Friedrich-Alexander-Universitat
| E Faculty of Sciences

Bachelor’s thesis

11-11-2025

Julian van Laak

Investigating the agreement of Monte-Carlo simulations with
KM3NeT data using Deep Learning techniques

Abstract

Neutrinos are elementary particles described in the framework of the Standard Model of
Particle Physics. There are open questions and unknown aspects regarding the neutrino
and its astrophysical sources which is why great effort is invested to resolve them.
The KM3NeT/ARCA detector is a deep Sea neutrino telescope in the Mediterranean
sea under construction with the aim of finding and observing high-energy neutrino
sources. With this detector, light from the products of neutrino interactions can be
detected and properties of the respective neutrino can be reconstructed. Monte Carlo
simulations are created which can be compared to data and with this comparison the
theoretical understanding of neutrinos and the processes leading to their detection can
be verified. The cause of discrepancies between data and simulations can be investigated
to resolve problems in the issues in the understanding and modeling of the detection. To
investigate discrepancies between data and simulations a workflow has been established
to train a Transformer model on the task of distinguishing whether an event originates
from data or from muon simulations. Two models have been created. The first one
consideres all signals which were assigned to an event and the second one consideres only
the first signal on each PMT in an event to remove the possibility of after-pulses being
the cause of the distinction since they are not simulated. Both models could successfully
distinguish new sets of events, which have not been used in the training procedure,
with high accuracies of 98.5% and 99.9%. It has been identified which features have
the greatest influence on the models’ decisions, namely the x- and y-position of the
PMTs, and the so-called time over treshold, a proxy for the charge collected by a
PMT. Lastly, the distributions of features for the signals from data events and from
muon simulation events have been compared to find directly visible causes. It has been
found that the x-position feature contains signals with values that are only present in
data. This fraction makes up 25% of the data signals. It has been concluded that this
characteristic is probably used by the models to distinguish events but there are hints
for other, additional causes which are not so directly visible.

Zusammenfassung

Neutrinos sind elementare Teilchen, die mithilfe des Standardmodells der Teilchen-
physik beschrieben werden konnen. Es gibt offene Fragen und unbekannte Aspekte
in Bezug auf Neutrinos und ihre astrophyikalischen Quellen, weshalb grofie Anstren-
gungen unternommen werden, um diese zu klaren. Der KM3NeT/ARCA Detektor ist
ein Tiefsee-Neutrino-Teleskop im Mittelmeer, welches sich im Aufbau befindet, mit
dem Ziel hochenergetische Neutrino Quellen zu finden und zu beobachten. Mit diesem
Detektor kann Licht von den Produkten von Neutrino Interaktionen detektiert werden
und Eigenschaften des jeweiligen Neutrinos rekonstruiert werden. Monte Carlo Simu-
lationen werden programmiert, die mit den Daten verglichen werden konnen und mit
diesem Vergleich kann das theoretische Verstiandnis der Neutrinos und den Prozessen
die zu ihrer Detektion fiihren verifiziert werden. Die Ursache flir Unterschiede zwischen
Daten und Simulationen kann untersucht werden, um Probleme des Verstiandnisses
und der Modellierung der Detektionsprozesse zu losen. Um diese Diskrepanzen zu
untersuchen wurde ein Arbeitsablauf eingefiihrt, der es ermdéglicht einen Transformer
fiir die Aufgabe, zwischen Events aus Daten und Events aus Myon Simulationen zu
unterscheiden, zu trainieren. Zwei Modelle wurden erstellt. Das erste beriicksichtigt alle
Signale eines Events und das zweite berticksichtigt nur das erste Signal von einem PMT
in einem Event, um die Moglichkeit auszuschlieflen, dass after-pulses die Ursache fiir die
Unterscheidung sind, weil diese nicht simuliert werden. Beide Modelle konnten erfolgre-
ich neue Events unterscheiden, welche nicht im Trainingsprozess benutzt wurden, mit
hohen Genauigkeiten von 98.5% und 99.9%. Es wurde identifiziert, welche Features den
grofften Einfluss auf die Entscheidungen der Modelle haben, ndmlich x- und y-Position
der PMTs und die sogenannte time over threshold, die stellvertrend fiir die Ladung ist,
die von einem PMT gesammelt wurde. Zuletzt wurden die Verteilungen der Features
fiir die Signale der realen Daten Events und der der Simulationen verglichen, um direkt
sichtbare Griinde zu finden. Es wurde gefunden, dass das x-Position Feature Signale
beinhaltet, mit Werten, die nur in Daten vorkommen. Dieser Anteil betragt 25% aller
realen Daten Signale. Es wurde festgestellt, dass diese Charakteristik von den Modellen
benutzt wird, aber es Hinweise auf andere, zusétzliche Ursachen gibt, die nicht direkt
so sichtbar sind.

Contents

1

Neutrino physics

1.1 Fundamental properties
1.2 Why neutrinos?o
1.3 Neutrino sources
1.4 Neutrino-matter interactions
KM3NeT
2.1 Detector
2.2 Detection techniques,
2.2.1 Cherenkov radiation
2.2.2 Event signatures
2.3 Background Lo
2.3.1 Radioactivity, bioluminescent life and dark counts
2.3.2 Atmospheric muons
2.4 From detectiontodata
2.5 Reconstruction L.
2.6 Simulations Lo oo

Machine Learning

3.1 What is machine learning?
3.2 Neural networks
3.3 Lossfunctions.
3.4 Minimisation with Gradients
3.5 Backpropagation 0L
3.6 The original Transformer
3.6.1 Input, Embedding and Positional Encoding
3.6.2 The Attention mechanism
3.6.3 Feed-Forward Network
3.6.4 Assembling Transformer layers
3.6.5 Output
Preprocessing
4.1 Datastructure
4.2 Dataconversion
4.2.1 The Extractor and its modifications
4.2.2 Snakemake workflow
4.3 Cuts

Data and Monte Carlo comparison

The Transformer and its training

6.1

6.2

Some further preprocessing
6.1.1 Dataloader and Dataset
6.1.2 Dataselection.
6.1.3 Sequence lengths

Transformer architecture

W N — =

© 0 0~y ~J ~J O UL U

20
20
20
20
22
23

25

6.3 Model building L
6.4 First training L Lo
6.5 Second training Lo

6.5.1 Unique hits L

6.5.2 Training procedureo

7 Results

7.1 Feature shufflingo
7.2 Firstmodel L
7.3 Second model e
7.4 Feature distributions Lo oL

8 Conclusion

8.1
8.2

SUMMATY o o o e e e e
Outlook e

A Appendix

Bibliography

36
36
36
41
45

48
48
49

51

59

1 Neutrino physics

1.1 Fundamental properties

The neutrino was postulated in 1930 as an electrically neutral particle with spin % while
it was detected in 1956 for the first time. Today, its description is implemented in the
Standard Model of Particle Physics. This model contains 12 fundamental particles with
spin % - the leptons and the quarks - all grouped in different families. Additionally, there
are five bosons with integer-valued spins. They mediate the different forces like the
strong force, the electromagnetic force, and the weak force. Neutrinos lack electrical and
colour charge. Therefore, they can only interact via the weak interaction and gravity,
although the latter can be neglected due to the small value of the neutrino mass. This
has the effect that neutrinos interact very rarely, expressed by the cross section which
is of the order of % ~ 10~42 % Consequently, there are two interactions that can
occur: the charged current (CC) interactions and the neutral current (NC) interactions,
both shown in figure 1. In the NC interactions the Z° boson is the force mediating

vV 1%
v l 1 1

Figure 1: Feynman diagrams of CC and NC neutrino interaction vertices; | € {e, u, 7}.
From [1]

particle and the outgoing particle is the neutrino with the same flavour. In the CC
interaction the W* bosons are exchanged and the outgoing particle is a lepton with
the same flavour as the incoming neutrino. This is due to the conservation of lepton
number and forbidden cross-generation couplings [1] [2]. The reason for the relatively
small cross section of weak interactions - depending on the energy regime - are the large
masses of the force mediating particles W+ and Z° in contrast to the massless photon
and gluon which are the mediators of the other two fundamental interactions in the
Standard Model [3] [4].

1.2 Why neutrinos?

Even today there are still aspects which are unknown regarding the neutrino. Earlier
expectations assumed neutrinos to be massless which is still implemented in the Standard
Model. Nevertheless, the observation of neutrino oscillations provided an experimental
evidence for the neutrino mass being larger than zero [3] [5]. The formalism of neutrino
oscillations defines the neutrino flavour eigenstates v, , » as mixtures of mass eigenstates
v1,2,3. The relationship between the flavour eigenstates and the mass eigenstates is
given by a 3 x 3 mixing matrix [3] [6]. So far there are only upper limits for the masses
and no direct measurements, e.g. for the lightest neutrino mass the upper limit is a
mass of 0.45eV [2]. The thought-provoking aspect is the size of the mass: it is several

orders of magnitude smaller than other fermion masses in the Standard Model [3]. Due
to the dependence of observable parameters like the oscillation probability solely on
the squared mass differences, there is the open problem of the neutrino mass hierarchy
which describes the possible arrangements of the masses depending on their values
resulting in two possibilities: the normal and the inverted hierarchy [4]. Additionally
there is the open question if neutrino and antineutrino are different particles or if they
are just two different helicity states of the same particle where helicity is defined as the
projection of spin onto the direction of motion [5] [2]. In conclusion there are certainly
several features of the neutrino which make it an interesting particle to investigate and
to search for physics which could help resolve some of the big open questions concerning
the Standard Model.

The answers to these questions on the properties of the neutrinos inevitably play a
role in astrophysical processes in which neutrinos participate. By investigating them,
progress can not only be made in the field of fundamental particle physics but also in
astrophysics by finding new sources of neutrinos and deepening the understanding of
astrophysical topics, e.g. cosmic ray accelerators like supernovae and the early universe
[7].

1.3 Neutrino sources

Neutrinos reaching the Earth originate from many different sources. A few origins will
be explained in the following.
The best known source is the Sun. Due to the large number of fusion reactions occurring
in the interior of the Sun, which are mainly the pp chain and the CNO cycle, numerous
solar neutrinos are emitted and may reach the Earth [8].
An important type of neutrinos to consider are the geoneutrinos or also known as
terrestial neutrinos. They are produced by radioactive decays of mainly 233U, 232Th
and YK which occur naturally in the Earth interior and consist only of (ﬂé. Due to
their natural presence even in isolated places, that are protected from other disturbing
particles, they play an important role in the detection process [1] [8].
Cosmic rays continuously hit Earth’s atmosphere leading to interactions with the
particles there and as a consequence secondary particles like mesons and muons are
created. The charged component of cosmic rays is composed of nearly exclusively
hadrons and a small part of electrons. Mesons like the positive or negative charged pions
and kaons can decay into p* and (;L respectively. The muon may then additionally
decay into electron and anti electron neutrino where the same process just with particle
and antiparticle swapped happens for the anti muon. The whole process can be written
as

7 KE S, E 5 e, (1)
in a compact form while the lepton number and especially the family lepton numbers
have to be conserved. These neutrinos are called atmospheric neutrinos while the muons
are called atmospheric muons. Atmospheric neutrinos can reach detectors from above
but additionally also from below travelling a long distance through the inner structure
of Earth. By measuring them neutrino oscillation phenomena can be investigated [6] [8].
If a supernova occurs, which is either the thermonuclear explosion of white dwarfs in
binary systems due to their mass limit or the core collapse of massive stars with masses
larger than eight solar masses, a large amount of neutrinos is emitted. Roughly 99% of

the emitted energy in such a explosion is released via neutrinos [6].

Additionally, there are several other possible neutrino sources in space. Cosmological
neutrinos whose creation would be traceable to a time period shortly after the Big
Bang have energies in the peV to meV range which is the reason why there is at the
moment no direct method to detect them. When high-energetic cosmic rays interact
with photons of the cosmic microwave background the so called cosmogenic neutrinos
are created and their energies exceed PeV [1]. Furthermore astrophysical neutrinos can
stem from sources like supernova remnants, Active Galactic Nuclei, or Gamma Ray
Bursts. There, in the vicinity of these sources interactions of protons or nuclei with
photons or gas occur which can lead to the production of neutrinos. These sources
often not only produce neutrinos but also cosmic rays. The advantage of neutrinos is
that they are not influenced by magnetic fields or other interactions which could change
their travel path which is the case for cosmic rays [8].

1.4 Neutrino-matter interactions

There is more to the neutrino interaction than just one vertex from figure 1 but also
a second vertex connected via the exchanged boson. The complete process occurs as
interaction between the neutrino and a second particle where between them one of
the W* and Z° bosons are exchanged - at least at the tree level of the process. A
four-momentum exchange g occurs between the neutrino and the target particle which
can be calculated as difference between incoming and outgoing four momentum. In
principle, there are several possible target particles which could be taking part in such an
interaction. When looking at neutrinos travelling in and around Earth, the main target
particles are nucleons which consist of partons, and electrons while the cross sections
of these interactions are dependent on the energy regime. For neutrino energies below
2 GeV the main contribution can be viewed as the scattering between neutrino and the
nucleon as a whole whereas for higher energies starting at 5 — 10 GeV the neutrino most
dominantly interacts with the partons inside the nucleon [9]. For this thesis the ultra
high energy regime in the TeV-PeV range is of particular interest and the reason for
this will be explained in section 2.1. This so called deep inelastic scattering still being
one of the main contributers in this energy regime can be written as follows:

UN = IFH (2)

for the CC interaction and

YN SO H (3)
for the NC interaction where H is the hadronic final state [1] [9] [10]. Independently of
which of the weak bosons is exchanged in the interaction, a hadronic shower of particles
is always produced. Additionally, for higher energies the scattering on electrons gets

more important and their cross sections are only a few orders of magnitude smaller
than the ones of the nucleon interactions [9]. These interactions can be described by

e —De. (4)

For a small energy interval the cross sections of the processes v.e™ — v,u~ and
Uee~ — Dee” even surpass the cross sections of the nucleon interactions due to the
creation of the W boson which is called the Glashow resonance [10] [9].

