Reading in the needed hyperparameters, model architecture and file paths from
three separate toml files. Examples of config.toml, model.toml and list.toml

are given in Appendix B.

4.5.2 Particle Net

Together with the EdgeConv block discussed in subsection 4.4.2, the ParticleNet
architecture was proposed. It utilises the EdgeConv blocks to build a neural network,
that works with the event graphs, a Graph Neural Network (GNN). A sketch showing
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4.5 Deep learning in KM3NeT

Figure 4.5: Model architecture used for the networks in this thesis inspired by ParticleNet.
Adjusted from [66].

the model used throughout this thesis, slightly modified from the originally proposed
model architecture, is displayed in Figure 4.5. It has been chosen as the model
architecture, as it has proven to perform very well in previous works of KM3NeT
[68, 69] and other experiments like IceCube [70, 71]. Another promising network
architecture are graph based transformers [72], as has been shown by the winning
solutions of the kaggle competition issued by IceCube for direction reconstruction in
early 2023 [73].
The ParticleNet architecture consists of 3 consecutive EdgeConv blocks followed by a

’Global average pooling’ layer and a couple of dense layers designed to handle feature
aggregation and output formatting. The second and third EdgeConv blocks receive as
input for the feature and coordinate list the output of the previous block nC3

i . This
means that the k nearest neighbours algorithm in the second and third block can no
longer determine the distance of nodes as described in Equation 4.14, but instead uses
the more general form of:

di,j =
√

⟨δnC3

i,j , δnC3

i,j ⟩ (4.17)

with δnC3

i,j the element-wise difference of the feature vectors of two nodes ni and nj .
The size of the internal dense layers stays the same within each block, but doubles for
every next block, going from 64 at the first block to 256 in the last.
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After the edge convolutions, ’global average pooling’ is performed, meaning every
feature in the final graph is averaged over all nodes, resulting in a vector of length 256.
These neurons are then processed by one hidden dense layer for further calculation
until the information gets combined at the output neuron. In contrast to the original
paper, the intermediate dense layer, does not have ’dropout’ enabled.
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This chapter will first discuss the production of simulation data for KM3NeT/ORCA.
Then, the training process of neural networks, explained in section 4.2, will be expanded
on by introducing the concept of weighted training as implemented by Lukas Hennig
(LH) for his master thesis [69]. Next, the weight calculation used for this weighted
training is explained. The last possible drawbacks of the current weighted training
implementation are discussed, together with possible solutions.

5.1 Monte Carlo Data production

Simulating the detector response to incoming particles of various types in different
detector conditions is very important. It allows to matching of the raw data recorded
by the detector, which by itself is for the most part meaningless, with similar-looking
particle cascades of known quantities like energy, arrival direction and flavour. By
comparing the recorded events to simulations one can design analysis tools for recon-
struction and classification tasks.

The simulations of neutrino in KM3NeT follow the simulation chain illustrated in
Figure 5.1. First, ’gSeaGen’ is generating a number of neutrinos and if, when and
where an interaction with the detector medium occurs [74]. Depending on the energy
of the generated neutrino, either ’km3sim’ [75] (E < 100 GeV) or ’JSirene’ [76] (E ≥
100 GeV) then calculates the secondary particles produced in the cascade following
the interaction, as well as the emitted Cherenkov light by those secondaries and their
arrival at the various PMTs in the detector. Next, ’JTriggerEfficiency’ [76] samples
noise based on the average underwater conditions for any given ’run’. A run describes
a time interval of typically several hours, in order to match it to the recorded detector
conditions like noise level (section 3.3). Then, ’JTriggerEfficiency’ simulates the dif-
ferent trigger responses of the detector to the incoming signals originating from the

Figure 5.1: Simulation chain in KM3NeT for GeV neutrinos. From [69].
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neutrino and noise and saves the events as root files.
As for the real recorded data, now various analysis tools are run on the individual
events, reconstructing for example energy or direction, and adding them to the saved
root files. In order to be able to use them with Graph Neural Networks (section 4.4),
they need to be converted into a suitable tabular format, representing events as Graphs,
instead of the tree-like structure of the root. This is done by applying h5extract2 of
the km3pipe module [77] and the for the particle type adequate extractors provided
by the python module OrcaSong [78].

Furthermore, whole analyses are optimized for large sets of simulations, before running
the final analysis on previously unseen real data. The process of using new unseen data
is called ’unblinding’ and ensures, that analysis does not infer biases into the tested
hypothesis, based and the statistical fluctuations of the real dataset. This optimisation
however needs very accurate simulations, so the analysis gets optimised for the actual
data features and not simulation bugs. In order to confirm the quality of the simu-
lations and how well they match the real data, a Data/Monte Carlo ratio (DMCR)
can be calculated. For this, one needs to run the analysis on matching amounts of
simulations and real events and then compare the distributions of reconstructions to
each other. If the distributions match, the simulations are good, if not, this should
cause investigations, as to how this discrepancy between the simulation to the real data
is caused. Importantly, even unoptimised analysis should result in matching statistics,
as they should reconstruct the real and simulation data equally wrong.

The number of simulated events used in this thesis, separated for interaction type
and dataset is given in Table 5.1. Interaction type here specifies, what flavour the
neutrino has, whether the neutrino is a particle or antiparticle and which gauge bosons
mediated the interaction (see chapter 2). The dataset specifies whether the events were
simulated in either a slight variation in the production of these types of events, either
run-by-run (rbr) or single-run (sr) production chain. A energy resolved visualization is
attached in Appendix A.
Run-by-run here refers to the default simulation procedure, where simulations are
produced in smaller quantities for every detector condition measured and therefore
all runs, containing events with varying noise levels. In addition to the rbr events,
Lukas Hennig produced an additional dataset more suited for the tau classification
done in his thesis [69]. This dataset is produced entirely with the noise level of run
8022, showing a low level of noise. The events of this dataset have an equal share of
tau to non-tau events and a flat energy spectrum, which removes the possibility, that a
network predicts the interaction type, based on event statistics and not features in the
event graphs. Non-tau events refer to any events that are not a tau-CC interaction.
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5.2 Weighted training

Interaction type Dataset

Particle Channel run-by-run single-run

νe CC 359020 240005

νe CC 434528 240655

νµ CC 255258 239517

νµ CC 320625 239894

ντ CC 202070 712323

ντ CC 203154 709168

νµ NC 426877 235060

νµ NC 254701 231898

Table 5.1: Overview of the number of simulation events used, separated for interaction
type and dataset. For visualisation see Appendix A.

Even though antineutrinos are simulated separately from normal neutrinos, neutrino
telescopes such as KM3NeT are not capable of differentiating between and can only
differentiate between electromagnetic showers, hadronic jets and muon tracks. For this
reason, the eight different interaction types listed in Table 5.1 can be sensibly grouped
into five different datasets. Three datasets, containing only νCC

e , νCC
µ or νNC

x events.

Furthermore, a dataset including νCC
e and νNC

x events is created, typically called the
shower dataset, as both topologies look to the detector shower-like. The fifth dataset
additionally includes the track-like νCC

µ neutrinos and the νCC
τ of all decay channels.

Unfortunately, νCC
τ are not tagged for their decay process during simulation, which

makes it impossible to include them in any of the datasets, except the one including
all events.

5.2 Weighted training

Using the standard method of training explained in section 4.2 only allows to train on
the native statistics given by the training dataset. In order to train on a dataset with
different statistics, the dataset would need to be cut off from certain events or filled
with duplicates. In the first option, the network would lose statistics for its training
and become less representative of the underlying data, while the second option would
balloon the file size of the training files. An alternative to this is given by weighted
training, which assigns a weight to each event, effectively resulting in a network trained
on different statistics.

The weighted training performed during this thesis was introduced to the training, by
adjusting the loss calculation. As described in subsection 4.2.1 the training tries to
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minimize the average loss L over the events (xi, yi,true) with respect to its weights θ:

min
θ

1

N

N∑

i=1

L(yi,true, f(xi, θ)) (5.1)

To include an individual weight wi for each event (xi, yi,true), the expression for the
minimisation problem can be adjusted to:

min
θ

1
∑N

i=1 wi

N∑

i=1

wi · L(yi,true, f(xi, θ)) (5.2)

With this weighted loss, each event is now only contributing to the final average
loss proportional to its weight. Additionally, the normalisation has been adjusted to
account for the fact, that the total contribution of N events is no longer N , but the
total weight of all contribution events.
This way of implementing weighted training has been chosen since it was already
implemented by LH for his master’s thesis. Possible problems caused by this imple-
mentation, as well as other ways of implementing weighted training, will be discussed
in section 5.5.

