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Abstract

Neutrino detection in the deep sea relies on the detection of Cherenkov radiation,
produced by charged elementary particles, occurring as a product of neutrino interac-
tions. In the KM3NeT deep-sea neutrino detector, photomultiplier tubes are housed
inside glass spheres, which are often referred to as digital optical modules (DOMs).
These DOMs are anchored to the seabed, experiencing slight movements because of
varying ocean currents. To determine their positions in real time, an acoustic po-
sitioning system is employed, which uses beacons on the seafloor and piezoelectric
sensors glued to the inside of the DOM shells. However, the current positioning al-
gorithms neglect the propagation of the acoustic positioning signals through the glass
shell, which could introduce systematic errors. Experimental findings from the modi-
fied AMADEUS project revealed the glass waves to resemble two Lamb-like modes of
zeroth order, traveling faster than the speed of sound in the water around the detec-
tor. Building upon this experiment, this study utilizes finite element simulations to
analyze elastic waves propagating through glass of different shapes. These simulations
strengthen the assumption of dispersive Lamb-like wave modes and enable a measure-
ment method of their propagation speeds through the DOM shell. The findings of this
work provide a path for the correction of systematic positioning errors in the KM3NeT
localization system, improving the accuracy of neutrino detection in the deep sea.
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1 Introduction

Traditionally, astronomical events are analyzed with the detection of photons, emitted by
these events. Photons are excellent carriers of information because they are not affected
by electromagnetic fields, meaning they can travel through space without disturbance of
their original trajectory. In astronomy, this property is crucial, as otherwise the detected
photons cannot be traced back to their original source. In addition to directional infor-
mation, photons carry energy, which is utilized to classify the observed events.
Since the first observation of neutrinos in the Cowan-Reines-neutrino-experiment, the pur-
suit of detecting cosmic neutrinos has become a major objective in astrophysics. Today,
neutrino astronomy is an independent field of astronomy, with numerous experiments and
international collaborations, offering new insights on cosmic events.
Neutrinos are well-suited for astronomical observations, as they are the only known par-
ticles to interact via the weak force exclusively. This not only allows them to travel
through space without deflection by electromagnetic fields like photons, but makes them
extremely penetrating, meaning they rarely interact with matter. These characteristics
make them ideal messengers of astrophysical processes, analogously to traditional photon
driven methods.
Due to the penetrating nature of neutrinos, the detection is a technical challenge and usu-
ally vast detection volumes need to be monitored for neutrino interactions. A widely used
detection method is the observation of Cherenkov radiation, which is emitted by charged
particles produced by a neutrino-matter interaction. This light is typically detected by
photomultiplier tubes (PMTs), and can be utilized to reconstruct trajectory and energy
information of the original neutrino.
Since Cherenkov-radiation is absorbed by most materials, the neutrino interaction has to
happen in an optically transparent medium, such as ice or water. Neutrino telescopes,
detecting Cherenkov radiation in seawater are called deep-sea-neutrino telescopes. Two
examples for such telescopes are the KM3NeT-telescope [9] network and its predecessor
ANTARES [8]. Both of these telescopes work by detecting Cherenkov-radiation with the
help of PMTs, spaced across large detection volumes deep in the mediterrenian sea. The
PMTs are embedded in so called optical modules (OMs), which are pressure resistant
glass spheres and are distributed across lines vertical to the sea floor with no fixed loca-
tion, moving with underwater currents. To correctly reconstruct a neutrino event, it is
crucial to locate the optical modules accurately.
Both KM3NeT and ANTARES rely on an acoustic positioning system to determine the lo-
cation of their OMs. While these systems are already precise, tests with the AMADEUS [6]
system demonstrated potential for an immediate improvement of the positioning accuracy
for the ANTARES telescope. In this thesis a similar analysis inspired by the AMADEUS
experiment is conducted for KM3NeT, with the aim of improving its positioning system.
As the construction of an experimental test setup would be costly and time-inefficient, the
analysis is done with a simulation by the method of finite elements (FEM).
Section 2 introduces the KM3NeT and ANTARES neutrino telescopes as well as the
AMADEUS setup, describing their technical details. Section 3 discusses the theory of
ultrasonic elastic waves in solid media and their importance for this topic. In section
4, a short, theoretical introduction to the method of finite elements is given, before the
simulation setups as well as their results are discussed in section 5. Section 6 summarizes
the important insights of this analysis.
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2 KM3NeT and ANTARES