2 KM3NeT

2.1 Detector

The KM3NeT Collaboration is a research collaboration which currently builds two
deep sea neutrino telescopes in the Mediterranean sea. Two different scientific goals
are pursued which can be tackled with the two detectors respectively. These are
finding and observing high-energy neutrino sources in the Universe and determining the
neutrino mass hierarchy. The two detectors are named ARCA which is an abbreviation
for Astroparticle Research with Cosmics in the Abyss and ORCA which stands for
Oscillation Research with Cosmics in the Abyss. The location of ARCA is 100 km
offshore from Porto Palo di Capo Passero in Sicily at a depth of 3500 m and ORCA’s
location is 40 km offshore from Toulon at a depth of 2450 m. These detectors consist
of so called building blocks while two belong to ARCA and one belongs to ORCA. To
each building block belong 115 Detection Units (DUs) which are a construct of two long
ropes attached to the bottom of the sea and 18 Digital Optical Modules (DOMs) being
installed between them. DOMSs are the centrepieces of the detectors. They are glass
spheres with a diameter of 43 cm and contain 31 photomultiplier tubes (PMTs) which
will be explained in section 2.4 in more detail [1] [11]. A Detection Unit and a DOM are
shown in figure 2. With them it is possible to detect the Cherenkov radiation emitted by

X LY BN Y|

e

LN

-

KM3NeT

Figure 2: Detection Unit (left) and Digital Optical Module with cables and fixation
(right). From [11]

products of neutrino interactions [11]. ARCA and ORCA differ in the spacing between
DOMs and DUs due to their different areas of application. For ARCA the distance
between DUs is 90 m and the distance between DOMs is 36 m, whereas for the more
compact ORCA detector the DU distance is 20m and the DOM distance is 9m [9].
Additionally, the two detectors work best in different energy regimes, namely energies
from GeV to a 100 GeV for ORCA and TeV to PeV for ARCA [9]. For this thesis
ARCA data is used which is the reason why the review of energy dependent phenomena

is often limited to the TeV to PeV energy range. The detectors are currently still under
construction which means that not all 230 or 115 DUs respectively are installed. At
the moment there are about 50 DUs in ARCA installed and functional but the data
used here is from a time period where 21 DUs were operational [12]. The instrumented
volume of one ARCA block with all planned strings installed amounts to 0.48 km?
resulting in nearly 1km? for the two planned ARCA blocks [11]. The location and the
sheer size of the detector give rise to several advantages to make good measurements.
Due to the size many nucleons are available for neutrino interactions as described in
section 1.4 increasing the probability of detectable interactions despite their small cross
section and the large amount of water above and around the detector acts as a shielding
against unwanted particles [13].

2.2 Detection techniques
2.2.1 Cherenkov radiation

Neutrino interactions produce particles which are often relativistic and may have a
charge. For the detection of such events the Cherenkov radiation of these relativistic
and charged particles can be utilised. This type of radiation is produced when a particle
of the mentioned kind moves in a dielectric medium with speeds higher than the local
phase velocity of light. This phenomenon is due to the created polarisation which is
asymmetric along the trajectory. The angle under which the light is emitted is called
the Cherenkov angle and is given by
0 ! 5

cosfc = 5= (5)
with n being the index of refraction of the corresponding medium and 8 = ¢ where
v is the speed of the particle and ¢ the speed of light in vacuum [1]. A qualitative
explanation of this asymmetry is the interference of the emitted waves. As response to
the moving, charged particle spherical waves are emitted moving away from the particle
trajectory. For particle speeds smaller than the local speed of light there occurs no
preferred constructive interference. For particle speeds exceeding the local speed of light
the situation becomes different. There, parts interfere constructively and form a type
of shock wave which has the shape of a cone with 6¢ being the angle between particle
track and the normal of the shock front [14]. For the case of using deep sea water as the
medium which has nyater = 1.35 the Cherenkov angle is ¢ = 42° for ultra-relativistic
particles [1]. The choice of deep sea water is motivated by the type of the detector
mentioned before which collects the data used in this thesis.
Mandatory for the emission of this radiation is the electrical charge of the particle being
different from zero. As stated before neutrinos do not have a charge but fortunately in
the CC interaction a charged lepton is emitted. If the energy of this particle is high
enough it will emit Cherenkov light which in turn can be detected. The threshold
kinetic energy at which emission is produced is given by

1
Tj = ——1)mc 6
thresh < m > ()

where m is the mass of the particle. For sea water the prefactor is approximately equal
to 0.49 [1].

The photons travelling in the sea water can in general be absorbed or scattered which
leads to a decrease in the number of detectable photons. The major part of Cherenkov
photons gets emitted with wavelengths of about 300 — 500 nm. Fortunately, the absorp-
tion of water is minimal at approximately these wavelengths, resulting in good conditions
for detecting Cherenkov photons over distances [15]. For scattering the process can be
divided into scattering on water molecules and scattering on larger particles, like small
dust grains called Mie scattering. In the important wavelength range Mie scattering
dominates which has the consequence that mostly scattering angles are small. The
scattering length is approximately in the same value range as the absorption length in
this wavelength region, but by introducing the effective scattering length which considers
also the scattering angle one receives scattering lengths with an order of magnitude
higher [1] [16]. Thus, while scattering and absorption are definitely not negligible effects
in water, it is still well suited for measuring Cherenkov light.

2.2.2 Event signatures

By considering the products of the different neutrino interactions from section 1.4
one can draw conclusions on the type of the interaction and on the flavour of the
corresponding neutrino. One way is to measure the Cherenkov radiation of the created
particles where different emission patterns correspond to different events. In this case
the particles which may emit Cherenkov radiation are the hadrons from the hadronic
showers as well as other particles which stem from further interactions of the hadrons
and the leptons in the CC interactions [9]. The different event signatures of neutrinos
interacting with a nucleon are shown in figure 3. They are the dominant processes

shower-like shower-like

v+ N ¥4 had.

’ v, + N <5 had. + had.
,,,,,,,,,,,,,,,,,,, v
oS J s

had. had. had.
+ N 5 had. + cq
Ve — had. + em v, + N = had. + e1 em Ve
"""" T o gy
had. had.
track-like track-like
@@ o cg
v, + N — had. + p v; + N == had. + p ’ 7,
7 @’/ v <@ T
had. had.

Figure 3: Schematics of different neutrino event topologies for interactions of neutrinos
with nucleons. From [1]

in the for this thesis important energy regime except for the small energy interval
corresponding to the Glashow resonance which was mentioned in section 1.4. One
distinguishes between track-like which is characterised by the Cherenkov light emission
from a single particle like a muon or tauon taking a straight path and shower-like
characterised by a sequence of particle decays where the produced particles all may
emit Cherenkov radiation depending on their energy. The fundamental example for the

shower-like signature is the NC interaction in figure 3 where only a hadronic shower
is produced while the neutrino leaves the scene unrevealed. On the other hand, the
primary example for the track-like signature is the NC interaction of a%,i with a nucleon.
Even though there is still a hadronic shower produced the created muon travels several
meters depending on its energy through the medium. The other processes in figure 3
seem more complex. The electron (anti) neutrino interaction additionally entails an
electromagnetic shower which consists of e* and photons. This is a consequence of the
photons emitted via bremsstrahlung which can perform pair production keeping the
recurring process running. In (2 CC interactions the short lifetime of the produced
7% - leading only to a short track - and its decay channels play a central role. The
hadronic decay leads to a second hadronic shower whereas the decay in (ﬂi and et leads
to an electromagnetic shower. Additionally, the (anti) tauon can also decay into u*
and neutrinos giving rise to a track signature [1] [9].

2.3 Background
2.3.1 Radioactivity, bioluminescent life and dark counts

The detectors are located deep in the Mediterranean sea which means there is no
unwanted daylight hitting the sensors but still there are other sources of light occurring
even in the depths of the sea. In the sea water a tiny fraction of K naturally exists.
As mentioned before 4°K is a radioactive isotope. It can decay via 3-decay producing
an electron among the decay products with possible energies exceeding the Cherenkov
energy threshold. In the second decay channel electron capture occurs where an excited
state of 9YAr and an electron neutrino are produced. The excited state decays by
emission of light which can in turn result in Compton scattering which may produce
Cherenkov light emitting electrons as well [1] [9].

Another source of background light comes from bioluminescent living organisms which
inhabit even the isolated environment where the neutrino telescopes are located. This
type of light is called bioluminescence produced by chemical reactions [1].
Additionally, even if no photons are hitting the PMTs there still may occur a signal
coming out of them. This is due to the small but non-zero chance of releases of electrons
due to thermal excitation which are called dark counts [1] [9]. This is a fitting term
because even if the photocathode is completely covered dark counts would still be
measurable.

2.3.2 Atmospheric muons

In section 1.3 it was mentioned that atmospheric muons are produced as a result of
cosmic ray interactions. Some muons do not decay and reach sea level. Factors enabling
this phenomenon are their small energy loss while travelling through the atmosphere,
a long lifetime and a small cross section. However, their journey does not necessarily
end at sea level but they can travel up to ~ 12km through water depending on their
energy [13]. This results in a problem: the detection of neutrino interactions is partly
based on measuring the Cherenkov light from muons created in these interactions but
now it was established that there is the possibility of high energy muons with energies
above 1TeV travelling through the instrumented volume which are not coming from
neutrino interactions but were rather produced in cosmic ray interactions. The rate

of these muons is by at least a factor of 10? larger than the rate of measured neutrino
interactions. Atmospheric muons can only reach the detector from above because
unlike neutrinos they can not travel through large parts of the Earth. Therefore taking
advantage of this, a simple way of eliminating this contamination is by applying a cut
on the reconstructed direction [1]. This means that only events with reconstructed
directions which fulfil certain requirements are taken into account while the rest is
ignored. The reconstructed direction and how it is obtained will be explained in section
2.5. Problems in the reconstruction algorithms can occur which may lead to interpreting
atmospheric muons as upward travelling muons. Now it is difficult to assess if these
events are misreconstructed or if they did originate from real events [1] [9].

2.4 From detection to data

The emitted Cherenkov light by a particle from a neutrino interaction as well as light
from other light sources may be detected by the PMTs. These photons hit the cathode
of the PMTs and - if they have enough energy - release electrons via the photoelectric
effect. These electrons get accelerated through high voltages towards several dynodes
where additional electrons get liberated at each dynode. Eventually an avalanche of
electrons reaches the anode where the signal can be read out [17]. At this stage a
threshold is used as a first filter. Only if an analogue signal from the PMT surpasses
that threshold it is digitised and sent to shore. This digital version of the signal is called
hit, and it contains the timestamp at which the leading edge of the signal crossed the
threshold, the time that the signal remained over the threshold (ToT), and the PMT
identifier. The hits from all the PMTs are transmitted to the shore station, where they
get processed. This approach is motivated by the “all-data-to-shore” principle. The
timestream of hits is sliced into time bins of 100 ms duration called time slices. They
are processed by a computing algorithm called the Data Filter. The task of the Data
Filter is to save sets of hits that contain information of interest, while discarding hits
produced by background sources. Each set of physically-meaningful hits is saved as an
event. This process is carried out in multiple stages described in [11], but the general
concept is to find sets of causally connected hits compatible with the propagation of
high energy particles through or nearby the detector [11] [9] [18].

2.5 Reconstruction

The information obtained from a neutrino event is only the ToT, arrival times and
locations of the PMTs. The information that one needs in order to extract scientific
conclusions from the data for the proposed goals is the direction of the neutrino which
is responsible for the interaction and its energy. The closest one can get at the moment
is determining the energy and direction of the products from the neutrino detection
and additionally reconstructing these parameters for the neutrino itself [9]. This can be
done by reconstructing these parameters where reconstructing means fitting a model
to data while the important model here is the theoretical understanding of Cherenkov
radiation emitted as a cone. Depending on the detector and event signature (track or
shower) different reconstruction algorithms are used. For the reconstruction of muon
tracks the following chain of algorithms is used

JMuonPrefit — JMuonSimplex — JMuonGandalf — JMuonStart — JMuonEnergy

while the workflow needs an event as an input. The first algorithm assumes many track
directions, and based on these assumptions it draws conclusions on position and time of
the muon for each hypothetical direction. The best suited directions determined by a fit
quality parameter are saved and passed forward to the next stage [9] [19]. To improve
speeds the JMuonSimplex algorithm is used which executes an intermediate direction
fit. This is realised by comparing the arrival times of all hits from the Cherenkov
photons at the detectors in a specific radius with the expected arrival times [9]. With
the JMuonGandalf algorithm the final direction estimate is determined. It takes the
previously selected fits and scans the surroundings. Here, probability density functions
take several parameters into account like e.g. quantum efficiencies, angular acceptances,
and light emission phenomena like radiative energy losses or emission by delta-rays, and
with these functions it is possible to determine a track which best fits the signal [19]. A
detailed description of this algorithm can be found in [19]. The JMuonStart algorithm
determines the start point of the track by back-projecting the emitted light onto the
newly reconstructed track. The last algorithm determines the reconstructed energy by
minimizing a cost function which is dependent on this energy [9] [19]. A root file is
produced by the last step in this algorithm chain [20]. Shower events are constructed
differently and this process is more complicated [9]. Due to the minor role of shower
events in this thesis the overview on shower reconstruction is not considered, but the
concept of reconstructing important quantities from the obtained information is the
same.

2.6 Simulations

A time period of data taking and the associated data is summarised with the term run.
For every run corresponding Monte Carlo simulations are produced. There are two
types of simulations: one type simulates neutrinos and their products in the detector
resulting from interactions and the other type simulates atmospheric muons. Monte
Carlo methods describe the process of producing a selected number of outputs following
a chosen probability density function. By comparing these simulations to real data one
receives feedback on the current understanding of the theoretical physics models [9].
The simulation chain is a chain of algorithms and its structure depends on which type
of events to simulate similar as before. The concept of this chain - also often referred to
as pipeline - can be summarised by several major steps: the generation of the particles
and tracking their path, followed by the simulation of the emitted Cherenkov light,
then applying the detector response to the Cherenkov light as well as trigger algorithms
which are identical to the ones used for real data and lastly the reconstruction chain
which was discussed before is applied, although with an additional algorithm included
directly before the reconstruction chain [9] [19]. In the generation step neutrinos within
a certain volume depending on the flavour and thus the event signature are created.
This volume is distinguished by allowing the possibility of detection of created particles
from neutrino interactions. These neutrinos all have specific energies which can be
chosen. Now the question arises how many neutrinos should have which energy. The
distribution is created by a energy spectrum of the form d/N/dE o« E~7 which does not
necessarily match with real physical energy spectra. This is done to save computing
resources because a physical energy spectrum has an excess of particles in the lower
energy regimes and a shortness for high energies. By applying weights to every event one

can create a connection between the spectrum used for the simulation and the physical
spectrum. This weight using approach is also used for the simulation of atmospheric
muons [9].