5.3 Physical simulation weight

In order to be able to compare the simulations to real data, the simulated events need
to be weighted as they are expected to be measured by the detector. This weighting is
called physical, as it represents the flux one would expect based on the current physical

knowledge. The calculation of these physical simulation weights w
(sim)
i for a simulated

neutrino with index i depends on several factors, namely the expected flux at the
neutrino site calculated theoretically and various other factors like the interaction
cross section and the detector response to the neutrino, that are determined during
the simulation of a given run. In the 510 days, the ORCA detector had 6 DUs, and
the run_ids 7224 to 11293 have been issued. The exact formula for the calculation of
the physical simulation weights w

(sim)
i for neutrinos simulated by KM3NeT is given by

w
(sim)
i = φDec

i · ti

ngen
i

· w2i. (5.3)

As mentioned in section 2.3, KM3NeT assumes the Honda atmospheric neutrino flux
model for its purposes. The exact values of the flux are binned for energy, azimuth and
zenith of the arriving neutrinos and averaged over the summer of 2014. Other neutrino
sources than our atmosphere can be neglected as they do not play a significant role in
the relevant GeV energies. In order to get the neutrino flux at the detector φDec

i , the
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oscillation probabilities of the atmospheric neutrinos have to be calculated and applied
to the atmospheric flux. The probabilities dependent on the L/E of the neutrino are
calculated by the OscProb module [79]. In order to determine the travel distance of
the neutrino, the zenith angle can be used in combination with the diameter of the
earth.
The simulation part of the weight calculation consists of three values. ti, the length of
the run in seconds, called its ’lifetime’ for which the event has been simulated. ngen

i , the
number of neutrino interactions inside the detector volume simulated for the respective
run. Together these two normalisation factors match the number of generated events
with the duration of the run, allowing for the generation of an arbitrary number of
events. This is for example used in the additionally generated single-run dataset by
Lukas Hennig [69]. At last w2i combines various factors of the detector response
for the simulated events, like for example the "average interaction cross-section per
nucleon along the neutrino path through the Earth". A detailed description of the
various contributing factors can be found in [74].

5.4 Sample weight options

In order to calculate the individual weights for the simulations, I programmed a
Python script that enables the user to set various parameters in the weight calculation
for the three independently calculated categories of source datasets, interaction type
ratios and spectrum (energy, azimuth and zenith). In order to be able to adjust the

options independently the respective weights w
(ds/it/sp)
i are normalised and at the

end multiplied together to form the final event weight w
(f)
i . The formulas provided

in the following do not necessarily match the exact way the script works but are
instead presented in such a way that the effective calculation scheme can be explained
more easily. Each sample weight option will now be explained separately, while
simultaneously a notation convention for the weight options of a given dataset and the
network trained with it will be established.

5.4.1 Source datasets

The source data consists of the two datasets mentioned in Table 5.1:

• run-by-run

• single-run

A ratio of x ∈ [0, 1] describes the total weight of sr events in the data of the respective
trained network. The share of sr events in the respective dataset will be noted on
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the top left of the dataset: 0.8dataset. Alternatively, if the dataset contains only one
dataset, the name of it will be given instead of the ratio: rbrdataset.

5.4.2 Interaction types

As discussed in subsection 2.4.2, the available neutrino data consists of neutrinos with
the following interaction types:

• νCC
e (electromagnetic shower)

• νCC
µ (track)

• νNC
x (hadronic jet)

• νCC
τ (varied)

Since neutrino telescopes in general and therefore also KM3NeT/ORCA cannot de-
termine, if an interaction has been induced by a antineutrino or not, both particles
are treated together.
The ratio of events belonging to the different interaction types can be changed from a
state of flat weight to a state of physical weight (section 5.3). The state of flat weight

w
(it, flat)
i , where each interaction type contributes equally, is calculated as

w
(it, flat)
i =

1

nI
· 1

NI
, (5.4)

with NI the total number of events with interaction type I and nI the number of
different interaction types in the data. For the full dataset this is 4. This normalises
the total weight over all events to 1.

The state of physical weight w
(it, phys)
i is calculated as

w
(it, phys)
i =

1

NI ·∑i w
(sim)
i

·
NI∑

i∈I

w
(sim)
i , (5.5)

with w
(sim)
i the physical simulation weight discussed in Equation 5.3. By dividing the

events by the total simulation weight over all events and the number of events with
the respective interaction type NI , the total weight is again normalised to 1.

Combining both states of weight into a single final interaction type weight w
(it)
i is

given by the superposition:

w
(it)
i = w

(it, phys)
i · r + w

(it, flat)
i · (1 − r), (5.6)

with r ∈ [0, 1] describing the Physical weight share (PWS). r will be displayed on
the top right of the dataset. 0.8dataset0.4 for example has 80% sr events and a PWS
for interaction types of 40%. Alternatively, as for the source datasets, if the dataset
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Figure 5.2: Combined weight for interaction types in the case of physical weighting
(orange) and flat weighting (blue). Notation follows subsection 2.4.3.

contains only one interaction type, the name of it will be given instead of the ratio:
0.8datasetνe .

For the extreme cases of complete physical weight or complete flat weight, the total
weight of the interaction types during training is shown in Figure 5.2. The physical
weighting shows a high content of νCC

µ and a low content of νNC
x and νCC

τ .

5.4.3 Spectra

As a third option, the spectra weight w
(sp)
i of energy, zenith, and azimuth can, similar

to the interaction type weight, be changed from a flat weight to a physical weight.
For now, the three spectra can only be tuned together by a single value. However, if
desired a possibility for independent adjustment can be implemented. As the simulation

weights w
(sim)
i are already calculated for the energy and angle of the individual events,

the translating to the physical state in the script requires only normalisation:

w
(sp, phys)
i =

1
∑

i w
(sim)
i

· w
(sim)
i . (5.7)

In order to calculate the flat weights, the phase space of the events is binned for energy
zenith and azimuth and each bin B calculates its weights as:

w
(sp, flat)
i =

1

nB
· 1

NB
, (5.8)
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with, comparable to the flat interaction type weights, NB the number of events in the
respective bin B and nB the number of bins. They are then combined in the final
weight by

w
(sp)
i = w

(sp, phys)
i · r + w

(sp, flat)
i · (1 − r), (5.9)

with the PWS r ∈ [0, 1]. It will be displayed in the bottom right corner of the dataset:
0.8datasetνe

0.6 for example has a PWS of 60% with the remaining 40% as flat weight. The
Physical weight share (PWS), is used for both, interaction types and spectra weights
in the next section, however it will be clear from context, which of both is meant.

5.5 Implementation drawbacks

The chosen implementation of the weighted training, discussed in section 5.2, has
primarily been chosen by Lukas Hennig as it was already somewhat implemented
during the OrcaNet development. Due to this in discussions with colleges at ECAP
and the KM3Net Oscillation working group, potential problems and solutions have
been identified. However, one has to note, that none of the following issues have been
tested and it is unclear as to how much these problems reduce the general performance
of the neural networks, due to the concrete choice of implementation.

5.5.1 Dominated batches

Figure 5.3 shows the distribution of sample weights for the five different datasets. All
show a range of sample weights of at least 104. With the batch sizes of 32 or 64 in
the trained networks, this range of weights could cause the weight update within a
batch to be dominated by a very small number of events in that batch removing the
averaging and therefore increasing the possibility of adjusting in a counterproductive
way. This varies the effective batch size during the training on a batch-by-batch basis,
resulting in a very jagged optimisation.

Increase batch size The most direct approach to tackle this problem would be to
increase batch size. A larger batch size would then enable more averaging in general,
reducing the amount a single batch gets dominated by a single event. Independent
of this concrete problem setting the batch size as large as possible, up to the limit of
the VRAM of the GPUs is recommended by a group of Google engineers [80]. On
the other hand, a very large batch size is generally associated with less generalisation
ability of a neural network.
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Figure 5.3: Sample weight distribution for all 5 interaction type combinations datasets
tested in section 7.2. Notation follows subsection 2.4.3.

Sample batch according to weight A more fundamental approach would be to
replace the implementation of weighted training completely, by removing the weighted
loss function and instead applying the weighting during the sampling process of the
batches. By sampling in a probabilistic way, events with higher weight would be
trained on more often, but each batch would still weigh all events within it equally.