Simulations are produced in the same data structure as the experimental data. This
means that exactly like the experimental data there are a certain number of events in a
run, which have many parameters assigned to them. As before, each event contains a
certain number of hits. This same composition allows direct comparisons between data
and simulations. For example, a specific parameter like the reconstructed energy can be
compared between events of data and simulations or values from hits, such as the ToT,
can be compared. Simulations are in particular useful because they reflect the theoretical
understanding. They include the current understanding of the KM3NeT detectors,
as well as the physical models influencing, for example, the interaction processes, the
propagation and detection of signals, and backgrounds. This theoretical understanding
can be tested by comparing the experimental data to the simulations. If deviations
between them occur, an attempt can be made to find the cause. Therefore, with this
method of comparing it is possible to improve the theoretical understanding [9].

10

3 Machine Learning

3.1 What is machine learning?

Due to the increasingly large amount of data in many fields, automating data analysis
becomes more and more important. This automatisation is a crucial aspect of machine
learning. To achieve this goal a machine learning model has the ability to detect patterns
hidden in the data and based on them take decisions or predict future outcomes. The
more popular form of machine learning, which is also used in this thesis, is called
supervised learning. This can be summarised as the development of a model that
provides a statistical approximation of a complicated function which may depend on
a large number of parameters [21]. The model is applied to data and then returns
predictions for specific features or properties which is a crucial aspect of this type of
learning because the data on which the model gains its experience needs to be labelled.
This means that the actual value for this quantity, which should be predicted by the
model, needs to be known for the training data and needs to be compared to the model’s
prediction in order for it to learn in this approach. This requirement can sometimes lead
to problems because in general data is not always labelled [22]. Fortunately, the data
used in this thesis has an intrinsic property, namely whether it stems from a simulation
or whether it is experimental data measured with the detector.

A first example to demonstrate the concept of machine learning is the classification of
handwritten digits. One could think of a very complex function which takes the grey
scale values of every pixel of the image containing the handwritten digit as an input
and gives the correct number as an output. For humans recognising handwritten digits
is most of the time quite simple while we also receive an input through our eyes and are
able to give an output, but how should one tackle this task with a computer? Writing
a program, which is static, fixed, and does not allow a flexible change in its structure
and values based on the training inputs, seems not suited to achieve the desired goal.
This fixed program can work on already classified images, but would have no useful
applications for unknown datasets on which it has not been programmed, essentially
predicting the already known. To get a real benefit the idea is to classify new and
unknown datasets correctly. Here, the learning term comes into play. The approach is
now to design a computer program, that is flexible and can change its structure and
parameters based on its experience from previous datasets [21] [23] [24].

In summary, the model aims to estimate an unknown function f which fulfils

y = f(z) (7)

where x is a vector of inputs and y a vector of outputs. For the previous example
a possible output vector could have an entry for each number and the value of this
entry gives a probability. The principle of training used in the supervised approach
is comparing the outputs of the model, which were created by performing complex
operations on the input parameters, with the real values one wants to reproduce. Based
on this feedback the parameters of the model can be changed [21]. Complex patterns
which have been learned in the training then can be used in new datasets.

11

3.2 Neural networks

The most important and best know class of machine learning models are the so called
feedforward neural networks, also called multilayer perceptrons. In figure 4 a small
neural network is shown as an example. The number of hidden layers in this example
amounts to two. It is in principle in control of the coder and their computational
resources how many hidden layers are used. The model consists of neurons and the

hidden layer 1 hidden layer 2

Figure 4: Feedforward neural network with two hidden layers. Adapted from [25] [26]

connections between them. The terms neuron and neural were established because this
structure was influenced by structures in neuroscience. Essentially, each neuron is a
function f : R™ — R giving a number as an result. The input layer is a special case
where the values of the neurons are just the input values given to the model. A neuron
in the hidden or output layer is a function of all the neurons in the previous layer - at
least for a fully connected neural network. A weight w; is assigned to each connection
between two neurons and additionally a bias value b is added to every neuron which is
not in the input layer. Altogether this gives the following calculation procedure for a
neuron j which is connected to n neurons with values x; from the previous layer:

n
zZj = z Wi Ti + bj . (8)
=1

This function is linear, and concatenations of linear functions are still linear. Arranged
in this way the result would be a linear model regardless of the number of hidden
layers. Thus, to approximate nonlinear functions the model needs nonlinear steps in
its computations. This is realised by so called activation functions which are applied
on every output from equation 8 individually. A common example of an activation
function is the rectified linear unit abbreviated with ReLU and given by

freru(z) = max(0,x) . (9)

Lastly, after computing the neurons going from layer to layer the output is given by the
neurons in the output layer. Depending on the problem to be tackled, many neurons or

12

only a single neuron can be used. To simplify, the values of the neurons in each layer
can be summarised as entries in a vector, and the corresponding weights can be written
in a matrix.

In conclusion, the model acting as one big function is given by a sequential execution of
other functions where each function represents a layer in the network. Now, the reason
for naming the model “feedforward” becomes clear. The computations follow through
the network layer after layer and output values are not given back to the model [23]
[22] [27].

Firstly, the model needs to be trained on a set of data. For each set of inputs in the
training data the desired outputs are known and can now be compared with the output
of the model. By changing the weights and biases the output of the model can vary.
This reflects the flexible structure of the model: the only defined instruction is that the
output closely matches the desired values, but no direct instructions on how to choose
the weights and biases is given [23].

3.3 Loss functions

The structure of the program is in need of a quantitative classification on how well
the produced output § matches the desired output y. This is done by choosing a loss
function L(g,y). Many different loss functions can be used depending on the chosen
problem. An example is the well known squared error loss function which is given by

Li=9; — vil* (10)

where the sizes of vectors ¢, and y,;, which are the predicted and true labels from one
single training example i, depend on the number of output neurons. In the training
many training examples are used which results in the mean squared error loss function
given by

1 N
L=< lg - vl (11)
i=1

In this thesis a classification problem is investigated and therefore another, better suited
loss function is used [26]. It is called the Binary Cross Entropy loss and is given by

L; = yilogyi + (1 — y;) log(1 — ;) . (12)

for a single training example [28] [29]. Due to the fact that only one value as a prediction
and true label will be used, the vector notation can be neglected.

3.4 Minimisation with Gradients

To train and improve the performance of the model, one has to minimize the loss
function depending on the weights and biases of the model summarised by the vector 8 =
(why, ..., wljxl, bi, ..., bT]X) This procedure is complicated due to the high dimensionality
of the parameter space. Finding the global minimum is nearly impossible, thus the goal
is to find a local minimum which is “good enough”. To achieve this goal the gradient
is used. It always points into the direction of steepest rise, thus the negative gradient
points into the searched direction. The parameters will then be updated many times

13

by a small amount, eventually making small steps to a local minimum in the high
dimensional space. The repeated change of the parameters can be written as

00— nV,L (13)

where 7 is the learning rate and L the loss function averaged over the whole dataset.
The learning rate needs to be chosen manually and has a great effect on the training
performance. If it is too low, it could lead to being stuck in a local minimum being
worse than other local minima, which would otherwise be accessible. If it is too high,
it could be difficult to gradually converge into the minimum [26] [27]. In practise the
learning rate is often varied while training [23].

Computing equation 13 is very resource heavy. This can be solved by using Stochastic
Gradient Descent (SGD). The big dataset is separated in many small subsets called
batches which contain several, randomly chosen examples. Then, the average is calcu-
lated in this smaller subset and the parameters are updated [26]. A larger batchsize
normally results in a better adjustment of the parameters but more computing resources
are needed [27].

Another alternative will be used in this thesis which is called adaptive moment estima-
tion (ADAM) which works similar to SGD. This method helps to accelerate the learning
process by remembering previous gradient calculations and considering them in the
calculation process. They are scaled by several parameters which exponentially decay
resulting in a suppression for gradients which are several steps behind the current step
[26].

3.5 Backpropagation

It is now clear that computing the gradient is necessary to achieve learning. Getting
an analytical expression seems feasible but the numerical application would use many
resources. The so called backpropagation algorithm is an algorithm which works very
efficiently and therefore keeps the computational expenses low. The calculation is based
on the chain rule from calculus. While it is directly possible to obtain an expression for
the derivative of the cost function with respect to any parameter of the model by going
backwards starting at the loss function and working a way through the model, looking
at the repeating structure of the model gives a hint that some expressions reappear
several times [23].

A simplified example [30], on which backpropagation can be demonstrated well, while
also being applicable to general structures, is shown in figure 5. This neural network
has in principle four layers but only the last two are of interest for this example. In the

4
@ —vti—(ab)

Figure 5: Last two layers of exemplary network with four layers. Adapted from [25] [30]

backpropagation computation only one training example and therefore the not averaged

14

loss function from equation 10 is considered. By using equation 8 the initial zé- are
calculated, where [corresponds to the [-th layer in the network, and this is followed by
applying an activation function to get aé-. To calculate the derivative with respect to
will as an example the chain rule needs to be applied following the different computation
procedures through the last layer of the network:

OL; OL; da} 9z}

= . 14
owy, Oaf 921 owy (14)
Two derivatives can be calculated directly which gives
8[/2 ~4 4 6&111 3
—— = 2(a1 1) “ay- (15)
owf, az%

The connection between a} and 2} is only based on applying the activation function.
Depending on the network different activation functions factiv(z) can be used. In this
example the sigmoid function is used which is defined as

1
fsigmoid(x) = l+eo’ (16)
The derivatives now become
OL;
- = 2(a] —a1) - ay(1 —al) - af, (17)
owy,
and the expression can be simplified with the definition
oL;
5t = = 2(at — o) -ad(1 - a). (18)
1

With this definition all derivatives with respect to the parameters of the network from
the previous layer which directly influence the last upper neuron can be calculated
which gives

8b4
This illustrative scheme can be generahsed and applied to any neuron giving the rule

oL; _ oL;
o] :5§a§€ 1 and 8bl —52 (20)

Additionally, the 6§ can be calculated by going backwards through the network starting
at the output layer with the recursive formula

Zélﬂwgl L1 —dl) (21)

With this technique the derivative of the cost function with respect to any model
parameter can be calculated in an efficient way [30]. By combining the backpropagation
procedure with gradient descent the model can now be trained.

15

3.6 The original Transformer

The Transformer is a special machine learning model which relies on the so called
attention mechanism. It was introduced in the context of language translations by
Google researches in 2017 [31]. This new technique was a great milestone in machine
learning and is well known because it is used in the field of language processing and
therefore in systems like ChatGPT [26].

3.6.1 Input, Embedding and Positional Encoding

The input given to the Transformer consists of several vectors arranged as a sequence.
These vectors can for example represent parts of written text, where to each word a
unique vector is assigned, while in practise subwords are used. The number of these
vectors is called sequence length which depends on the length of the text given to the
model. There are also other examples which can be given to the Transformer but all
possible inputs need to have in common that they can be represented by unique vectors.
For example if a text passage consisting of ten text snippets is given as an input, the
sequence length would be ten and it would consist of ten vectors each representing a
snippet [32]. Each vector in the sequence can be written either as a row or a column in
a matrix where here the convention of rows will be used [26] [32].

The first step of the transformer procedure is called embedding. Here, the input vectors
in the matrix get transformed by a linear transformation into the embedding space
which has a different dimension, resulting in a new matrix with new vectors x; € R¢ as
elements. Each vector, which was assigned to an input snippet beforehand - for example
a subword - now has a different dimension d, while the number of vectors stayed the
same. The parameters of this embedding matrix, which is used for the transformation,
are learnable parameters whereas the embedding dimension d is a fixed value and needs
to be chosen [26] [31] [33].

Positional encoding is used to attach additional information to the input element
concerning its position in the sequence. This is done by adding a vector with dimension
d to the embedding vector. This additional vector has a function

. pos
PEpOS,Qi = Sin (W) (22)
as components which have an even index 27 and
pos
PEpos 2i+1 = cos (W) (23)

for components with an odd index 2¢ + 1 while pos is the position of the respective
input element in the sequence. There are also other choices on how to implement such
information [31].

3.6.2 The Attention mechanism

With the attention mechanism one can find connections between different input elements.
This is done by computing three new vectors which one receives by multiplying the
embedding vectors with three matrices with learnable parameters respectively. The
different objects are called query vectors

q; = z;Uq, (24)

16

key vectors
ki = :ILL'UK N (25)

and value vectors
v; = ZBiUv 5 (26)

where z; € R? is the embedding vector for input element i and all three learnable
matrices have the dimension R4*?¢. In reality all of these vectors are put as rows
into matrices @, K,V and X all with dimension R**¢ where s is the sequence length,
resulting in matrix multiplications

Q=XUqg, K=XUk, and V= XUy. (27)

Now the dot product between all query vectors and all key vectors is computed and can
be written in the short notation
QK"
Jad
while the dot product is scaled with the square root of the embedding dimension. This
product now has the dimension R**%. Then, the softmax function which is defined as

(28)

Zi

frotmax(0) = 5= (29)

is applied row-wise, turning the sequence of numbers into a probability distribution.
The scaling by 1/ V/d is done to prevent giving large values, which may arise for large
embedding dimensions, to the softmax function. Lastly, the result is multiplied by the
value matrix, giving in sum

. QKT
Attentlon(Q, Kv V) = fsoftmax <—> V. (30)
Vd
Before applying the softmax function masks can be applied to ignore certain values.
These mask would set values in the QK7 matrix to —oco which has the consequence
that the applied softmax function gives zero at this entry [26] [31] [33].
In the Transformer, instead of a single attention procedure as above, a Multi-Head
attention is performed where multiple attention computations are executed in parallel.
Both principles are shown in figure 6. The keys, values and queries now do not have d
as their dimension but rather % with A the number of parallel attention layers. This is
realised by linearly projecting the @, K and V matrices into subspaces with learnable
matrices WiQ, VVZ-K , WiV e R*d/h where i is the respective attention layer. This gives

Head; = Attention(QWS, KW vwY). (31)
In the end the different attention heads are concatenated
MultiHead(Q, K, V) = Concat(Heady, ..., Head;) W (32)

with WO € R¥? an additional parameter matrix [31]. This method can get more
information out of the input compared to the single attention mechanism because the
result of the dot product of key and query in each attention layer still has the same
dimension R*** as before, resulting in A different investigations while still regarding the
whole sequence [33].

17

Scaled Dot-Product Attention Multi-Head Attention

MatMul

Scaled Dot-Product
Attention

A i
[Linear],][Linear],][Linear],]

Vv K Q

Figure 6: Scaled Dot-Product Attention and Multi-Head Attention. From [31]

3.6.3 Feed-Forward Network

The Transformer architecture consists of a second element, namely a fully connected
feed-forward network. Here, the sequence elements have no option to influence each
other in contrast to the attention mechanism. Part of the feed-forward network structure
are two linear transformations while the output of the first passes through a ReLU
activation function from equation 9. Together this yields

FFN(x;) = max(0, ;W1 + b1)Wa + by (33)

while the output has the same dimension d as the input. Here it is also possible to
arrange the different vectors x; in a matrix but the feed-forward network is applied
separately to every vector [31].

3.6.4 Assembling Transformer layers

The outputs, which are matrices of dimension s X d, of each of the two sublayers are
added to the initial input which was given to the respective sublayer beforehand and
additionally layer normalization is applied. This procedure can be viewed as adding the
corresponding modified vector containing new information to its initial input vector in
the sequence, arranged in an efficient way. One building block of the Transformer consists
of applying Multi-Head attention followed by the feed-forward network. Together, this
gives the procedure for one whole block by first computing

X" = LayerNorm (X + MultiHead Attention(X)) (34)

and afterwards
X" = LayerNorm (X' + FFN(X")). (35)

Typically, multiple of these blocks are used [31].

3.6.5 Output

After the computations the output vectors of the sequence in the matrix still have the
same embedding dimension. In the context of language processing these vectors are

18

transformed again into the input space where input elements like subwords in this context
are represented by unique vectors. The transformation is carried out by a learnable
transformation matrix, which is essentially the counterpart to the embedding in the
beginning. Additionally, a softmax function is applied to get a probability distribution
for a sequence element [26] [31]. In this thesis a classification task is investigated so the
used Transformer follows a different procedure in the last step to generate the desired
output.

19

4 Preprocessing

4.1 Datastructure

The data from the detector and from the simulation processes is stored in so called
offline files which are root files, a datastorage concept established by CERN. These files
were copied from a computing centre in Lyon to the local computing cluster in Erlangen.
Every file corresponds to a certain run with a certain duration which typically amounts
to several hours. In principle, the root files can be read out with the km3io software
package which can be found in [34]. The read out and processing of these files is not the
fastest, as we will see later. The files contain - among other specifications - a certain
number of events collected in this specific run. There are many parameters associated
to each event such as energy, vertex position and direction. An undetermined number
of reconstruction solutions called tracks is stored for each event, which leads to a data
structure with variable dimensions depending on which event is considered. These
subarrays with variable lengths have the effect that the data read out with the km3io
package is stored in so called Awkward arrays [35] and not in the user-friendly and well
known NumPy arrays [36]. Typically, the best reconstruction result or - loosely said
the best fitting track - is stored at the first place in the corresponding array [37].
Furthermore, there is additional information about the hits stored. These parameters
consist of positions which describe the coordinates of PMTs, directions which give
information about the orientation of PMTs, the time of arrival, and the ToT [38]. An
important distinction can now be made: event- and hit-level features. This distinction
is important for later stages because the Transformer receives hit-/pulse-level features
as an input but its output is an event-level feature.

4.2 Data conversion

In this thesis the Transformer model from [39] will be used and adapted. This model is
based on the GraphNet framework [40] which realises the application of Deep Learning
in the context of neutrino telescopes. GraphNet in turn uses PyTorch [41] and PyTorch
Lightning [42] in the background. Two file types are implemented in the GraphNet
workflow: Parquet and SQLite [40]. For the Transformer architecture the SQLite type
was chosen. A noticeable downside of these files is that they are not compressed, which
would not be the case for Parquet files, resulting in a fast access to data [38]. Therefore,
the first step is to convert offline files to the SQLite format. GraphNet already entails a
workflow which consists of three major steps, namely reading, extracting and writing.
There, the most important step is the extracting because the task of the reader is only
to access the offline file and hand the data over to the extractor, and the writer mainly
makes use of the to_sql function which is a method of a pandas dataframe [43] in which
the extracted data is stored. The event-level features are saved in a table called truth
and the hit-level features in a table called pulse_map. In the next section the important
methods of the provided extractors will be described and the added modifications.

4.2.1 The Extractor and its modifications

There are two different types of extractors used. One extracts the hit-level information
and another one the event-level information while both use the km3io package. The

20

extracted hit-level features are shown in table 1. Some of them will be important for
the input of the Transformer. They are then arranged in a dataframe, where one row

features

t | tot | pos_x | pos_y | pos_z | dir_x | dir_y | dir_z

Used as an input feature

features

trig | dom_id | channel_id

Not used as an input feature

Table 1: Extracted hit-level features grouped into two different categories indicating
whether or not the feature is used as an input feature for the Transformer

contains one hit. Each hit contains a value for every feature and is assigned to an event
by a column containing the event numbers. With this event number one can distinguish
hits from different events.

The following is now focused on the extractor of the event-level features. Here, the
km3io package is also used to read in the values and to find the best fitting track for
every event, thus only one track value of variables like energy, position, and direction is
assigned to each event. In this step a large constraint was found in the code, where
files with no reconstruction of the first event are discarded. This encouraged thoughts
on why the first event holds a certain role and decides over the fate of all other events
in the file. Nevertheless, this constraint has the consequence that the columns of the
reconstructed parameters of some files are completely filled with padding values after
the conversion, where the padding value is a value which is inserted if the corresponding
parameter does not exist or does not fulfil certain criteria. This value, which is set to
the number 999.0, is also used if the original data in the offline files contained NaN or
None values.

Each event also contains a unique identifier already mentioned before to distinguish
it from all other events. This number is computed by adding strings of the DAQ run
identifier, which is a special property of the whole file, the attribute frame_index and
the trigger_counter, whose values both depend on the considered event, all together
and inserting a string containing a zero in between them. In addition a weight is
assigned to each event. For data events the weight amounts to one, but for simulation
events it is different and has to be considered.

Later, cuts which filter out noise events will be applied. Some parameters needed for
these cuts are not implemented in the extractor. Two of them are parameters from
the JGandalf algorithm. The parameter JGANDALF_BETAO_RAD describes the uncertainty
on each reconstructed track and the parameter JGANDALF_NUMBER_OF_HITS indicates
the number of hits from the JGandalf algorithm [44]. Additionally, the parameter
JSTART_LENGTH_METRES is needed, which is the measure for the “distance between
projected positions on the track of optical modules for which the response does not
conform with background” [44]. All of these parameters are stored in the file and can
be accessed with an attribute called fitinf. The situation in accessing the right values
is more complicated as, for example, for the energy because additionally to event and
track indices there is a new index which is assigned to each fitparameter in the fitinf
container. For the two parameters from JGandalf this index is 3 and 0, and for the
JStart parameter it amounts to 10. By trying to access these parameters, it was found

21

that not all fitparameters were available for every event. Therefore, the innermost
dimension of the fitinf object, which is the dimension to index the desired parameter,
needs to be filled so that it at least contains a None or NaN value at the desired place.
Otherwise an error occurs when one tries to access a value which does not exist. Then,
one can take the chosen parameter and save it for every event and for every track. From
this array the first track corresponding to the best track is taken for every event, and
this object can now be converted to a numpy array because of its simple structure.
The result is now similar to the other parameters which are saved: one - and the best
fitting - value for every event. The same procedure needs to be done for the parameter
JMuonEnergy which is part of a reconstruction object. This parameter indicates whether
the energy reconstruction was successful [37]. Another parameter called rec_type was
also added, which describes the quality of reconstruction tracks. This procedure turned
out to be less complicated because the parameter is organized analogous to parameters
like energy.

The weights of the simulations mentioned in chapter 2.6 are also included in the
extraction process. After the conversion they can be easily accessed by the w_total
parameter. Their values differ depending on the simulation type. For the neutrino
simulation events almost all weights, except less than 0.05%, have values which are
smaller than 0.1. For the muon simulation events all weights have values close to one
with a maximal deviation of 0.3.

Additionally, a parameter was added which is not needed for applying cuts but rather
for the training process of the Transformer later. The parameter is named is_mc_score,
and its value is one if the corresponding file stems from a simulation and it is zero if
the file contains real, measured data. This value is assigned to each event in the file. In
later sections it is often referred to as Monte Carlo score or short MC score.

Not only two tables are saved but also a third one. This additional table is called
trigg pulse map. The only difference between this table and the pulse_map table is
that hits with a trig value of zero are filtered out. In this way only triggered hits are
considered which are hits evaluated to be caused by neutrino or muon interactions [38].

4.2.2 Snakemake workflow

With the help of the snakemake [45] workflow provided by Lukas Hennig the conversion
can be easily realised. In snakemake rules can be defined which will be executed. These
rules take a file as an input which is in our case the offline file and produce an output
file which would be a file in the SQLite format. Log files, which describe errors in detail
if problems occur in the conversion process, and resource requirements can be defined.
The actual task is also defined which is executing the data converter from GraphNet
equipped with the chosen reader, writer, and extractors.

The execution will be sent out as a job via slurm [46]. Slurm is a system, that manages
the available computational resources of computing clusters. It gives access to these
resources to the users based on their needs, and prevents conflicts by introducing queues,
which has the downside, that sometimes jobs will be pending for a while before they
start to run [46]. For scheduling resource demands like the maximal duration of the job
computation and the required memory need to be defined. These values vary depending
on the type of the file and its size. The minimal and maximal values for file sizes before
and after the conversion, the duration of the conversion, and the requested memory

22

are shown in table 2. The requested memory is relatively high, because the extraction

File type data neutrino muon
Offline file size [GB] 3.0-45 1.0-1.2 21-31
SQLite file size [GB] 1.2-19 1.3-1.7 1.2-18
Duration [min] 13-19.5 6-9 11.5 - 17
Requested memory [GB] | 69.75 - 108.5 | 23.25 - 31.0 | 62.0 - 100.75

Table 2: Minimal and maximal values for file sizes, requested memory and duration for
the three different file types of the used files

process is not optimised. Therefore, to save resources one has to carefully evaluate the
requested memory for the process for each file size and file type differently. Otherwise,
if the memory demand is set too low, out of memory errors will occur. This made
the conversion process complicated and tedious. In the used slurm system memory
gets distributed by the requested number of cpu cores. Every core unlocks 7.75 GB
of memory which explains the precise memory values in table 2. Each of them is a
multiple of the memory per core. Thus, for these processes there is a small amount of
memory not utilised, which is smaller than 7.75 GB, but by requesting one core less the
process crashes eventually when the limit is reached.

4.3 Cuts

Firstly, after the conversion finished and before analysing the data in the SQLite files
the padded events need to be removed. The padding value in the extractor was set to
999.0 which makes it in principle easy to filter out such events, but this value comes
with the risk of discarding events which own this value naturally. This can be resolved
by checking multiple reconstructed values for each event and not, for example, just
filtering the reconstructed energy and drawing conclusion only on the outcome of this
single parameter. By applying this filter on 100 runs with data, muon simulation, and
neutrino simulation files respectively 78% of data events, 58% of MC muon events, and
56% of MC neutrino events were filtered out. The mentioned “if statement” in the
extractor is mainly responsible for this large fraction. The run numbers which have
been used are 14300 — 14402 while runs 309, 324, and 325 were not available.

To filter out noise and badly reconstructed events the so called antinoise cut can be
applied. It is defined in table 3. Most parameters used here and their definitions have
been mentioned before in chapter 4.2.1 where their extraction process was described.
The parameter jmuon_E corresponds to the reconstructed energy in GeV for each event,
the parameter jmuon_lik defines the likelihood, and the parameter dir_z is the z
direction of the event which is given by [37]

cos(jmuon_zenith) = —dir_z. (36)

jmuon_zenith is the reconstructed zenith angle in radians, and it was used because it
was easily accessible in the truth table of the converted SQLite file. Strictly speaking,
these parameters are the values for the best tracks which were assigned to the events as
discussed before. The parameters are suitable for removing noise because many of them
act as parameters indicating quality in reconstructing steps. Noise events typically cause
problems in reconstructing processes which is then reflected in these quality parameters.

23

Parameters and their requirements | Individual Influence on data runs
rec_type == 4000 0%

JMuonEnergy == True 0.5%

jmuon_E > 10 9.2%

jmuon_lik > 50 20.4%
JSTART_LENGTH_METRES > 0 1.4%

JGANDALF BETAO_RAD > 0 0.1%

dirz > —0.1 1.0%

JGANDALF _NUMBER_OF _HITS > 20 1.7%

Table 3: The parameters used for the antinoise cut and their corresponding requirements.
Individual influence on data events computed by applying condition individually on
dataset of 100 data files. Definitions from [47]

By applying the conditions each individually on, for instance, the set of 100 data
files, which were previously filtered by removing padded events, their influence can be
determined. The measure

discarded events due to condition

Influence =

all events (37)
which is the fraction of filtered events compared to all events is also shown in table 3
for each condition. Of course there may be overlaps when applying conditions together.
It can be seen that the rec_type parameter does not make a difference because all
events where the conditions would not be fulfilled were padded events which have
been discarded before. The definition is still kept in the cut for safety reasons. The
received statistics do not necessarily hold true for every dataset but by using 100 files
the statistics should be in general meaningful.

24

5 Data and Monte Carlo comparison

The cut procedure from the previous chapter was applied on the 100 data and simulation
runs. This number was used to get better statistics. By using another parameter, called
pdgid, the neutrino flavour can be attached to each event for the neutrino simulations.
There is an official Monte Carlo particle number scheme released by the Particle Data
Group [48] and incorporated in the dataformat of KM3NeT. Electron neutrinos have a
value of 12, muon neutrinos a value of 14, and tauon neutrinos a value of 16. For the
identification of antiparticles the same number is used but with an additional minus
sign.