Fixed batch size By changing to a true probabilistic sampling method, the standard
definition of an epoch falls short, requiring that every event in the dataset be trained
at once, as that would result in extremely long epochs. Even if one would enforce a
loaded sampling keeping pure randomness in check it would require the higher weighted
events to be sampled hundreds of times, until every event is trained on. Instead, one
would need to redefine an epoch to finish at a certain number of events or batches.
This could be as simple as the total number of events in the training set. However, as
this number does not influence the training itself, establishing a value independent of
the dataset, it would present an option to establish a standard throughout KM3NeT
to ensure better comparability of different neural networks, independent of the dataset
sizes. This concept, of evaluating after a fixed amount of training samples, is already
standard in the training of LLM transformers [56] like GPT [57], where training is
done on an enormous amount of text tokens in various combinations.
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Figure 5.4: Variance of sample weights with in a phase space bin of log10(energy

, coszenith and interaction type. Variance in all events is 0.55.

5.5.2 Reduced topology variance

A problem independent of the current implementation is caused by the physical
simulation weights explained in section 5.3. The simulation weights do include a
variety of factors, which only are required in order to adjust the actual training
statistics. This results in some events being weighted less, than others, even though
they are located in the same place in the phase space. If the weights with similar
attributes vary, the network will try to improve on only the most influential events,
since the others do not contribute much to its loss. This is essentially removing particle
cascade variety from the training dataset, reducing the network’s incentive to generalise
and effectively train it on a smaller dataset. Weights that vary due to the desired
rebalancing of dataset statistics for example energy are necessary and not in question
here.

To show the amount of unnecessary weight differences, all available events are binned
into 20 logarithmic energy bins from 1 GeV to 100 GeV, 20 linear coszenith bins, the 8
interaction types given in section 5.1. Azimuth and run_id are not considered in the
binning, as they are already produced in about equal amounts and are therefore not as
important to reach the desired data statistics. Including these features in the binning,
would reduce the number of events in the actual bins, increasing statistical fluctuations.
Figure 5.4 shows the variance measured in each of the 3200 bins. For comparison the
variance in the dataset of all events shown in Figure 5.3 is 0.55. Even though the
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Figure 5.5: Sample weight distribution for all events before (blue) and after (orange)
proposed phase space bin averaging.

average variance within a bin is only about 20% of the total dataset variance, it still
makes up a significant amount of it.

A possible approach to this would be to average the weights within a given phase space
bin after the initial weights were calculated. This would keep the weights of the target
distribution, but eliminate all other weight differences. For this to work properly one
would need to think about, which parameters can be averaged over and which can
not. Additionally, a good procedure for finding the boundaries of each phase space bin
would be needed. Using the phase space binning described earlier the sample weight
distribution of the full dataset before and after averaging can be seen in Figure 5.5.
While the distribution is relatively consistent with and without averaged weights, the
most extreme values are eliminated, reducing the range of weights over one decade.

5.5.3 Test setup

In order to test for these problems, I propose two options: Implement a class for my
sample weight script, that would allow for the definition of arbitrary spectra (energy,
zenith, azimuth), after applying the original weights. This would allow one to create a
dataset with the same distribution, as the unweighted dataset, while keeping the sample
weight problem caused by the the physical weights calculations. Alternatively one
could apply random weights, similar to the weighted distribution, to the unweighted
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dataset.
Both options would result in two datasets of identical target distribution, with one of
them having assigned weights. Comparing networks trained with these two datasets
should give a good handle on the influence the large weight range has since the benefits
of the weighted training are being removed.
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As this thesis investigates the effects of weighted training within the general deep
learning efforts of KM3NeT, first a general agreement for the performance and behaviour
of my networks compared to the previous results of Daniel Guderian (DG) [68] and
Lukas Hennig (LH) [69] are established. This ensures that my results are also true for
other KM3NeT deep-learning applications. The comparison is especially important
since I use slightly different versions for the simulation data as DG and do energy
regression instead of tau classification (LH).
In order to achieve the just mentioned, this chapter first discusses the way networks
will be scored during this thesis. Next, an estimate of the error of networks will
be calculated, followed by a discussion on the results of the manual hyperparameter
optimisation of various datasets. All networks that are discussed in this chapter have
been trained without weighting and all datasets from Table 5.1.

6.1 Network score

As already established in section 4.3, for the actual evaluation of the networks the test
dataset is used. In order to be able to easily compare networks, the calculated network
score should be a single number. How to calculate the score from a set of individual
events, depends on two factors. First, how to calculate the individual event errors ei

from the event’s true reconstruction quantity yi,true and its corresponding prediction
by the network yi,pred. Second, as to how these event errors are combined into the
final network score. Both factors will be discussed in the following.

6.1.1 Event error

A network score is typically calculated as the median or mean of the distribution
of its absolute errors |ei|. One should however only use the absolute errors, if the
distribution’s shape of both positive and negative errors is similar. This is not
the case when evaluating networks trained with the OrcaNet framework for energy
reconstruction and evaluating them on the standard event error used for likelihood
and deep learning-based analyses in KM3NeT. By using the relative fractional error
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(RFE):

ei,RF E =
yi,true − yi,pred

yi,true

, (6.1)

on networks trained on the log10(energy), an asymmetric error distribution emerges
as shown in Figure 6.1, evaluating under and overestimation on different scales. On
the one hand in the network training a mean squared error of the log10(energy) is
used, limiting the valid energy range to ]0, ∞[. This is already the case for the
real physical neutrinos, but only gets enforced to the network by the logarithmic
conversion. Additionally, the training on the log10(energy) is necessary, in order to
preserve sensitivity to lower energies, while simultaneously training on multiple decades
of energy. On the other hand, the RFE assumes a valid number range of ]-∞, ∞[,
resulting in the cut-off at -1, since the network can only guess positive values for the
energy, which is 0+ as the lowest value and therefore underestimation by 100%, hence
an RFE of -1.

By taking the absolute error values and thereby superimposing the errors of this
asymmetric distribution, the impact of underestimation on the final score is reduced
compared to overestimation since it does not contain high values. In fact, about 10%
of the errors are greater than 1, and no error is smaller than -1. A possible solution to
this is to use the same type of error for the evaluation as during the network training,
a logarithmic error (LE):

ei,LE = log10

(
yi,true

GeV

)
− log10

(
yi,pred

GeV

)
= log10

(
yi,true

yi,pred

)
. (6.2)

The error distribution resulting from the LE on the same exemplary network as used for
the RFE in Figure 6.1 can be seen in Figure 6.2. It results in a much more symmetrical
error distribution, allowing for the reasonable use of the absolute error distribution to
calculate the network score.

However, since the LE is not used in any other KM3NeT analysis, and results in
different absolute values for the network score than the RFE, it cannot be used for
comparisons of this analysis with other energy reconstructions. For that reason, internal
comparisons of results within the thesis will be using the LE, while comparisons to
other results will be done with the RFE.

6.1.2 Network score

The process of reducing a set of event errors into a single network score is defined by
two aspects, the summary statistic like mean or median, and whether the events are
weighted with a flat spectrum, giving each bin in the phase space equal contribution
or weighted physically, resembling the anticipated neutrino spectrum measured in the
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Figure 6.1: Relative fractional error distribution of 0.5network0.5

0.5. The error is of unit 1
(see. Equation 6.1). Top: Histogram of whole test dataset. Bottom: Zoom of top row,
with a cutoff at an absolute error of 1. Mean and median are calculated for the whole
dataset, not only the plotted part. Bin width is equal for left and right in the bottom row.
Left: Absolute error of Equation 6.1. Right: Error as in Equation 6.1.

detector as explained in section 5.3.
Even though the mean is the used summary statistics to describe the average of a
distribution, it misrepresents most unsymmetrical and skewed distributions, as is the
case for the absolute errors shown in the lower left of Figure 6.1 and 6.2. A much
better choice is the median, which is generally more resistant to single outliers, as well
as the current standard for analyses in KM3NeT.
The question of weights unfortunately is much more complicated. At first glance using
the expected neutrino flux in the detector seems obvious since what we in the end want
to perform well on is real data. However, there are two major issues with physical
weighting.
Independent of which physical weighting we apply to the events, we initially have to
choose a atmospheric flux model to use for our weighting and as explained in section 2.3,
there are still open questions regarding the flux of atmospheric neutrino. By weighting
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Figure 6.2: Log10 error distribution of 0.5network0.5

0.5. The error is of unit 1 (see.
Equation 6.2). Top: Histogram of whole test dataset. Bottom: Zoom of top row, with a
cutoff at an absolute error of 1. Mean and median are calculated for the whole dataset,
not only the plotted part. Bin width is equal for left and right in the bottom row. Left:
Absolute error of Equation 6.2. Right: Error as in Equation 6.2.

with a specific model, the uncertainties of the model would be transferred to the error
of the network.
The next problem is caused by different neutrino flavours occurring in the data for
given energies. νCC

τ interactions can only occur at energies over approximately 3 GeV,
due to the high rest mass of the τ lepton of approximately 1.78 GeV · c−2. Therefore,
the influence on the network score by events with energies below 3 GeV, is only made
of a combination of νCC

e ,νCC
µ and νNC

x , as is shown in Figure 6.3. How this can lead

to unintuitive results is shown in Figure 6.4. Here the performance of νNC
x is on

average better, than the other interaction types, while simultaneously performing
worse than the other types at every data point, where data for both interaction types
is available. The average νCC

τ performance is not influenced by the general bad energy
reconstruction below 3 GeV, which drags down the average performance of the other
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6.2 Estimate for network uncertainty

Figure 6.3: Event occurrence for rbr events, separated by interactions types and weighted
physically as discussed in section 5.3. Notation follows subsection 2.4.3.

interaction types.