An important parameter of the events from the truth table is the reconstructed energy
which is shown in figure 7, where data and simulations are compared. Here, the antinoise
cut is already applied. Additionally, weights have been applied to the simulations. With

10° A -
[MC electron neutrino

@ MC muon neutrino
[MC tauon neutrino
. MC muon
— AllMC

® Data

104

102 4

Counts

109

1072 4

104

e %o
o °
0.6 - oo ©® L] ° []
°
g . .
3 o ®
= 0.4)
P ®e ° L4 °
2 o
S 0.2 A
°
0.0 1 o0 0 00
10! 10? 103 104 10° 108 107 108

Reconstructed Energy [GeV]

Figure 7: Distribution of reconstructed Energy and ratio for 100 data, muon, and
neutrino files. Layout inspired by [47]

this plot one can verify the correctness of the conversion process from root files to
SQLite databases by comparing the distribution to that in [47]. It was not possible to
reproduce these plots with similar values because here many more events are present
while using less runs. Additionally, a maximal discrepancy in the ratios of 25% between
data and simulation would be expected but here a larger difference is found, thus there
is a reason beyond noise [49]. Attempts were made to resolve this issue by investigating
the distributions of some parameters and the extraction processes more closely. In the
last stages of the work it has been found that a convention different to equation 36

25

Type Total number of events
Data 1435522.0
Muon 2639378.7
Neutrino 79.4

Table 4: Total number of events from figure 7 for the three different event types

has been used in the extractor, where no minus sign is used to calculate and save the
jmuon_zenith parameter in the SQLite database. Therefore, when using this in the
SQLite file accessible parameter to apply the antinoise cut with definitions from table
3 and equation 36 another value range of dir_z has been considered than originally
expected. This explains the discrepancy of the distributions in figure 7 and in [47].
Originally, the cut would remove most atmospheric muons by only considering a certain
region as described in section 2.3.2 but now the opposite is achieved. Therefore, the
large amount of detected events is plausible. The observations and conclusions in the
following sections still hold true because fundamental deviations in the muon simulations
from real data, which are to be investigated should remain similar regardless of the
direction region, which is considered [49].

In figure 7 it can be seen that there is a large difference in counts between muon
simulations and neutrino simulations. For these particular runs the total number of
events is shown in table 4. This discrepancy led to the decision of not using neutrino
simulation runs for the training of the Transformer because in comparison the number
of neutrinos is so small it would probably be ignored by the model.

From figure 7 and from table 4 it can be seen that there is a discrepancy between
simulations and data. In an ideal scenario the ratio between data and Monte Carlo
simulations would be 1 which is far away from our value which amounts to 0.54. Now, the
idea was to investigate the root of the data Monte Carlo discrepancy in general further.
This is realised by training a Transformer on the task of discriminating between data
and Monte Carlo simulation which will be in this case muon simulations as mentioned
earlier. Then, by analysing a successful model the reference points, which influence the
“decision” of the model, can be studied.

The antinoise cut will be applied to all datasets used in the following sections before
the other methods described in them will be applied.

26

6 The Transformer and its training

In the following the Transformer architecture from [39] is used. To explain its structure
and integration in the machine learning workflow the code from [39] will often be used as
well as the GraphNet documentation [40]. The utilised functions often rely on PyTorch
and its documentation was also used [41].

6.1 Some further preprocessing
6.1.1 Dataloader and Dataset

For the training process and later the evaluation a so called dataloader is needed. This
ensures quick and easy access to the data for the model and a well defined organisation
of the data. In the repository there is a predefined function which assembles a training
and validation dataloader for a given SQLite file. The idea is that for the dataset
a predefined percentage of the data is used for the training of the model, where the
loss is calculated and the parameters get adjusted, and the remaining data is used as
a validation set, where only the loss is calculated but no parameter adjustments are
performed. This separate iteration allows to monitor if the model overfits and based on
that permits interfering. Here, overfitting means learning the training set by heart and
not the underlying patterns. If the model overfits it performs badly on the validation set
whereas if it learns meaningful patterns not only the training loss but also the validation
loss should decrease in general. Here, the distribution was chosen to be 75 : 25, thus
75% of the events in the whole dataset are assigned to the training set and 25% to the
validation set. Another important term which will be later used is the epoch. This
is defined as giving the whole dataset to the model which then trains on the whole
training set and evaluates the whole validation set both for one pass. Thus, each event
is presented to the model exactly one time.

For the dataloader the input features have to be selected while our choice was already
mentioned in table 1 and the important truth-level information which is in our case
the previously defined Monte Carlo score. The batch size needs to be selected which
was chosen to be 64. Here, one has to find a balance between computational resources
which rise for higher batch sizes and performance of the model as stated before. Each
batch then contains 64 events distributed randomly except the last batch because in
general the number of all events in the dataset will not be divisible by 64. Additionally,
weights for the loss function can be assigned where this weight is 1 for data events and
the corresponding weight from the simulations for the muon events.

In GraphNet a graph definition has to be specified which is also given to the dataloader.
This definition specifies the processing and arrangement of the data before it is given to
the model. For the graph definition the KM3NeTHitsSequence class was used. In this
setting a detector has to be specified where the already implemented ORCA class was
modified and renamed to an ARCA21 class. Unlike in the other classes where there is
an option to shift and rescale the input features nothing comparable was implemented
for the ARCA class and the input features were left unchanged. A node definition needs
to be chosen. For this study, the NodesAsPulses class was chosen, where each hit, which
is a row in the pulse-table, is represented as a node.

Internally PyTorch is used to create a dataset from the SQLite file which is then handed
to the dataloader. One batch in the dataloader now contains the specified amount of

27

events and their respective hits. It works similar to a dictionary in Python where one
can access single parameters with their corresponding strings. The parameters are given
in a PyTorch tensor object. This is the structure which is mainly used in the processing
of the model.

6.1.2 Data selection

For the data, which is used for training the model - referred to as training data in the
following section while this dataset includes in principle also the validation set - 11 data
files and 11 muon simulation files have been selected. They stem from the 100 files
discussed earlier. Together the number of events from these files is in the order of 10°
which was selected to balance out the need of computational resources and having a
large enough dataset for the Transformer. If the dataset is too small the Transformer
may overfit and may not be able to extract the desired, hidden patterns. Files with low
numbers of padded events have been chosen. Due to the architecture of the dataloader
the SQLite files for each run have to be concatenated to one SQLite file which contains
all events and additionally the cuts need to be applied. Here, the procedure is as follows:
each SQLite file was loaded separately in a Python script where the cuts have been
applied. Now the individual hits are also considered in the further procedure, so hits
belonging to filtered events need to be removed by comparing the unique event numbers.
Furthermore, a selection based on how many hits an event contains is made that will be
described in the following chapter. Then, new smaller SQLite files with cutted events
are created and all of them are concatenated. Performing cuts first and concatenation
afterwards saved working memory but caused higher main memory usage. This trade-off
was found to be better suited for this task. The resulting SQLite file with a size of
17 GB now contains all remaining events regardless of file type.

6.1.3 Sequence lengths

As stated in chapter 3.6 a sequence is given to the Transformer. Here, a sequence
consists of all the hits assigned to an event. This number varies for different events
but in the Transformer architecture explained later in 6.2 a maximal sequence length
needs to be chosen. Therefore, a possibility would be to find the event with the longest
sequence length in the dataset set and select it as the maximal length. However, there
are multiple events in a batch and the event with the longest sequence determines the
sequence length in that batch. The sequences of other events are filled up with zeros until
all events in the batch have the same sequence length [38]. Thus, batches containing
events with relatively long sequences would use many computational resources and have
a significant influence on all other events in the batch. As a consequence a maximum
sequence length was chosen where events with longer sequences are discarded. The
distributions of the events according to their sequence length is shown in figure 8 for the
11 data runs and in figure 9 for the 11 muon simulation runs. For both distributions the
99-th percentile was computed and the resulting range is highlighted in the distributions.
This gives a maximum sequence length of 314 for data and 343 for muon events, and
based on this a filter for the training dataset was performed. Due to the favourable
distribution most events can be included while having sequence lengths which are not
too large to require great amounts of computing resources. All in all with the previously
discussed cuts applied this gives a total number of events of around 4.4 - 10° for each

28

s BN Data
10° 4 99% of events

104 4

103 4

Counts

102 4

10! 4

0 4
10 I |ﬁ|| I 1

T
1000 1500 2000
Number of hits per event

Figure 8: Distribution of events according to their sequence length/Number of hits per
event for the 11 data runs used for the training

s MC muon
99% of events

105 4

104 4

103 4

Counts

102 4

10! 4

100 4

[TTHl I s , |
1000 1500 2000 2500
Number of hits per event

Figure 9: Distribution of events according to their sequence length/Number of hits per
event for the 11 muon simulation runs used for the training

file type respectively. For the first training which will be described later in chapter 6.4
the ~ 2400 muon events which have larger sequence lengths than 314 but smaller or
equal lengths than 343 were not discarded. This should have been avoided because
in principle this could have lead to a bias. While a direct check was not carried out,
actions described later will be taken so that this potential bias does not distort the
analysis. For the second training this problem was fixed and events regardless of their
file type have the same maximal permitted sequence length.

6.2 Transformer architecture

The architecture of the model is based on the structure described in Chapter 3.6. When
the model is initiated for the first time several parameters need to be chosen which have
an influence on the structure. For instance, there is the option to chose multiple layers
or a single linear layer for the embedding. Here, only a single layer was chosen. The

29

embedding dimension was selected as 128. The number of features is eight as discussed
before and the positional encoding from chapter 3.6.1 was enabled. The default setting
of eight attention heads was kept.

The first step in the so called forward-pass is converting the batch which has two
dimensions, namely the total number of hits in the batch and the features, to a sequence
with three dimensions, namely the batch size, the sequence length, and the features.
Here, shorter events are padded with zeros as mentioned earlier. After this step the
embedding is realised by a linear transformation implemented with a simple PyTorch
module. Now, the passed object has three dimensions: batch size, sequence length, and
embedding dimension. A so called class token is initialised as an additional, learnable
parameter and with suitable dimensions, so that it can be assigned to each event. If
enabled the positional encoding is added to the sequence and then the class token and
the sequence are concatenated to a single object. Depending on the choice a number
of encoder blocks without considering the class token and then a number of encoder
blocks with considering the class token is carried out. The default setting of eight and
four for the amounts of these two block types were not changed. The encoder block
is the centrepiece of the Transformer. It consists of the Multi-Head attention process
and the feed-forward network as well as layer normalisation. The activation function in
the feed-forward network is the so called GELU function, unlike in chapter 3.6.3 where
ReLU was used. For the attention and the feed-forward network a technique called
dropout is used. This has the effect that some elements are set to zero randomly with a
predefined probability where the default value is 20%, increasing the robustness of the
model and reinforcing learning patterns rather than memorising [27]. All these different
components are implemented with the corresponding modules from PyTorch. At the
end the updated sequence is returned.

6.3 Model building

In GraphNet a so called Standard Model can be assembled which connects all parts
and allows to use many built in functions. For this a task needs to be specified which
processes the output of the Transformer. In our case the Binary Classification Task was
used to predict whether an event is simulated or originates from real data. The chosen
loss function is the Binary Cross Entropy Loss from equation 12 and the weight for the
loss function can be used. Due to the cuts the muon weights mentioned in section 4.2.1
have now only a maximal deviation of 0.03 from one. Therefore, these weights will not
have a large effect but were still used because of the simple implementation. The task
module has the assignment to transform the output of the model according to the desired
output and to calculate losses. Within this module, the output of the Transformer is
transformed to a single number per event via a learnable transformation and then the
sigmoid function is applied to get an output in the interval [0,1]. Then, the Standard
Model can be initialised which combines the graph definition, the Transformer model,
the task, and the optimizer, for which ADAM was chosen. In total, the Transformer
model has 1.6 million trainable parameters and the task, which is used to transform the
output to the final result, has 129 learnable parameters.

The Standard Model is in turn built from other classes which inherit eventually the
PyTorch lightning module. This has the effect that the process of training can be
automated in a very efficient and user-friendly way. Eventually, training the model can

30

be performed by merely executing the StandardModel.fit function.

6.4 First training

For the first training the maximum sequence length was 343 as mentioned before and
the maximal amount of epochs was chosen to be 20. The default, constant learning rate
of 0.01 was chosen. The so called early stopping option is used, which stops the training
after a certain number of epochs has passed, in which the validation loss remained the
same or even deteriorated. With this technique one automatically gets the model, which
performs best on the validation set, from all undergone epochs because the last setting
does not have to be necessarily the best model. The epochs for the early stopping option
were chosen to be 3. In the training set there were 10389 batches and the validation
set consists of 3464 batches. The combined set contains around 8.8 - 10° events and
around 1.6 - 10® hits in total. The model trained for 16 epochs, while the best model
was found on epoch 13. This is the model referred to in the following sections as the
model from the first training or also called the first model. The training and validation
loss over the epochs are shown in figure 10. The training loss appears to be relatively

0351 ® ® Training loss L] ® Validation loss
0.175
0.30 0.150 |
L]
0.25 0.125 °
[]
[]
2 0.20 4 w 0.100 - b
S ° S
0154 . 0.0751
[]
L]
L4 0.050 -
0.10 A ° ®
L]
L] Y °
° 0.025 1 °
0.05 L4 o ©
LA B ® o o ° °]
T T T T T T T T 0.000 T T T T T T T T
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Epoch Epoch
(a) Training loss (b) Validation loss

Figure 10: Training and validation loss for the first training

stable and is declining in nearly each epoch compared to the previous one, whereas the
validation loss fluctuates more. Additionally, the model’s predictions for the validation
set are shown in figure 11. The validation set contains about 1.1 - 10° events per type,
and hence serves as a good representation to test the model. To analyse the models
performance a metric like accuracy can be used. It is defined as

correctly classified events

Accuracy =

38
all events (38)
It has to be chosen what a correctly classified event is. For now, the rather strict
definition of

correct (1) [t —p| < 0.05

(39)
false (0) |t —p| > 0.05

Cstrict(p’t) = {

is used where p is the prediction and ¢ the actual target. With this definition the model
has an accuracy of 98.5% when applied to the validation set. It is important to note

31

105 4 mmm Data events
3 MC muon events

10% 4

103 4

Counts

102 4

101 4

10° 4

MC score

Figure 11: Prediction of validation dataset with best model from first training

that the model’s parameters were not adjusted by considering the validation set - except
choosing the best performing model - and the model therefore learnt underlying patterns
and did not simply memorise the dataset by overfitting. Thus, the model has the ability
to successfully distinguish most events from an unknown dataset. Later, the model
will be analysed on a second, new set - the test set - while the focus will be mainly
distributed on the following second model.

6.5 Second training
6.5.1 Unique hits

The first model was trained on all hits which were assigned to an event. A property
which the model could pick up on are so called after-pulses. They appear in real
data but not in simulations which could in principle make it easy for the model to
distinguish data and Monte Carlo simulations [38]. After-pulses are delayed signals from
for example released ions. For the second model these after-pulses will be removed from
the training data. By doing so, it is assured that the model does not have the ability to
use them, and other features, which may be unknown, can be investigated. To realise
this only the first hit on each PMT in an event is used but with this approach not only
after-pulses are removed. In the removed hits there may be hits from the background
or hits from other muons. For simplicity in the following sections it will only be stated
that after-pulses are removed but it should be remembered that other hits may be
discarded as well. The PMTs do not have an unique identifier. Therefore, the dom_id -
which is fortunately an unique identifier - from table 1 needs to be used to identify all
DOMs assigned to an event. Then, the channel_id is used, that specifies which of the
31 PMTs of the particular DOM is considered. Thus, if there are hits with identical
event number, DOM id, and channel id, only the first hit in time will be taken and the
others will be discarded. For each single file around 2.5 — 4% of the hits were affected,
resulting in a decrease of 3.4% of the hits for the combined dataset. Nevertheless, the

32

combined dataset for training and validation still contains about 8.8 - 10° events and
1.5 - 108 hits in total. The hits in this new dataset after the filtering has been carried
out will be called unique hits [38].

6.5.2 Training procedure

The potential problem from before was fixed and now both data and simulations have
the same maximal sequence length of 314. Therefore, the maximal sequence length was
also adjusted in the model setting. Applying the unique hits method had the effect that
the sequence lengths dropped, thus only around 70 muon events had to be removed
due to their sequence length exceeding the 314 threshold. Therefore, only the number
of batches in the validation set decreased by one while the training set contains the
same amount of batches as before. The maximal amount of epochs was chosen to be
30 and the number of epochs after the training is cancelled, when the validation loss
does not decrease further, was increased to seven. This was used to give the model
more opportunities to find even better parameters than before. All other adjustable
parameters remained unchanged. The model was trained for 27 epochs, and the model
with the lowest validation loss was created on epoch 20. Therefore, it was chosen as
the best fitting model. This is the model referred to in the following sections as the
model from the second training or also called the second model. Training and validation
losses are shown in figure 12. It can be seen that the training loss seems relatively

L] @ Training loss 0254 ® ® Validation loss
0.35 1
0.30 0.20 °
°
0.25 1
0.15 1
¥ 0.20 q 3
S S °
0.15 0.10 °
0.10 1
0.05 1
°
0.051 0o ° °Te ®
[Y [] °
AR XXX 00%0 09 Ceo? ®ee0 000°%00

0.00 4,

T T
10 15
Epoch

T T
20 25

0.00 4
T

T
10

15
Epoch

T T
20 25

(a) Training loss (b) Validation loss

Figure 12: Training and validation loss for the second training where only unique hits
have been used

stable as before with a few small outliers. Additionally, the validation loss seems to
fluctuate in general less than in the first training but this could also be because the
y axis scaling differs from the scaling for the first training. This time an additional
metric was saved, namely the accuracy on the validation set. The interesting property
would be the accuracy for each epoch. But due to the complicated code structure it
was only possible to implement the accuracy per batch for every epoch. From this
the accuracy per epoch can be calculated. If all batches had the same batchsize it
would be directly possible to sum the accuracies of all batches in the epoch and divide
the sum by the number of batches. Unfortunately, the last batch has a batchsize
of 55 which differs from all other batches which have batchsize 64. Therefore, with

33

equation 39 the number of correctly classified events in all batches from an epoch can
be calculated by rearranging the formula and inserting the total number of events in
the batch. Then, all correctly classified events are summed up, giving the total number
of correctly classified events in the epoch. The number of all events is also known which
is just 64 - (# Number of batches — 1) 4+ 55. This procedure can now be repeated for
every epoch. The accuracy per epoch on the validation set is shown in figure 13. For

1.00 1 (X} ee0e (X}
° ° o o0
o o, o °o® L4
0.95 1 ° o
L °
o

0.90 1 L]
>
o
e
3
g 0.85

0.80

0.75 1

® o
0 5 10 15 20 25
Epoch

Figure 13: Accuracy per epoch for the training with unique hits calculated from
individual accuracies of batches with small error introduced due to the estimation

earlier epochs the metric fluctuates while the fluctuations decrease for later epochs,
but they still occur although to a lesser degree. For both models a constant learning
rate was used which still gave a good result. For further training it may be better to
implement a variable learning rate which gets smaller for higher epochs. This could
help to counteract fluctuations in the later stages whereas fluctuations in earlier epochs
happen probably because the model still converges to a minimum and did not yet settle.
There, steps have a greater impact on the performance as in later training stages, and
with a smaller learning rate at the end the optimal point can be found more easily.

As with the first model the predictions on the validation set can be computed and
visualised. They are shown in figure 14. By comparing figure 11 and figure 14 it can
be postulated that the model performance increased. The number of events stayed
nearly the same and there are less events between the outermost bins. The performance
can be quantified again by computing the accuracy as before with the same definition.
The accuracy on the validation set amounts to 99.9% and therefore the performance
increased. This effect can not only appear due to the 70 muon events which were
removed between the two trainings due to their sequence lengths which not have to
but may possibly been classified poorly. Only 20 of these events were even inside the
validation set, and the number of correctly classified events increased by around 3000
events from the first to the second training procedure. Additionally, it can be said that
the concern that the model’s ability of distinguishing between data and simulation is
mainly based on after-pulses and therefore it could perform worse by removing them,
was unfounded. Although the second training started at a higher validation loss it
quickly dropped into the same regime as in the first training process. The reason for

34

105 4 B Data events
[MC muon events

104 .

103 4

Counts

102 §

101 4

100 4

MC score

Figure 14: Prediction of validation dataset with best model from second training where
only unique hits have been used in the dataset

the model performing better could be caused by a longer training which amounts to
seven more epochs.

35

7 Results

In this chapter both models will be analysed on a test set to investigate patterns on
which the models base their “decision”. This new set will be used because it is easier
to handle than the validation set. Training and validation sets from before are not
divided into different files but they are combined in one file and are assembled in the
training script. If the goal is to make changes to the data used for prediction like in
the following section it can only be effectively done for the whole file, which would be
a waste of time and resources because 75% of the data is assigned to the training set
and this set must not be used to analyse the predictions of the models. At the same
time a further check can be performed whether the model generalises. The focus will lie
on the second model, which was trained on unique hits, because it not only performs
better but additionally it is assured that the underlying patterns are not based on the
already known after-pulses. The same definition of unique hits is used as before, where
only the first hit on each PMT in an event is considered, removing the after-pulse but
possibly also hits from other sources. The test set consists of two data runs and two
muon simulation runs with run numbers 14358 and 14360. The events within these files
are completely unknown to the model and were not used for either training or validation
sets. The models will be evaluated on this newly chosen set, and additionally it will be
investigated which features of the eight hit-level inputs are especially important for the
model prediction.

7.1 Feature shuffling

To realise this proposed approach each feature will be shuffled individually which
essentially means that their corresponding values will be randomly redistributed among
the hits. All other features except the shuffled one will stay in the same order and remain
assigned to the same hit. Therefore, values of this certain feature do not only swap
between hits from the same class but also may swap between them. If the particular
feature is important for the model’s prediction the performance should change because
by shuffling information was lost. If the particular feature is unimportant and barely
considered by the model the prediction should not change drastically.

If the values would not be shuffled between types the result would not directly indicate
if the shuffled feature is important for the model’s decision or not. For example, in the
case of a high amount of values of a feature which only appear for one type, being an
indication, that may be used by the model, shuffling may not produce a performance
loss because the events still get recognised as the correct type by considering these
unique values of the feature. However, no or a small performance drop could also
mean that the shuffled feature is not important for the model’s decision. Therefore,
to assure that the performance drop is related to the importance of the feature to the
model’s prediction shuffling between types is also permitted. The procedure of shuffling
a complete column associated with one feature in the test set’s data frame and saving
the result takes around 25 — 30 min.

7.2 First model

Firstly, the model from the first training process will be used to create the predictions
on the test set. In the test set all events with a sequence length greater than 314

36

were discarded to avoid falling for the unlikely but potential bias which may have been
introduced, because of the small amount of muon events with larger sequence length
as mentioned before. The number of events in the test set amounts to 7.9 - 10* events
per type and the whole test set contains about 2.8 - 107 hits. The model’s prediction
on the test set are shown in figure 15. The performance seems to be similar to the

105 4

m Data events
MC muon events

104 4

103 §

Counts

102 A

101 4

10° 4

MC score

Figure 15: Prediction of test dataset with best model from first training

performance on the validation set as expected. The accuracy amounts to 97.8%. By
inspecting the performance on the test set a reference was set up which can be compared
to the prediction when shuffling has been carried out. Each of the features was shuffled
individually and the corresponding prediction of the model was computed as well as
the accuracy on each set. The different accuracies belonging to the set of the shuffled
feature are shown in table 5. It can be seen that the accuracy drops to ~ 50% when
shuffling tot, pos_x, and pos_y. A smaller decrease of ~ 5% occurred by shuffling pos_z.
The arrival time only dropped less than 3% and shuffling the direction parameters did
not make any significant difference. In this case, the strict definition of the accuracy is
used as before and thus it is important to look also at the distribution. In principle, it
could be the case that many events are now slightly outside of the boundaries and the
accuracy drops drastically while most events are still relatively close to their true target
value. Therefore, the distributions of the three features which when shuffled have a large
accuracy drop are shown in figure 16, 17, and 18. The other distributions are shown in
the appendix in chapter A.1. It can be seen that indeed for, e.g. shuffling ToT, some
events are more spread out compared to the unshuffled distribution. Therefore, a more
loose accuracy definition can be defined by choosing

correct (1) [t—p| < 0.4

(40)
false (0) [t —p| > 0.4

Cloose(p7 t) = {

to quantify if the accuracy drops with this definition are not that drastically. This
new definition of accuracy is also shown in table 5. In either way the definition for

37

Counts

Counts

W Data events
[MC muon events
104 4
103 4
102 4

MC score

Figure 16: Distribution of first model’s prediction on test set with shuffled tot

I Data events
[MC muon events

104 4

103 4

102 A

101 4

MC score

Figure 17: Distribution of first model’s prediction on test set with shuffled pos_x

38

m Data events
MC muon events

104 4

103

Counts

102 4

101 A

MC score

Figure 18: Distribution of first model’s prediction on test set with shuffled pos_y

Shuffled feature | Accuracy (strict) | Accuracy (loose)

Unshuffled 97.8% 99.8%
tot 53.2% 58.1%

t 95.4% 99.1%

pos_x 51.8% 52.0%
pos_y 52.8% 53.6%
pos_z 92.9% 98.0%
dir_x 97.7% 99.8%
dir_y 97.8% 99.8%
dir_z 97.7% 99.8%

Table 5: Different accuracies (strict and loose) from first model’s prediction on test set
for shuffling features individually

“correct” is arbitrary and thus can distort the accuracy measure of the model if chosen
too strictly. The differences between the different accuracy definitions do not shift much.
The highest difference of ~ 5% can be found for the ToT parameter, while it does not
compensate the large drop of accuracy between shuffled and unshuffled. However, the
main reason why the accuracies drop by such a large factor is that many events are
classified as the opposite type. In the outermost bins within all three figures the number
of correctly classified events and the number of falsely classified events are in the same
order of magnitude. To further analyse the performance - especially the phenomenon of
classifying events falsely with high certainty - two additional metrics can be defined.
The precision which is given by [27]

Precisio # correct positive events (41)
recision =
correct positive events + false positive events

39

as well as the sensitivity which is given by [27]

correct positive events

Sensitivity = (42)

correct positive events + false negative events -
The before investigated classification task does not separate between the for these
metrics needed terms positive or negative. Therefore, these measures will be computed
for two different purposes which then allow to define positive and negative, effectively
subdividing the task into two smaller tasks. It will be distinguished between the purpose
of classifying data events and the purpose of classifying muon simulation events, i.e.
giving a number of events to the model and observing if the model can identify events
from the desired type correctly. Consequently, positive and negative are well defined
for these tasks. This choice is arbitrary and is only used to arrange the definitions in a
compatible way with equation 41 and 42 and does not change the result. It would be
also possible to compute these values in a way without these additional definitions and
just comparing the raw numbers which would yield the same result, e.g. computing all
events with an MC score close to zero and considering the part of true data events in
this area would give the precision for data events. The definition of strict correctly will
be used as before as a classification for the precision and sensitivity metrics, because
the difference between the strict and loose definitions is relatively small and the main
aspect here concerns the falsely classified events with high certainty. The computed
measures are shown in table 6 for the unshuffied test set for comparison and for the
three parameters which lead to the huge accuracy drop. By investigating these metrics

Data classification MC muon classification

Set Precision | Sensitivity | Precision | Sensitivity
Unshuffled 99.9% 96.6% 99.9% 99.1%
Shuffled tot 59.1% 65.8% 60.5% 40.3%
Shuffled pos_x | 51.9% 71.8% 52.5% 31.6%
Shuffled pos_y | 53.6% 61.4% 54.0% 44.1%

Table 6: Precision and Sensitivity computed with first model’s predictions on the test
set for different shuffled features and separated into two subtasks in order to define
positive and negative

further information can be obtained whether there are differences in the performance
between data and simulation. It can be seen that for the unshuffled set both precisions,
which could be interpreted as how good or accurate the positive prediction for the
task is, are equally high. The sensitivities can be interpreted as a measure on how
many events, that should be detected because their true value is positive, have been
recognised for the given task. They are high for both cases but here a small difference
appears between data and simulation events. Thus, data events are a bit less frequently
identified compared to simulation events. For the shuffled features the precisions are
nearly the same for both tasks with a maximal deviation of 1.4%. This means that by
shuffling these features only around 50 — 60% of the number of events whose predicted
score reflects certainty - because it deviates only slightly from the desired values - is
actually correct. For sensitivity there are differences between recognising data and
simulation. When shuffled less than half of the simulation events are detected as such
whereas for the data classification task 17% — 40% more events get detected. These

40

misidentifications are the main reason for the accuracy drop.