For these reasons, I will use a flat weighting for the calculation of network scores in this
thesis, providing base score with hopefully little bias. Since a physical weighting still
can provide additional information, it will be shown in addition to the flat weighted
network score.

6.2 Estimate for network uncertainty

In this section, the statistical variance in network performance is estimated. To test
this, seven neural networks have been trained with an identical set of hyperparameters
given in Table 6.1 and the model architecture discussed in subsection 4.5.2. It deviates
from the best hyperparameter set found by DG for the energy reconstruction of his
PhD thesis only for the number of k-nearest neighbours, which has been reduced to 16
in order to save on computing power. This is reasonable since the goal of the MHPO in
this chapter is not to have a detailed analysis or find the absolute best hyperparameter
configuration, but only to establish a general agreement with the previous works.

The flat and physical weighted network score for all seven networks is plotted in
Figure 6.5. For the flat-weighted LE a standard deviation of 0.007 is calculated, which
corresponds to an error of 5%. The physical weighted LE has a lower relative deviation
of 2% with a standard deviation of 0.002. The lower spread for the physical weighted
score makes sense since the selection of the final epoch is based on the validation loss,
which itself is calculated with physical weighting. The hereby determined standard
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6 Manual hyperparameter optimisation

Figure 6.4: Plots shows the bad performance of low energy events, separated for the
different interaction types. Each point is the median of the absolute errors weighted flat for
events with its respective interaction type and energy bin. The event errors are calculated
according to Equation 6.2.

Hyperparameter Value

Learning rate 0.005
batch size 32

k-nn 40
Activation function Relu

Loss LogNormal
Optimiser Adam
ϵ (Adam) 0.1

Table 6.1: Default hyperparameter values for MHPO
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Figure 6.5: Physical and flat weighted LE network scores for 7 networks trained with
identical configuration given in Table 6.1.

deviations will be used as the approximation for the statistical error in the network
evaluation from now on.

6.3 Basic hyperparameter optimisation

This section presents the results of the initial MHPO. The networks are all trained with
the same hyperparameter as in section 6.2. Since the different tests were run in parallel,
the optimised parameters are not applied in the subsequent subsections. The networks
have only been trained with and scored on νCC

e data, to ensure a converged network
within 24 hours. This limitation is chosen for the same reasons as the reduction of k
discussed in section 6.2.

Adam optimizer The first hyperparameter to be discussed is ϵ, the factor responsible
for numerical stability in the adam optimiser as explained in paragraph 4.2.2. Its
performance over the range from 1e-8 to 0.5 is shown in Figure 6.6. The best results
are produced around a value of 0.1. This is the same value as in the initial parameter
set from Table 6.1 and the default parameter in OrcaNet. It has to be noted that this
value differs drastically from the recommendation of 1e-8 given by the authors in the
original paper [61].
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Figure 6.6: Physical and flat weighted LE network scores for the adam optimiser
parameter ϵ for values between 1 × 10−8 and 0.5

Figure 6.7: Physical and flat weighted LE network scores for 6 different activation
functions of the EdgeConv blocks.
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Figure 6.8: Physical and flat weighted LE network scores for 4 different losses.

Activation function In addition to the 2 activation functions defined in subsec-
tion 4.1.1, elu, selu, tanh, and softplus have been tested as the activation functions
used within the EdgeConv blocks of the neural network. The 4 additional activation
functions are given by:

Elu: ϕ(x) =

{
x, if x ≥ 0,

α · (ex − 1), otherwise,
(6.3)

Selu: ϕ(x) = λ ·
{

x, if x ≥ 0,

α · (ex − 1), otherwise,
(6.4)

Tanh: ϕ(x) =
e2x − 1

e2x + 1
. (6.5)

Softplus: ϕ(x) = ln(1 + ex). (6.6)

From the comparison presented in Figure 6.7, we can see that the best performance
is achieved by ’elu’. Even though its performance is significantly better than the
default relu activation function, no change will be done for further analysis, in order
to preserve comparability with DG in the analysis presented in chapter 7.

Loss Furthermore, the losses defined in Equation 4.6 have been tested and are
shown in Figure 6.8. The best performing loss has been found to be the reconfigured
log_normal loss. However, also the mean squared and mean absolute error show a
good performance.
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Figure 6.9: Physical and flat weighted LE network scores for k nearest neighbours from
8 to 80.

K nearest neighbours Increasing the number of nearest neighbours k, results in more
information gain of the network per epoch, as already found by DG, since the network
can exchange more information over its edges simultaneously and more importantly
with more distant nodes. However, it also increases the needed computing time per
epoch, since more edges have to be calculated in every convolution. The limiting
factor in the training of neural networks is not the number of epochs, but the time
needed to gain this performance. As for the other hyperparameters, the performance
after 24 hours of training is evaluated in Figure 6.9. It can be seen that increasing
k results in a better performance, with the best results around k = 40. After that,
the network performance decreases, due to the increased time spent in the nearest
neighbour algorithm and consequently fewer total events used in the training. k = 40
might be the optimal for the limited training time of 24 hours, while a higher k might
perform better after more training time. As a higher k would require much more time
in the further analysis, the time restriction seems reasonable.

6.4 Learning rate optimisation

In contrast to the hyperparameters discussed in section 6.3, the learning rate η has
been optimised for datasets of various interaction type combinations (see section 5.1),
as it is typically the most significant hyperparameter with the largest impact on the
final network performance. In addition to this generally being the case, it has also
been observed by LH with his automatic hyperparameter optimisation for his tau
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classification task. For this reason, the learning rate is tested for each dataset used in the
further analysis individually, in contrast to the previously discussed hyperparameters
tested only on νCC

e , where similar results for the other datasets are expected.
Since the learning rate of neural networks is itself highly dependent on matching batch
size, these two parameters have been varied together. The learning has been varied
in a range from 5 × 10−4 to 1 × 10−1 around the optimal learning rate found by DG
and LH. Each learning rate has been tested with the batch sizes of 16, 32 and 64. The
batch sizes are chosen as a power of 2, as this optimises the memory usage of the
GPUs.
In total five different datasets have been tested. These include the datasets containing
only a single interaction type of either νCC

e , νCC
µ or νNC

x . νCC
τ events have not been

trained on, as these networks aim to test the capabilities of the neural networks when
specialising their reconstruction for a single event topology. Since the τ lepton produced
in the νCC

τ interaction, can decay in 3 different ways, which are not tagged during
Monte Carlo production and therefore not differentiable, no single event topology
can be gained from νCC

τ . The results for the three single type networks are shown in
Figure 6.10.
Additionally, a network has been trained with a dataset containing νCC

e and νNC
x ,

generally called the shower network. The last of the 5 networks was using a dataset
containing all interaction types, including νCC

τ . The results for both multi-type
networks are shown in Figure 6.11.

For all five networks a learning rate of 1×10−2 seems to be optimal. This is a bit larger
than the default value found by DG of 5 × 10−3 and on the higher end of the optimal
range found by LH. Due to the time restraint of 24 hours of training, however, lower
learning rates are at a disadvantage, since low learning rates adjust the weights in
smaller increments and therefore take longer to reach their optimal state. To counter
this, a learning rate of one step lower than the best 1 × 10−2 has been chosen to be
used in further analysis.
The single-interaction type networks show the best performance for a batch size of
32, while the multi-interaction type networks prefer a batch size of 64. This may be
caused by a higher variety of event topologies in the multi-type networks, requiring a
higher batch size in order to calculate an accurate average gradient. Additionally, a
higher batch size enables training on more events in total, since calculating more events
simultaneously in each batch is faster. This is more important for the multi-interaction
type events, as they are trained on more total events, with more features to understand.
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6 Manual hyperparameter optimisation

(a) Trained with and evaluated on ν
CC
e .