This investigation gives hints which features the model mainly uses to base its decision
on. It was to be expected that ToT has a great influence because apparently it is not
simulated in an optimal way [37]. However, these results should be interpreted with care
for now because the main reason for the distinction may be based on the after-pulse
pattern. While this indication should not remain for the shuffled feature, a pattern
could still be detectable in the remaining features. Therefore, the second model will be
analysed to verify that the importance of features is distributed in a similar way.

7.3 Second model

The second model will be also used to make predictions on the test set. Analysing
the second model has the advantage of removed after-pulses in the training data and
therefore other patterns need to be the cause of the distinction. Here, the maximal
sequence length of the test set is again 314 but now in addition the after-pulses in the
test set will also be discarded. The model was trained on data where after-pulses have
been removed. In principle, the model should not be able to make use of them but
keeping the after-pulses in the test set may cause unpredicted behaviour which would
then be reflected by the performance. The amount of events in the test set remains the
same but due to this procedure around 7.5 - 10° hits have been removed which counts
for around 2.6% of all pulses. The prediction of the events in the test set are shown
in figure 19. The accuracy with its strict definition amounts to 99.9%, similar to the
validation set and better than the accuracy of the model from the previous training.
The same procedure as before will be pursued to investigate the features which have
the most relevance to the model’s prediction by shuffling each feature individually and
computing the accuracy respectively. Additionally, by using the same method it is easy
to compare if this model, trained on unique hits, evaluates the chosen importance of
the features in a similar way. The distribution of the three features with the largest
accuracy drop - which are the same as for the other model - are again shown in figure
20, 21, and 22 while the other distributions can be found in the appendix in chapter
A.2. The accuracies with both definitions are arranged in table 7. It can be seen that
the features with the highest accuracy drop are still the same. Only the respective
values changed. Both accuracies of shuffled ToT increased about 7% while the position

Shuffled feature | Accuracy (strict) | Accuracy (loose)
Unshuffled 99.9% 100.0%
tot 60.5% 65.0%
t 98.8% 99.8%
pos_x 49.9% 50.0%
pos_y 51.6% 51.8%
pos_z 90.6% 96.2%
dir_x 99.8% 100.0%
diry 99.9% 100.0%
dir_z 99.9% 100.0%

Table 7: Different accuracies (strict and loose) from second model’s prediction on test
set with unique hits for shuffling features individually

41

5
10 === Data events

[MC muon events

104 3

103

Counts

102 A

101 4

100 4

MC score

Figure 19: Prediction of test dataset with best model from second training where only
unique hits were used

I Data events
[MC muon events
104 4
2
c
3
© 103
102 4

MC score

Figure 20: Distribution of second model’s prediction on test set with unique hits where
tot was shuffled

42

5
10 I Data events

8 MC muon events

104 4

103 4

Counts

102 A

10! §

10° 4

MC score

Figure 21: Distribution of second model’s prediction on test set with unique hits where
pos_x was shuffled

7 mmm Data events
% MC muon events

104 4

103 4

Counts

102 4

101 4

100 4

MC score

Figure 22: Distribution of second model’s prediction on test set with unique hits where
pos_y was shuffled

43

accuracies dropped around 1 — 2%. Small differences probably should not be given
too much importance because the shuffling is still based on randomness. However,
it can again be seen, when looking at the figures and the difference between loose
and strict accuracy definition, that the spread out of the distribution is not the main
cause of the loss of performance but rather the assignment of events to their opposite
MC score. Therefore, the prediction and sensitivity metrics can be computed in the
same way as before, and are shown in table 8 with the strictly correct definition from
before. The measure of the predictions on the unshuffled set are at nearly 100% as

Data classification MC muon classification

Set Precision | Sensitivity | Precision | Sensitivity
Unshuffled 100.0% 99.9% 100.0% 99.8%
Shuffled tot 65.7% 77.3% 71.3% 43.5%
Shuffled pos_x | 55.7% 5.2% 49.8% 95.1%
Shuffled pos_y | 60.0% 13.1% 50.8% 90.5%

Table 8: Precision and Sensitivity computed with second model’s predictions on the
test set with unique hits for different shuffled features and separated into two subtasks
in order to define positive and negative

expected. Here, the main reason why the accuracies drop on shuffled features is again
the misclassification with high certainty, as also seen in the distributions. This is most
prominently seen for the position x and y parameters. For them the interpretation of
data events is false for almost all events where only 5% and 13% of these events get
recognised as such. This imbalance can also be seen in the distribution but because of
the logarithmic representation this exceptional effect is visually weakened. Finding a
direct explanation for this phenomenon seems difficult. Because the shuffling is based on
randomness, shuffling the same feature several times and viewing the statistics could give
more insights whether this discrepancy persists to this degree for other configurations.
It can be said that the same features as for the first model have the greatest influence
on the prediction even though the distribution of accuracy drops changed. It should
be noted that before shuffling no seed for the probability function used for shuffling
was defined. Even if that would have been done the number of hits between the two
different test sets used for each model differs, thus even the same seed would produce
different results after shuffling. Therefore, the exact differences between the models for
the different metric values should not be weighted too much because these likely also
depend on the distribution of the hits after shuffling. Nevertheless, the sets have a large
number of hits which should counteract these concerns.

While it was expected that shuffling important features produces performance changes,
the misclassification of many events to the outside of the distributions was not directly
obvious. A possible reason, which could explain why many events are classified as the
opposite type with values close to zero or one respectively, when certain features are
shuffled, could be based on the sigmoid function which is used in the last step in the
Transformer. If the input values for this function are outside of the roughly defined
interval [—5, 5] the output values of the sigmoid function are extremely close to zero and
one respectively, with deviations less than 0.1. When the Transformer receives random
input, whose underlying patterns have not been seen before, in important features it
may produce random output [37]. In this case the randomness would be achieved by

44

shuffling. This random output of the Transformer may not be located in the relatively
small interval but within a much wider range which is responsible for the values in the
middle regions of the MC score distribution. This explanation would be contrary to the
human expectation of predictions having values around 0.5 when the Transformer deals
with input data on which it should not be able to form a clear prediction. A further
investigation could show the output distribution of the Transformer before the sigmoid
function is applied.

7.4 Feature distributions

The result of the for the model important features can be further investigated by
comparing the distributions of the respective feature between data and muon simulations.
Two dimensional histograms of the position x and y features are shown in the appendix
in section A.3 for data and muon respectively for the test set with unique hits. There, it
can be seen that the distributions of the discrete coordinates seem more blurred for data
events. To get a clearer view the distributions of pos_x and pos_y for the unique hit
test set are shown in figure 23 and 24 where data and simulation are directly compared.

The same amount of bins within the same range was used. Therefore, it can be seen

B Data

106 1 MC muon
£ 10° 5
=]
(o)
o

104 4

—-200 -100 0 100 200 300
pos x

Figure 23: Distribution of pos_x for data and MC muon hits where the test set with
unique hits has been used

that indeed each bin except one which is filled with simulation hits has a counterpart
which is filled with data events - while their amount of course differs - but there are
bins which are filled with data hits and in this corresponding value range no muon hits
occur. By counting these specific hits one finds that their amount is 26% of all data hits
for the position x feature and 3.5% of all data hits for the position y feature. This one
bin in figure 23 in whose value range no data hits occur contains 3% of the simulation
hits. While these can help the model to identify events easier it probably is not enough
to account for everything. If these exceptions would be the only characteristic, one
would not expect an accuracy decrease for shuffled ToT. The distributions for data

45

B Data

106 MC muon
£ 10 1
=
Q
o

104 4

100 200 300 400 500 600
posy

Figure 24: Distribution of pos_y for data and MC muon hits where the test set with
unique hits has been used

and simulation of the ToT are shown in figure 25. Again, the same binning has been
used to make better comparisons. It can be seen that for a certain value range of ToT
only data hits occur. Unlike before the fraction is negligible because this characteristic
applies to around 800 hits in total. Additionally, the bin with the lowest ToT value has
a large discrepancy between the number of hits from data and simulation. Therefore, it
would be reasonable if that value range is also an indication but all the muon simulation
hits in this particular bin amount only to less than half a percent of all simulation hits.
Thus, the directly obvious indication of ToT values being assigned to solely one hit type
can not play a major role in the distinction process.

What is not directly observable are the connections between the different features. A
first attempt in visualising these connections was done with the figures from chapter
A.3 while there the only directly obvious characteristic was the mentioned “blurring”.
Therefore, a deeper structure may be the main cause which is not directly obvious
from just looking at the feature distributions. On the other hand, there is a hypothesis
which would be contrary to the one before. In particular, it could also be the case
that the mentioned, special hits with feature values that no hits from the opposite
type posses are favourably distributed over the events such that each event contains a
few hits from these special value ranges. This could be definitely the case because the
amount of special hits exceeds the number of events. However, this raises the question
on whether the model would base its decision on only ~ 25% of the total hits. For
the muon simulation events the fraction of special hits compared to the total hits only
amounts to ~ 3% which seems to make a decision solely based on this small number
unlikely. Nevertheless, the model could check if special values of data hits occur in the
event and if not could be certain that it must be a simulation in this idealised view of
favourable distribution of special data hits. Still, these suggestions would not explain
the accuracy drop when the ToT feature is shuffled because in this case the number
of special hits is far too small. Additionally, it would not explain why there is nearly

46

106 4

10° 4

104 .

Counts

103 3

102 4

101 4

100 4

0 50 100 150 200 250
ToT [ns]

Figure 25: Distribution of tot for data and MC muon hits where the test set with
unique hits has been used

equal accuracy drop for shuffling position y where the special hits make up a much
smaller fraction. Therefore, the model could take these special hits into account, and
thus could rely heavily on it as the accuracy drops suggest but there is probably more
to its decision making than just this relatively simple idea.

47

8 Conclusion

8.1 Summary

This thesis introduced a procedure to use the Transformer from [39] on the task of
extracting information from hits corresponding to a given number of experimental data
and muon simulation events. Its input consists of all hits assigned to an event and to
each hit eight features are assigned. The output consists of a continuos variable in the
interval [0, 1], the so called MC score, which is assigned to the event. A value of zero
corresponds to a data event and one to a muon simulation event.

Firstly, the extractor was modified to get access to all needed parameters in the for
machine learning suitable dataformat SQLite. A pool of 100 experimental data, muon
simulation, and neutrino simulation files were converted. By applying constraints on
certain parameters, which are assigned to the events, combined in the antinoise cut
defined in [47] the initial number of available events was reduced to filter out noise events.
The cut on the direction produced different results than initially expected due to the
different convention used in the extractor, but the conclusions and observations made
in later sections still hold true. The fraction of neutrino simulation events compared to
the other events was negligible after the cuts were applied which is why the neutrino
simulation events were not used in the further course. At the end of the preprocessing
stage, ordered datastructures such as the dataloader have been assembled from the
SQLite files which are compatible with the GraphNet workflow in which the Transformer
is embedded. In order that this machine learning model can perform successfully on
the given task, it needs to be trained. The data for the training process was chosen
where 11 runs of data and MC muon simulation type have been selected which already
contained a sufficient number of events which is in the order of 9 - 10°. 75% of these
events are used as the training set and the remaining 25% are used as the validation set.
A maximal sequence length of the events was chosen while including nearly all events
and at the same time saving resources. With the different components a GraphNet
Standard Model was built and a first training was carried out. The accuracy of the first
model applied to the validation set was 98.5%. To ensure that the cause of distinction
between data and simulation is not based on the after-pulse pattern in data events a
second training has been performed, where the same dataset has been used, but only the
first hit on each PMT is considered. This removes the after-pulses, but hits from other
sources may also be removed. The second model, which had an accuracy of 99.9% when
applied to the validation set, performed even better than the first model. A possible
reason could be that the training process contained more epochs than before. Therefore,
another cause than after-pulses needs to be the reason for the successful distinction
made by the model.

Both models have been analysed on the so called test set, which contained two data and
two muon simulation runs. This additional set was used for analysing, because of easier
handling of the input data compared to the validation set and liberating from biases
because from the training the model with the best performance on the validation set
has been chosen. Additionally, as a side effect the amount of events, on which the model
is tested on, is increased. Then, it was attempted to find the input features, which are
most important for the models’ decisions. To achieve this, features have been shuffled
and several metrics have been computed to quantify the performance changes, when
features are shuffled. The shuffled features, which lead to the greatest accuracy drop,

48

have been identified to be tot, pos_x, and pos_y. It has also been found that when
these features are shuffled the main cause of accuracy drops is the misclassification as
events of the opposite type.

Lastly, the distributions of the features have been investigated and it has been found
that there are special values of the features, which are only attained by one type. It has
been proposed, that at least for the position x parameter a very efficient distribution of
these special values on the events would be possible, and therefore the model would
have an indication to which type the event belongs. However, this hypothesis does not
explain the performance drops when position y and ToT are shuffled, because there the
fraction of special hits is much smaller. Therefore, it is likely that these special hits
play a role in the process of distinction, but it may not be the whole story.

8.2 Outlook

By looking at the Transformer and its results, a further investigation on why the
shuffling affects the performance could be carried out. The approach could introduce a
simple quantity for each event being the difference between the MC score before and
after the shuffling. Then, outstanding events can be analysed further with large or small
differences. It is expected that this will be a large part, because as seen before many
events after shuffling are classified as extremes. For example, the events with the largest
difference can be investigated. By doing so it can be seen, whether there are directly
observable patterns in the hits, which have been redistributed to these particular events.
The events with the smallest differences in the MC scores may be also worth considering.
It may be, that events with a high difference in the MC scores received many hits from
the opposite type, whereas events with small differences received hits from the same
type. If this is the case, this would open up further questions, such as how many hits
from the opposite type are needed to change the MC score.