(b) Trained with and evaluated on ν
NC
x .

(c) Trained with and evaluated on ν
CC
µ .

Figure 6.10: Flat and physical network scores for various learning rates in combination
with batch sizes of 16, 32 and 64.
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(a) Trained with and evaluated on ν
CC
e + ν

NC
x . (Shower network)

(b) Trained with and evaluated on all interaction types.

Figure 6.11: Flat and physical LE network scores for various learning rates in combination
with batch sizes of 16, 32 and 64.
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6.5 Summary

In section 6.1 the use of a logarithmic error to evaluate and score the networks in this
thesis was explained, as well as why the test events will be weighted flat and physical
in the following chapters. Additionally, the statistical error of trained networks has
been estimated. Then a hyperparameter optimisation has been performed, comparing
to the works of DG and LH. This has been done mainly on networks trained with only
νCC

e , but the learning rate and batch size have been optimised for each of the five
different datasets, that will be used in the following analysis. A general agreement with
the initial settings taken from DG and the automatic hyperparameter optimisation by
LH has been found for all tested hyperparameters.
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7 Sample weight testing

This chapter constitutes the main analysis of this thesis. It will first investigate the
effects of the different sample weight options presented in section 5.4 and conclude
on an overall good setting. This setting will be used to train five networks with the
datasets presented at the end of section 5.1, which is discussed in more detail and
compare to the previous works of Lukas Hennig and Daniel Guderian. In contrast to
chapter 6, the networks in this chapter have been trained for up to four days, until
convergence had been reached.

7.1 Sample weight tests

This section will present the effects the 3 sample weight options have on the performance
of neural networks. In order to isolate the effects of each option as well as possible, only
the tested option will be varied from the standard 0.5dataset0.5

0.5, while the other two
are fixed. The 0.5dataset0.5

0.5 is used as the starting ground, as the moderate settings of
0.5 ideally reduce the influence of effects arising for the extreme settings with values
of 0 or 1. By displaying an ’x’ instead of the value for a sample weight option in the

0.5datasetνe
x , it is implied that this option is currently being varied in the analysis.

This section is not designed to find the best solution for a specific analysis conducted
at the end, but to generally investigated the effects the tested sample weight options
have on the network predictions. Therefore the individual effects presented, will not
linked by a clear unifying thread, but stand to some degree alone, for the reader to
apply to their specific application. The overarching conclusion for each option will be
highlighted as bold.

7.1.1 Datasets

The results of the variation of sr-percentage in the xtraining data0.5
0.5 can be seen in

Figure 7.1. The most striking feature that can be observed is the network behaviour at
either 0 or 100% sr-percentage, where most of the time a drastically worse performance,
indicated by a high error, can be observed. This is expected, since these sr-percentages
set the weight of either the rbr or sr events to 0, reducing the total number of events
in the training data considerably. Generally, this effect is more significant at 100% sr
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7 Sample weight testing

events, indicating a better training quality for the rbr-events. The effect is reduced by
evaluating on the dataset which the network has been trained on. An exception can
be seen at the flat error 0% sr-percentage, which however is still within errors. For
this reason, the following discussion will not take these extreme settings into account.

Figure 7.1: Plot shows weighted LE network score of xnetworks0.5

0.5 on test data separated
for rbr and sr events. X axis shows sr ratio in %. Left: Flat weighted. Right: Physically
weighted.

Looking at the flat error on the left, we can see that with increasing sr-percentage the
network performance increases, until it reaches its best performance at a sr-percentage
of 70%. This makes sense, as the flat error puts more importance on interaction
types and energies, with a low physical flux. As the sr dataset boasts more individual
events and therefore a higher variety in those regions compared to rbr dataset (see
Appendix A), a network with a higher sr-percentage achieves a lower error overall. It
has to be explicitly stated, that adding a higher percentage of sr weight only increases
the variety at higher energies, while the total weight for higher energies stays the same.
While true for both the rbrtest data and srtest data, evaluating on the srtest data
profits more from a high sr-percentage, reducing its error by 0.2 instead of 0.1 for the

rbrtest data. The difference in error for both networks can be attributed to the lower
noise level in the sr data, which especially at high sr percentage reduces the network’s
capabilities to handle the noisy rbrtest data.
While the physical score on the right of Figure 7.1 shows the same noise-related error
spread in the evaluation on sr and rbr test data as the flat error, it does not change
on average. Only evaluating the test datasets separately, reveals a preference of the
physical score for a low sr-percentage of 10% for the generally more realistic rbrtest data.
The stronger reaction to a varied sr-percentage of the flat score could be due to the
different weighting of scoring metric (flat) and network optimisation, i.e. validation
with physically weighted rbrvalidation data1

1. This on average unchanged score for
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7.1 Sample weight tests

Figure 7.2: Plots show the energy resolved xnetwork0.5

0.5 flat weighted LE on rbr (left)
and sr (right) test data. Legend gives the ratio of sr data in the train dataset.

Figure 7.3: Same plot as Figure 7.2, but with equal y axis and only selected xnetworks0.5

0.5

for better visibility.

the physical error also gives a less clear picture of what sr-percentage is optimal. A
higher sr-percentage now only seems preferable, when evaluating on the srtest data.
Evaluating the performance on rbrtest data instead shows the best performance with a
10% sr-percentage, indicating that the best network for the rbr test data is dependent
on the evaluation metric used.

To confirm the hypothesis, that a higher sr-percentage increases performance for high
energies, valued more by the flat score, the error evaluated for both datasets and
resolved for energy is presented in Figure 7.2 and 7.3. For the rbrtest data a lower
error can be observed for events with energy over 40 GeV, while for rbrtest data the
lower error is already preferable starting at 20 GeV.
From Figure 7.2 we can see, that for both test datasets the best performance is reached
around 50 GeV. In addition to this, a range of low error can be found from 3 GeV
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to 10 GeV in the sr test data. To a much smaller degree, it can also be observed for
the rbr test data. In the sr evaluation, this drop in error can already be observed
with a very low sr-percentage, in contrast to the rbr evaluation, where it only occurs
for a sr-percentage of less than 80%. This might be caused by some structural differ-
ence between sr and rbr events in the training data, which gets exploited by the network.

From the just discussed I conclude, that one should aim for a setting that

ensures high statistics and event variety in the regions of interest for the

desired analysis, while training the network on enough noisy rbr events,

to learn to deal with noise in the real data. For low-energy applications, this
is ensured by a low sr ratio and for high-energy applications a higher sr ratio seems
more adequate.

7.1.2 Interaction types

Figure 7.4: Plot shows weighted LE network score of 0.5networksx

0.5 on test data separated
for rbr and sr events. X axis shows the varied interaction type PWS in %.

The change of 0.5networkx
0.5 performance, for flat and physical weighted score, is shown

in Figure 7.4. In both cases, the reconstruction of the rbr events is consistently harder
than the reconstruction of sr events. Using a flat weighted score results in a steep
decrease in performance if the share of physical weights increases over 50%. For the
physical weighted score only the 0.5network0

0.5 performs notably worse.
Even though the absolute values of the error distributions are different for sr and rbr
test data, their shape is almost identical. For this reason, further analysis will be done
only on the rbr test data, which is most representative of real events. In Figure 7.5
the 0.5networkx

0.5 performance is shown, for the individual interaction types. The left
plot shows a flat weighted score, the right shows a physical weighted score.
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Figure 7.5: Plots show the energy resolved 0.5networkx

0.5 weighted LE on rbrtest data0

0

(left) and rbrtest data1

1 (right). X axis shows the interaction type PWS in %.

For the flat score the performance of all interaction types decreases with increasing
PWS, for the physical score this decrease can only be observed for νCC

τ and νNC
x . This

is expected, as only these two interaction types lose statistics during training for an
increasing PWS. This shows, that the interaction PWS can be used to adjust

the under representation of νCC
τ and νNC

x , ensuring even performance over

the various interaction types.

Additionally, this is a very good example, of why a physical weighting in the error
can be misleading. To show this, Figure 7.6 plots the energy-resolved performance for
the separate interaction types for a low PWS network (left) and a high PWS network
(right). We can see, that the low PWS network performs better on nearly every data
point, across all interaction types. The only exceptions to this are in the energy range
from 2 GeV to 20 GeV especially for νCC

µ . This is expected, as the 2 GeV to 20 GeV

νCC
µ events alone have about 35% of the total physical weight. Everywhere else the

performance is either getting worse or the data points fluctuate too hard to make a
confident statement about it. Since this immense concentration on a ’small’ group of
particles, outweighing everything else, as is done by the physical score (Figure 7.4),
can be unexpected and therefore misleading.

Next for varying PWS in training the evolution in energy-resolved performance for
combined interaction types is shown in Figure 7.7. Here we can see, that the perform-
ance in high energy ranges decreases above 60% PWS, while lower energies (2 GeV to
10 GeV) benefit from a higher PWS. While the spectrum weights stay the same for
all interaction types individually for all 0.5networksx

0.5, the νCC
µ neutrino flux falls off

faster at higher energies, than the νCC
τ flux. Resulting in more low energy statistics

with a higher interaction type PWS, due to the increase of νCC
µ statistics overall.

Also with higher PWS the increased performance in the energy range from 2 GeV to
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Figure 7.6: Performance of the 0.5network0.1

0.5 (left) and 0.5network0.8

0.5 (right), resolved by
energy and interaction type. Notation as in subsection 2.4.3.

Figure 7.7: Performance of 0.5networksx

0.5, resolved by energy. Left: All trained networks.
Right: Only selected networks for better visibility.

10 GeV gets more pronounced. In contrast to Figure 7.2, which has varied the dataset
ratio statistics, the effect can now also be observed in the srtest datax

x. This subsection
however only shows performance on rbr test data.

7.1.3 Spectra

In this subsection, the 0.5networkνe
x performance is discussed. As for the previous two

subsections the analysis starts with the performance for the different datasets shown
in Figure 7.8.

We can see, that as before the rbr data is harder to reconstruct than the sr data
and the development of the curves is similar for the different datasets. For the flat

64



7.2 Dataset comparison

Figure 7.8: Plots show flat weighted LE network score of 0.5networksνe

x on test data
separated for rbr and sr events. X axis shows the varied spectrum PWS in %. Left: Flat
weighted. Right: Physically weighted.

weighted error (left) we observe a decrease in performance if trained with high PWS.
This finding is consistent with the energy-resolved spectrum in Figure 7.9. The full
spectrum is plotted with a logarithmic x-scale since the statistics for νCC

e with high
energies (above 50 GeV) are very low. Still, the higher performance for high PWS is
observable for energies of 2 GeV to 20 GeV. Above 20 GeV a lower PWS is preferable.

This also shows for the rbrtest dataνe
1 , weighing lower energies with more importance.

For a PWS above 70% no increase in physically weighted performance can be observed.
I would advise using a PWS of 20 - 70%, depending on the goal of the

analysis, as outside of this range no clear improvement for either flat or

physical error is noticeable. The most equal error over the whole energy range can
be seen with a PWS of 40%.

7.2 Dataset comparison

The just presented results on the performance of the sample weight options for dataset
ratio, interaction type composition and spectrum composition will now be applied
in the training of the three single and two multi-interaction type datasets discussed
in section 5.1. Without explicit requirements for a concrete analysis, a configuration
with a good performance overall is aimed for. From section 7.1 I conclude that such a
sample weight configuration can be achieved best with 0.7train data0.5

0.4. For the general
comparison of these five networks, the LE is used, as was discussed in subsection 6.1.1,
while for completeness identical plots using the RFE are attached in Appendix C.
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Figure 7.9: Plots show the energy resolved 0.5networksνe

x flat weighted LE on
rbrtest dataνe

0
. Left: All spectrum PWS on logarithmic x-scale. Right: Selected spec-

trum PWS to show low statistics at high energies.

The performances of the three single interaction type networks are shown in Fig-
ure 7.10. The networks are evaluated on all three self-contained interaction types

rbrtest datasetsνe/νNC/νµ . By looking at the flat and physical network scores in each
column, it can be seen that every interaction type is best reconstructed by the network
trained on events of the same interaction type shown on the diagonal. This indicates
that the graphs of every interaction type do hold different information, that can be
recognised by the networks.
Additionally one can observe a lower error for 0.7shower networksνe+νNC

0.4 compared to
the 0.7track network

νµ

0.4. This shows that track events are inherently much harder to
reconstruct than both other types. This is expected as in contrast to shower events,
track events generally leave the detector volume before depositing all their energy. It
can also be seen when only looking at the scores of the track network in the bottom
row of plots. While not trained on shower events, the track network gives a lower
error of the reconstruction of shower events than the trained on track events. In order
for this to be possible, the information decoded in the event graphs has to be very
similar, which allows the network to translate its learnings from track events to the
easier-to-reconstruct shower events.

Looking at the performance of the two multi-type networks shown in Figure 7.11
we can see, that except for the shower network evaluated on νNC

x , both networks
are performing equivalently or even better than the respective specialised single-type
network. This is surprising, as I would have expected a slight, but definitely worse
performance compared to the specialised networks. This finding should be taken with
caution, as it stands in contrast to the general experience of KM3NeT works, which
agrees with my expectations. The reasoning for my expectation goes as follows.
Since the different event topologies do to some degree show different patterns in the
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7.2 Dataset comparison

Figure 7.10: Single interaction networks trained and evaluated on νCC
e ,νNC

x and νµ.
Plots show the median, 16 and 84 percentile of the flat weighted LE resolved over true
energy. Legend shows flat and physical LE score. Notation follows subsection 2.4.3.
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Figure 7.11: Multi interaction networks trained on shower and all interaction types.
Evaluated on νCC

e ,νNC
x and νµ. Plots show the median, 16 and 84 percentile of the flat

weighted LE resolved over true energy. Legend shows flat and physical LE score. Notation
follows subsection 2.4.3.
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Figure 7.12: Plot shows the energy resolved physical LE score for all 5 networks discussed.
The legend shows which interaction types were used in the networks training. Notation
follows subsection 2.4.3.

graphs, that need to be analysed. When trained on multiple event topologies, the
network needs to implicitly decide, which topology the event has and reconstruct with
the according pattern. This reduces the network performance as it cannot distinguish
perfectly between the different interaction types as was done for the single-type
networks. However, by combining the interaction types, other unknown factors must
be at play, which I cannot explain. The question would be if these other factors are
somewhat based on the physical features of the event graphs, a higher amount of
different graphs or positive effects of the combined events statistics.

Furthermore, we can observe, that especially in the evaluation on νµtest data, the

low error at 2 GeV to 10 GeV is related to the amount of νCC
e in the training data.

Figure 7.12 shows the performance of all five networks evaluated on νµtest data. The
strongest dip can be observed for pure νCC

e and combined shower events, both boasting
a high amount of νCC

e . The last dip is found with νNC
x . Unfortunately, I cannot

explain this behaviour, even though it is probably caused by an important systematic,
judging from its severeness.

7.3 Standard networks

Next, other reconstruction methods are compared to the weighted 0.7networks0.5
0.4. The

reconstruction methods in question mostly distinguish between different event topolo-
gies, as long as a well-performing classification can be established. This classification
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Figure 7.13: Comparison of the weighted GNN, unweighted GNN, standard reconstruc-
tion and DG GNN for shower (left) and track (right) network. Plots show the median, 16
and 84 percentile of the flat weighted RFE resolved over true energy. Notation follows
subsection 2.4.3.

can be done between track and shower events, but not between electromagnetic and
hadronic showers. For this reason, the track and shower network will be compared to
the other reconstruction algorithms.

7.3.1 Comparison with other reconstructions

First a comparison of the median, 16th and 84th percentile of the LE for the two
networks evaluated on rbrtest data0 is shown in Figure 7.13. It compares the per-
formance of the standard reconstruction algorithms, JShower (shower events) and
JMuon (track events), with the original energy reconstruction by DG, the unweighted
network introduced in chapter 6 with the sample weight optimised networks. The
comparison is done using the neural networks disadvantageous RFE since the data for
the energy reconstruction by DG has been taken from plots in his thesis and could not
be reproduced from data in order to calculate the LE.