An additional approach could be to generate events with hits, that only have values of
the features, which were not realised in data and simulations. For the position variables
this could be easy to implement, because there the distributions are discrete as seen
before. The hits would not have any real meaning and it could be investigated, what
the model predicts from these inputs. It could be expected, that the model gives a
prediction which is around 0.5, but it could also be the case that many predictions with
values close to zero or one are received, as seen in the distributions of the important,
shuffled features. With this, the behaviour of the model when confronted with data on
which a definite decision should not be possible can be further investigated.
Investigations can also be done on leaving out certain features in the training process,
which is in principle easy to implement. It can be directly specified in the initialisation
process of the datastructures and the model. As shown above, observations have been
made that the direction features had no accuracy drops when they were shuffled. If
the model would not have access to parameters such as ToT and position features, the
question arises if it will perform badly and can no longer distinguish between data and
MC muon simulations, or if there are hidden patterns in the direction variables, which
now get the model’s attention, apparently unlike before.

49

50

A Appendix

A.1 First model’s prediction on test set with shuffled features

5 4
10 I Data events
[MC muon events
104 4
@ 103 4
c
3
O
102 4
101 4

MC score

Figure 26: Distribution of first model’s prediction on test set with shuffled t

10° 1
B Data events

[MC muon events

Counts

MC score

Figure 27: Distribution of first model’s prediction on test set with shuffled pos_z

o1

Counts

Counts

5 4
10 === Data events

[MC muon events

104 4

103 A

102 A

101 4

100 4

MC score

Figure 28: Distribution of first model’s prediction on test set with shuffled dir_x

5 4
10 == Data events
0 MC muon events

104 4

103 4

102 4

101 4

100 4

MC score

Figure 29: Distribution of first model’s prediction on test set with shuffled dir_y

52

Counts

10° 4

W Data events
[MC muon events

104 4

103 4

102 4

10! 4

100 4

MC score

Figure 30: Distribution of first model’s prediction on test set with shuffled dir_z

53

A.2 Second model’s prediction on unique hits test set with shuffled
features

5 4
10 === Data events

[0 MC muon events

104 4

103 A

Counts

102 A

10! 4

100 .

MC score

Figure 31: Distribution of second model’s prediction on test set, containing unique hits,
with shuffled t

5 4
10 === Data events
[MC muon events
104 4
103
b}
c
2
O
102 4
101 4

MC score

Figure 32: Distribution of first model’s prediction on test set, containing unique hits,
with shuffled pos_z

o4

5 4
10 === Data events

% MC muon events

10% 1

103 4

Counts

102 A

10! 4

100 4

MC score

Figure 33: Distribution of first model’s prediction on test set, containing unique hits,
with shuffled dir_x

5 4
10 === Data events
0 MC muon events

10% 3

103 4

Counts

102 4

101 4

10° 4

MC score

Figure 34: Distribution of first model’s prediction on test set, containing unique hits,
with shuffled dir_y

95

5 4
10 === Data events

% MC muon events

10% 3

103 4

Counts

102 4

10! 4

100 4

MC score

Figure 35: Distribution of first model’s prediction on test set, containing unique hits,
with shuffled dir_z

56

A.3 Feature distributions

600
700000

500 600000

500000

400
400000

pos y

300 300000

200000

200
100000

100
—200 -100 0 100 200 300

pos X

Figure 36: 2D histogram of position x and position y for all data hits in the test set
with unique hits

600
700000
500 600000
500000
400
> 400000
w
o
Q
300 300000
200000
200
100000
100 0
—200 -100 0 100 200 300

pos x

Figure 37: 2D histogram of position x and position y for all muon simulation hits in
the test set with unique hits

o7

o8

Bibliography

1]

[11]

[12]

Steffen Hallmann. “Sensitivity to atmospheric tau-neutrino appearance and all-
flavour search for neutrinos from the Fermi Bubbles with the deep-sea telescopes
KM3NeT/ORCA and ANTARES”. PhD thesis. Friedrich-Alexander-Universitét
Erlangen-Nirnberg, 2021. eprint: https://ecap.nat.fau.de/wp-content/
uploads/2021/02/Dissertation_HallmannSteffen_Opus.pdf.

Christopher van Eldik. Lecture notes on Advanced Experimental Physics: Particle
and Astroparticle Physics. 2025.

Samoil Bilenky. Introduction to the physics of massive and mized neutrinos.
Springer Cham, 2018. DOI: 10.1007/978-3-319-74802-3.

Mark Thomson. Modern Particle Physics. Cambridge University Press, 2013.

Antonio Ereditato. The State of the Art of Neutrino Physics. WORLD SCIEN-
TIFIC, 2018. DOT: 10.1142/10600. eprint: https://www.worldscientific.com/
doi/pdf/10.1142/10600. URL: https://www.worldscientific.com/doi/abs/
10.1142/10600.

Kai Zuber. Neutrino Physics. Taylor & Francis, 2020. 1SBN: 9781351764582. DOT:
10.1201/9781315195612. URL: https://directory.doabooks.org/handle/20.
500.12854/158731.

A B. Balantekin and G.M. Fuller. “Neutrinos in cosmology and astrophysics”. In:
Progress in Particle and Nuclear Physics 71 (2013). Fundamental Symmetries in
the Era of the LHC, pp. 162-166. 1ssN: 0146-6410. DOI: https://doi.org/10.
1016/j .ppnp.2013.03.008. URL: https://www.sciencedirect.com/science/
article/pii/S0146641013000276.

Vernon Barger, Danny Marfatia, and Kerry Whisnant. The Physics of Neutrinos.
Princeton: Princeton University Press, 2013. 1SBN: 9781400845590. DOI: doi :
10.1515/9781400845590. URL: https://doi.org/10.1515/9781400845590.

Brian O Fearraigh. “Following the light. Novel event reconstruction techniques for
neutrino oscillation analyses in KM3NeT /ORCA”. PhD thesis. Universiteit van
Amsterdam, 2024. eprint: https://pure.uva.nl/ws/files/155195983/Thesis.
pdf.

J. A. Formaggio and G. P. Zeller. “From eV to EeV: Neutrino cross sections
across energy scales”. In: Reviews of Modern Physics 84.3 (2012), 1307-1341. 1SSN:
1539-0756. DOI: 10.1103/revmodphys.84.1307. URL: http://dx.doi.org/10.
1103/RevModPhys.84.1307.

S Adridan-Martinez, M Ageron, F Aharonian, S Aiello, et al. “Letter of intent
for KM3NeT 2.0”. In: Journal of Physics G: Nuclear and Particle Physics 43.8
(2016), p. 084001. DOI: 10.1088/0954-3899/43/8/084001. URL: https://dx.
doi.org/10.1088/0954-3899/43/8/084001.

S. Aiello, A. Albert, A. R. Alhebsi, M. Alshamsi, et al. “Observation of an
ultra-high-energy cosmic neutrino with KM3NeT”. In: Nature 638.8050 (Feb.

59

[13]

[17]

-
O

)
=

[21]

22]

2025), pp. 376-382. 1sSN: 1476-4687. DOIL: 10.1038/s41586-024-08543-1. URL:
https://doi.org/10.1038/s41586-024-08543-1.

Maurizio Spurio. Probes of Multimessenger Astrophysics: Charged cosmic rays,
neutrinos, vy-rays and gravitational waves. Springer International Publishing,
2018. 1SBN: 978-3-319-96854-4. DOI: 10.1007/978-3-319-96854-4_11. URL:
https://doi.org/10.1007/978-3-319-96854-4_11.

John David Jackson. Klassische Elektrodynamik. Berlin, Boston: De Gruyter,
2014. 1sBN: 9783110334470. DOI: doi:10.1515/9783110334470. URL: https:
//doi.org/10.1515/9783110334470.

Thomas Eberl. Lecture notes on Neutrino Astronomy.

Jannik Hofestadt. “Measuring the neutrino mass hierarchy with the future
KM3NeT/ORCA detector”. PhD thesis. Friedrich-Alexander-Universitit Erlangen-
Niirnberg, 2017. eprint: https://ecap.nat.fau.de/wp-content/uploads/
2017/04/Dissertation_JHofestaedt.pdf.

Wolfgang Demtroder. Experimentalphysik 3. Atome, Molekiile und Festkorper.
5th ed. Springer Spektrum Berlin, Heidelberg, 2016. 1SBN: 978-3-662-49094-5. DOTI:
10.1007/978-3-662-49094-5. URL: https://doi.org/10.1007/978-3-662-
49094-5.

Dr. Rodrigo Gracia-Ruiz. Private communication.
Brian O Fearraigh and Bouke Jung. Track reconstruction in KM3NeT.

Martin Schneider. Measuring the attenuation length of seawater in KM3NeT/ORCA
with atmospheric muons. Master’s thesis. https://ecap.nat.fau.de/wp-
content/uploads/2022/07/martin_schneider_master_thesis.pdf. 2022.

K.P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive Computa-
tion and Machine Learning series. MIT Press, 2012. 1SBN: 9780262304320. URL:
https://books.google.de/books?id=RC43AgAAQBAJ.

Michael Moser. “Sensitivity studies on tau neutrino appearance with KM3NeT /ORCA
using Deep Learning Techniques”. PhD thesis. Friedrich-Alexander-Universitét
Erlangen-Niirnberg, 2020. eprint: https://ecap.nat.fau.de/wp-content/
uploads/2021/03/phd_thesis_michael_moser_v2.pdf.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http :
//www.deeplearningbook.org. MIT Press, 2016.

Grant Sanderson. But what is a neural network? https://www.3bluelbrown.
com/lessons/neural-networks. Last access: 10/10/2025. 2017.

Izaak Neutelings. Tikz.net: Neural networks. https ://tikz . net /neural _
networks/. Last access: 11/10/2025.

Markus Pirke. Event reconstruction for ground-based ~y-ray particle detectors
with Transformer networks. Master’s thesis. https://ecap.nat.fau.de/wp-
content/uploads/2024/11/2024_MA_MarkusPirke.pdf. 2024.

60

[27]

Kenny Choo, Eliska Greplova, Mark H. Fischer, and Titus Neupert. Machine
Learning kompakt. Springer Spektrum Wiesbaden, 2021. 1SBN: 978-3-658-32268-
7. DOL: https://doi.org/10.1007/978-3-658-32268-7. URL: https:
//doi.org/10.1007/978-3-658-32268-7.

BCFELoss. https://docs.pytorch.org/docs/stable/generated/torch.nn.
BCELoss.html#torch.nn.BCELoss. Last access: 11/10/2025.

Modified nuT_graphnet repository from Lukas Hennig, forked from Ivan Mozun-
Mateo/nuT-graphnet. https://git.km3net.de/lhennig/nut_graphnet. Last
access: 11/10/2025.

S.K. Nayar. “Neural Networks”. In: Monograph FPCV-5-4, First Principles of
Computer Vision. Columbia University, New York, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al. Attention
Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. URL: https://arxiv.org/
abs/1706.03762.

Richard E. Turner. An Introduction to Transformers. 2024. arXiv: 2304 .10557
[cs.LG]. URL: https://arxiv.org/abs/2304.10557.

Avinash Kak and Charles Bouman. Transformers: Learning with Purely Attention
Based Networks. Lecture Notes on Deep Leaning. Purdue University. 2025. URL:
https://engineering.purdue.edu/DeepLearn/pdf-kak/Transformers.pdf.

The km3io Python package. URL: https://git .km3net.de/km3py/km3io.

Awkward Array documentation. Last access: 1/11/2025. URL: https://awkward-
array.org/doc/main/index.html.

NumPy. The fundamental package for scientific computing with Python. Last
access: 1/11/2025. URL: https://numpy.org/.

Lukas Hennig. Private communication.

Ivan Mozun Mateo and Antonin Vachere. nuT: Neutrino Reconstruction with
Transformers. 2025.

Ivan Moztin Mateo. nuT_graphnet repository. URL: https://git .km3net .de/
imozunmateo/nut_graphnet.

GraphNeT - A Deep Learning Library for Neutrino Telescopes. Documentation.
URL: https://graphnet-team.github.io/graphnet/index.html.

PyTorch documentation. Last access: 28/10/2025. URL: https://docs.pytorch.
org/docs/stable/index.html.

PyTorch Lightning documentation. Last access: 28/10/2025. URL: https: //
lightning.ai/docs/pytorch/stable/.

pandas package. Last access: 3/11/2025. URL: https://pandas.pydata.org/.

The KM3NeT data format. URL: https://git.km3net .de/common/km3net -
dataformat.

61

Snakemake documentation. Last access: 1/10/2025. URL: https://snakemake.
readthedocs.io/en/stable/.

Slurm documentation. Last access: 5/11/2025. URL: https://slurm. schedmd.
com.

Vittorio Parisi. Data/MC comparison in the point-like analysis. 2025.

Monte Carlo particle numbering scheme. Last access: 24/10/2025. URL: https:
//pdg.1bl.gov/2007/reviews/montecarlorpp.pdf.

PD Dr. Thomas Eberl. Private communication.

62

63

Acknowledgements

Many thanks to PD Dr. Thomas Eberl, Lukas Hennig, and Dr. Rodrigo Gracia-Ruiz
for great support with code and software, many helpful discussions, answering many
questions of mine, and reviewing this thesis.

64

65

66

Declaration of Originality

I, Julian van Laak, student registration number: 23124913, hereby confirm that I
completed the submitted work independently and without the unauthorized assistance
of third parties and without the use of undisclosed and, in particular, unauthorized aids.
This work has not been previously submitted in its current form or in a similar form to
any other examination authorities and has not been accepted as part of an examination
by any other examination authority.

Where the wording has been taken from other people’s work or ideas, this has been
properly acknowledged and referenced. This also applies to drawings, sketches, diagrams
and sources from the Internet.

In particular, I am aware that the use of artificial intelligence is forbidden unless its
use an aid has been expressly permitted by the examiner. This applies in particular to
chatbots (especially ChatGPT) and such programs in general that can complete the
tasks of the examination or parts thereof on my behalf.

Any infringements of the above rules constitute fraud or attempted fraud and shall lead
to the examination being graded “fail” (“nicht bestanden”).

Place, Date Signature

67

68