For the shower network, a clear outperformance of the standard algorithm can be
observed for all neural network-based reconstructions. Compared to DG, both new
networks performed slightly better above 20 GeV. All neural networks show an equal
error distribution down to 3 GeV. The results from DG unfortunately are not avail-
able below this threshold. The unweighted network even preserves this behaviour
down to 2 GeV. Below this energy threshold, all reconstruction algorithms show an
increasingly bad energy reconstruction. The good performance down to a lower energy
of the unweighted network compared to the weighted network, is probably due to
the applied weighting. As discussed in subsection 6.1.2, the anticipated neutrino flux
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actually tapers off below 3 GeV. In the distribution of generated events, however, this
is not apparent, thereby inducing more incentive for the network to guess very low
energies. This is balanced by better performance of the weighted network in the range
of 50-80 GeV, even though this is not as significant.
For the track network, the picture is not as clear. Here the network of DG and the
unweighted network show agreement in their performance. This makes sense, since they
are trained on essentially the same dataset. Both of them outperform the standard
reconstruction considerably as was the case for the shower network. The weighted
network on the other hand is performing worse, than even the standard reconstruction
below energies of 20 GeV, with a slight performance increase down to 3 GeV. On the
other hand for energies above 40 GeV the weighted network is performing dramatically
better than even the other neural networks. Even though this uneven performance of
the network is most likely not optimal, it shows the power weighted training can have
over the final network performance. In order to achieve a more even response, could
probably gained with a 0.7network

νµ

>0.4, using a higher PWS for the energy spectrum.
This higher PWS can then counteract the smaller amount of low energetic neutrinos
in the flux of νCC

µ compared to νCC
e (see Figure 6.3). At energies below 2-3 GeV the

same decrease in performance as for the shower network can be observed.
The bad performance of the weighted 0.7network

νµ

0.4 compared to the standard recon-
struction changes, when no longer using the RFE, but instead the LE. Looking at
Figure 7.14, we can see, that for the LE the weighted network now outperforms JMuon
for every energy. The performance relative to the other neural network does not change
considerably. This shows the importance of evaluating an algorithm on the actual
target application, instead of a proxy metric, where drastically different results can
occur.

7.3.2 2D energy histogram

Further explanations of the findings from subsection 7.3.1 can be given, when analysing
a 2D histogram of the true and predicted values of the test data, shown in Figure 7.15.
For both networks tails diverging from the ideal ratio of true/pred = 1 at the ends of
the training energies can be observed. This behaviour can be observed in all networks
trained on a confined reconstruction quantity. In the reconstruction of an event, a
network analyses the input and calculates its prediction. However, as networks cannot
reconstruct with perfect precision, the network to some degree also bases its prediction
on the training statistics. This guessing shows in the spread of the reconstructed
values. At the edges of the possible values of the reconstructed quantity, however,
guessing is only possible in one direction, which shifts the spread towards the centre of
the distribution and focuses it into this tail.
At low energies, this occurs equally strongly for both networks, while at high energies
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Figure 7.14: Comparison of the physical weighted RFE (left) and LE (right) of the track
network for weighted GNN, unweighted GNN and standard reconstruction JMuon. Plots
show the median, 16 and 84 percentile of the flat weighted RFE resolved over true energy.
Notation follows subsection 2.4.3.

the deviation of the shower network is not as pronounced as for the track network. This
makes sense, as the reconstruction of low energy events is due to their lower average
hit count harder and therefore promotes more statistical guessing of the network.
Additionally, one can see the track network reconstructing events in the range of
8-40 GeV with an offset to the true energy instead of a central scattering around the
target value. Relating these things to Figure 7.13, we can explain the steep decrease

Figure 7.15: 2D histograms of predicted over true energy of shower (left) and track
(right) network. Black line gives reference for ideal reconstruction. Bins are normalised
within column. Notation follows subsection 2.4.3.

in performance by the low energy tails. In order to combat this, the incentive of
the network to guess also towards its energy edges, instead of the centre has to be
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Figure 7.16: Physical weighted 2D histogram of track network for log10 of predicted
over true energy. Red curve shows manually optimised modified Richards curve (Equa-
tion 7.1,Table 7.1) to trace the reconstruction center.

increased. This could be done, by training the network with more weight on the lowest
energies, than is expected in the flux. Ironically this is being done, when training on
unweighted data, explaining the good performance down to 2 instead of 3 GeV.
The bad performance of the track network between 3 and 40 GeV is explained by the
offset in reconstructed energy. This seems to be necessary, to enable the very accurate
reconstruction at 50 GeV, which coincides with the location, where the network crosses
the ideal reconstruction line.

7.3.3 Energy correction

In order to combat the effect of the tails and offset, described in subsection 7.3.2, an
energy correction has been tested. The idea for this correction is to correct the network
prediction ypred by the difference of this energy to where it is on average belonging
ŷtrue. This difference is given by a function δ tracing the output ratio of predicted to
true energy. Figure 7.16 shows the 2D histogram of the true and predicted energies of
the shower network, as well as the difference function δ relating the predicted energy
ypred with its potential optimal position ŷtrue. In order to receive a smooth output it is
important that the relation of these two values is given by a single function and cannot
be calculated in bins or with linear interpolations of bins. The difference function is
described by a modified logistic curve, called Richards curve [81], with an added slope,
described in Equation 7.1 and the parameters given in Table 7.1.
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Variable A K C Q B ν m

Value 0.32 1.75 1 13 2.5 0.8 0.1

Table 7.1: Parameters of modified Richards curve from Equation 7.1 in Figure 7.16.

Figure 7.17: Comparison of track network before and after energy correction. Left:
Physical LE median, 16 and 84 percentile resolved over true energy. Middle: Physical
weighted 2D histogram of predicted over true energy. Right: Physical weighted 2D
histogram of corrected over true energy.

δ(ŷtrue) = A +
K − A

(C + Q · exp(−B · ŷtrue))1/ν
+ m · ŷtrue (7.1)

This function was chosen to approximate the difference since the basic logistic curve
already resembles the s-shape of the network output. The modified logistic curve used
here allows for change of the lower and upper asymptote and creates the possibility
for one of the bellies to become larger, by removing the pointsymmetric nature of the
logistic curve. At last, the added slope allows the function to tilt. The parameters
have not been fitted but varied manually until an adequate tracing had been achieved.
A comparison of before and after the correction is shown in Figure 7.17. It can be seen
in the 2D histograms that the tails have been removed and the corrected energies are
now spread symmetric around the ideal prediction, showing the intended effect of the
correction.

However looking at the median and quantiles of the LE, we can see, that the per-
formance is not increasing on the edges, but instead decreasing in the centre of the
distribution. The latter is happening, since by adjusting all values with a certain
predicted energy, which mostly means pulling the distribution apart, the more or less
badly reconstructed events with medium true energy values are being moved away
from the ideal reconstruction instead of towards it, as is the case for the tails. The lack
of intended improvement at the tails is understandable when seeing, that by pulling
the centre of the tails on the ideal reconstruction line, the spread of the events becomes
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so large, that it is cancelling out the benefits of the center adjustment.
Due to these results, it was decided to not use an energy correction. However, one
could definitely investigate, how the change from an offset-dominated error to a spread-
dominated error influences actual analysis. Furthermore, no effects concerning cuts on
predicted uncertainty or the low quality of the events have been taken into account.
Investigating these things, however, is out of the scope of this thesis.

7.3.4 Data/Monte Carlo ratio

At last, the Data/Monte Carlo ratio (DMCR) for both networks is investigated,
where real data recorded by KM3NeT/ORCA6 is compared to physically weighted
MC simulations. The MC data imitate the real data by including neutrinos and
atmospheric neutrinos, but differ by not including simulated pure noise events. In
order to ensure equivalence in the distributions, the noise events in the real data have
to be vetoed. This is done by applying the cuts discussed in section 3.3.

• Number of triggered hits: nTriggerHits ≥ 15

• Reconstructed as upgoing: JGandalf direction > 0

• Signal-noise classifier: JGandalf likelihood ≥ 40

By applying these cuts, also most down-going atmospheric muons are removed. Addi-
tionally to event targeting cuts, several runs were removed completely from the dataset.
The cuts and removed runs are the same as in [82].

In both plots shown in Figure 7.18, the green curve shows the physically weighted true
MC flux. The stark increase at about 70 GeV shows the beginning of the atmospheric
muon flux, since, as explained in section 3.3, they need to have at least this much
energy, in order to penetrate the water above the detector and not lose the energy
before reaching the detector. The energy reconstruction of the MC simulations and
real data are plotted for the GNN and standard reconstruction algorithm. By dividing
the histogram bin values one can calculate the DMCR, which gives an indication of
the quality of the MC simulations, i.e. how good it replicates the real physics.
One can immediately see, that reconstructed values of the standard reconstruction
are distributed much wider, than for the GNN reconstruction. This is mainly due to
the fact, that the network is only trained on events from 1 GeV to 100 GeV, while the
standard algorithm is based on our understanding of the underlying physical processes,
which do not limit the valid energy ranges. The network has therefore learned that
returning a value outside the training data values is always wrong, thereby hindering
its ability to extrapolate its learnings to higher energies. This is shown also by the
much higher number of events reconstructed in the 3 GeV to 30 GeV region, both data
and MC events, which have been ’pulled down’ from the bulk of events up to 500
TeV. However, some events are still reconstructed at energies over 100 GeV, while this
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Figure 7.18: DMCR for shower (left) and track (right) network. Upper axis show the
MC true energy (green) GNN reconstruction on data (blue) and MC (orange), as well as
standard reconstruction on data (red) and MC (purple). Lower axis shows ratio of data
reconstruction to MC reconstruction for GNN (blue) and standard reconstruction (red).
Standard reconstruction for shower is JShower and track is JMuon.

extrapolation is more prominent for the shower network than the track network. This
is in agreement with the 2D histograms discussed in subsection 7.3.2, where the upper
limit tail is much more flat for the track network. It might be useful to investigate
the extrapolation capabilities of networks when an energy correction as discussed in
subsection 7.3.3 is used.
Below 3 GeV the DMCR for the GNN shows a stark disagreement between simulation
and real data. This may be the case since at low energies the events are typically of
bad quality and only have a few hits. This enables the neural network to find patterns,
which are not caused by the underlying physics behind the simulation, but instead by
the low complexity of the graphs. As the standard reconstructions are written based
on the expected physics, they are much less prone to finding patterns that are not
actually there.
Even when only looking at the range of 3 GeV to 100 GeV, where the GNN performs
best, the standard algorithms show better agreement in the reconstruction of real data
and simulations. While the GNN has an error of about 20% in this energy range, the
standard reconstruction has a DMCR error of only 10% up until 1 TeV. Above 1 TeV
the standard algorithm agreement declines. This increasing deviation confirms that
some problems exist within the KM3NeT simulations. These problems are known
and under investigation. The higher error of the GNN overall might be caused by
the low and high energy event problems discussed just now, which are consequently
inferring their DMCR disagreement to the central energy region in between, increasing
its DMCR error.
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7.4 Conclusion

By testing the three options of sample weights, a configuration for good overall perform-
ance of shower events was found and consequently used to compare to the standard
reconstruction algorithms of KM3NeT and the GNN energy reconstruction by DG.
With these investigations, it was shown, that the use of sample weights in the training
of neural networks, holds power over their performance. While no configuration of
sample weights was found, that improved the network performance over the entirety of
the trained energy range, sample weights allow the user to influence at what energies
the network will achieve a better or worse performance. This allows the network to
be optimised for energies more relevant to the concrete analysis one wants to run.
However, the benefits of optimising the network in this way can only be tested directly
with the given analysis. Doing this, however, is computationally expensive and very
impractical if one would want to implement it as the loss function during training.
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This thesis has tested the effects and possible benefits of applying sample weights
during the training of GNNs. For this three different options to calculate the weights
were evaluated and the best found configuration has been compared to likelihood-based
reconstruction algorithms, as well as the previous GNN energy reconstruction by
Daniel Guderian.

First, the relevant theory of neutrino physics has been presented in chapter 2, including
the phenomenon of neutrino oscillations, the production of atmospheric neutrinos and
the different typologies of neutrinos induced particle cascades produced dependent on
their flavour and mediating gauge boson. Next, in chapter 3, the detection of neutrinos
by the water Cherenkov detector KM3NeT/ORCA has been explained.

Furthermore, in chapter 4, the principle of neural networks has been explained. It
starts with the basic building blocks of neural networks and the standard training
procedure used in supervised learning. And leads up to the working principle of Graph
neural networks (GNNs) and in particular the ParticleNeT architecture, which is used
for the energy reconstruction tested in this thesis.

Next, the Monte Carlo simulation data used for training and evaluation of these
networks was explained in chapter 5. This chapter also extended the basic training of
neural networks to weighted training, which enables training on different statistics,
than naturally given by the data. The 3 options for calculating the sample weights,
for dataset, interaction type and spectrum weights have been explained. In the
end, potential problems with the current implementation of weighted training, like
varying batch size, have been highlighted and potential alternative implementations
for weighted training were discussed.

In order to ensure the validity of results in the greater context of the KM3NeT deep
learning efforts a manual hyperparameter optimisation has been performed in chapter 6.
It showed good agreement with the first GNN energy reconstruction in KM3NeT by
Daniel Guderian. However, it was decided to use a different scoring metric than before
in order to better match to optimisation of the trained neural networks.

The main analysis, testing the effects of the 3 sample weight options and comparison
of a chosen configuration to other reconstruction algorithms used in KM3NeT is
presented in chapter 7. It was found that including more data samples is beneficial
to the network performance, as long as the noise level in the data was kept similar
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to real detector conditions. The best setting was found to be around 70% single-run
data. Additionally, it was shown, that specifying weights for interaction type ratio
and spectra, an amplification of regions with low statistical relevance is beneficial.
Beyond a certain level of presence in the data, however, only a shift in the network
optimisation could be observed. This lead to a significant decrease in performance
in other now less weighted regions. In order to produce an overall well performing
network, a configuration of 70% single run data, 50% physical interaction types and
40% physical spectrum weights was found optimal. Further testing revealed this
configuration resulted in an overall good performance only for shower events.
By comparing the sample weight optimised network to the likelihood-based recon-
struction algorithms of JShower and JMuon and the GNN energy reconstruction by
Daniel Guderian it was found, that the use of sample weights resulted in a similar
reconstruction error distribution as the unweighted GNNs and definitely better per-
formance, than the likelihood-based approaches. Additionally, an energy connection of
the neural network has been tried, in order to correct for the tails produced by the
neural networks, which however did not improve the overall network performance. As
this correction has only been tried out very briefly, it could still be useful, to test if
quality cuts could extend the range of accurate network predictions into lower energies.
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A Event numbers

Figure A.1: Number of events in the run-by-run dataset. Resolved for energy and
separated by interaction type. Notation follows subsection 2.4.3.

Run-by-run dataset

Figure A.2: Number of events in the single-run dataset. Resolved for energy and
separated by interaction type. Notation follows subsection 2.4.3.

Single run dataset
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B OrcaNet tomls

[ model ]
type = " DisjointEdgeConvBlock "
next_neighbors = 16
shor t cut = true
a c t i v a t i o n = ’ re lu ’

#p a r t i c l e net
b locks = [

{ un i t s =[64 , 64 , 64 ] , batchnorm_for_nodes=true } ,
{ un i t s =[128 , 128 , 128 ]} ,
{ un i t s =[256 , 256 , 256 ] , poo l ing=true } ,
{ type=’OutputRegNormal ’ , output_name=’energy ’ , output_neurons=1}

]

[ compi le ]
opt imize r = "adam"
#opt imize r = " sgd "

[ compi le . l o s s e s ]
energy = { func t i on =’ lkl_normal ’ , met r i c s =[" msle " , " mse " , " mae " , ] }
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B OrcaNet tomls

[ c o n f i g ]
l ea rn ing_rate = [ 0 . 0 1 , 0 . 0 0 4 ]
t ra in_logger_d i sp lay = 200
t ra in_logge r_f lu sh = −1
verbose_tra in = 1
ba t c h s i z e = 64
s h u f f l e _ t r a i n = true
use_custom_sample_weights = true
v a l i d a t e _ i n t e r v a l = 1
sample_modif ier = {

name = ’ GraphEdgeConv ’ ,
column_names = [ ’ pos_x ’ , ’ pos_y ’ , ’ pos_z ’ ,

’ time ’ , ’ dir_x ’ , ’ dir_y ’ , ’ dir_z ’ ] ,
knn = 16

}
labe l_mod i f i e r = {

name=’ Regress ionLabe l s ’ ,
columns =[ ’ v i s ib l e_energy ’ ] ,
model_output=’energy ’ ,
s t a ck s =2,
log10=true

}

[ po in t s ]

t r a i n _ f i l e s = [
"/home/ wecapstor3 /capn/mppi132h/GNNs/ data / sample_weight_f i l es /
output / t r a i n / i type_rat i o /05 . h5 " ,
]
v a l i d a t i o n _ f i l e s = [
"/home/ wecapstor3 /capn/mppi132h/GNNs/ data / sample_weight_f i l es /
output / va l / al l IncTau_physica l_standard . h5 " ,
]
i n f e r e n c e _ f i l e s = [ ]

92



C Relative fractional error for analysis

Figure C.1: Single interaction networks trained and evaluated on νCC
e ,νNC

x and νµ.
Plots show the median, 16 and 84 percentile of the flat weighted RFE resolved over true
energy. Legend shows flat and physical RFE score. Notation follows subsection 2.4.3.
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C Relative fractional error for analysis

Figure C.2: Multi interaction networks trained on shower and all interaction types.
Evaluated on νCC

e ,νNC
x and νµ. Plots show the median, 16 and 84 percentile of the flat

weighted RFE resolved over true energy. Legend shows flat and physical RFE score.
Notation follows subsection 2.4.3.
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