KM3NeT is an observatory for high-energy neutrinos, consisting of multiple detection sites
located in the deep Mediterranean sea (∼ 3000 m below the surface). This depth provides
shielding from other cosmic-ray-induced background particles, such as muons, of which
only few will reach such depths. The name stands for Cubic Kilometer (km3) Neutrino
Telescope, as large detection volumes are necessary for the detection of high-energy neu-
trino events.
The predecessor of the currently under-construction KM3NeT-network is called ANTARES,
an earlier experimental deep-sea neutrino telescope. However, it is smaller, as its intended
purpose was to prove the feasibility of this type of neutrino detector, which it successfully
accomplished during its time of operation between 2006 and 2022 [8].
The core detection principle of both KM3NeT and ANTARES relies on observing Cherenkov-
radiation, which is emitted by charged secondary particles from the neutrino interactions
occurring in and around the detector [8]. This radiation is detected with photomultiplier
tubes, housed inside of pressure-resistant glass spheres, referred to as digital optical
modules (DOMs), seen in figure 1.
The DOMs are installed across multiple lines vertical to the sea floor and are localized
via acoustic multilateration. By analyzing the amount and arrival times of the Cherenkov
photons, the direction, flavor and energy of the neutrino can be inferred. Because neutri-
nos are not deflected in space, their reconstructed trajectories can be traced back to their
astrophysical source [8].
During the operational period of ANTARES, an additional system named AMADEUS
was implemented to explore alternative detection methods. AMADEUS tested the feasi-
bility of acoustic neutrino detection, based on the pressure waves generated by localized
heating of water from energy deposition during a neutrino interaction [20]. The setup
and methodology are detailed in [20]. For this thesis, it is important to note that the
AMADEUS system was later modified to analyze signal propagation in the glass housing,
with results published in [6].

2.1 Technical aspects of KM3NeT

As described, the primary components of the set-up are DOMs arranged on strings at-
tached to the sea floor. DOMs are spherical pressure vessels made of Vitrovex glass, with
an outer diameter of do = 432mm and a minimal thickness of 15mm, which are capable
of withstanding the pressure at depths up to 6700m [11]. Inside each KM3NeT-DOM,
31 small PMTs with photodiode diameters of 72mm are mounted [9]. These PMTs are
responsible for detecting the Cherenkov photons. Of particular interest for this thesis is
the piezoelectric acoustic sensor glued to the inside of the shell, which detects the acoustic
positioning signals.
Additional components include a compass and a tilt meter, for orientation measurements,
as well as LEDs for calibration purposes [9]. The rest of the module is occupied with
control and readout electronics.
These DOMs are connected vertically along two parallel ropes to form a detection string,
or detection unit (DU) as illustrated in figure 1.
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Figure 1: A close up photograph of a DOM (right). The circular cutouts are where the
PMTs are positioned inside the DOM. The central white spot is the acoustic piezo sensor.
Schematic view of a detection string (left), with the yellow ball at the top being the buoy.

The KM3NeT telescope network is compromised of two sites, called KM3NeT/ARCA
(Astroparticle Research with Cosmics in the Abyss) and KM3NeT/ORCA(Oscillation Re-
search with Cosmics in the Abyss). As their experimental goals, described in [9], are
different, the geometry of the DUs is optimized for each site [9]. For ARCA, the strings
are 700m long and the distance between the DOMs is 36m with the first being 80m of the
sea floor. For ORCA, the strings have a length of 200m, with the DOMs spaced 9m apart,
with the first DOM 40m above sea floor. Horizontally, the strings are spaced about 95m
apart, for the ARCA configuration and about 20m for ORCA [9].
The strings are anchored to the sea floor and tensioned by buoys attached at the upper
end of the string as seen in figure 1. The power and data transmission lines are connected
to a junction box, which relays signals through a main transmission line to the onshore
station, which hosts the data acquisition electronics and a PC farm for data filtering [9].
The full detector consists of large arrays of these strings as illustrated in figure 2.

2.2 The positioning system

To accurately reconstruct the tracks of neutrino-induced particles and, in turn, the tra-
jectory of the neutrino, the positions of the DOMs must be tracked with an accuracy
of ±10cm. This is achieved using an acoustic multilateration system, which updates the
DOMs positions several times per minute, depending on sea current activity [13].
This system compromises acoustic transmitters (beacons) positioned on the sea floor at
known locations outside the footprint of the telescope, as well as digital acoustic receivers
built into the DOMs. The beacons are placed outside the array footprint to improve
triangulation geometry, especially for DUs near the edges of the detector volume.
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Figure 2: Schematic of a complete detection array with multiple detection strings con-
nected to junction boxes, connected to the main data transmission line across the seabed.

The acoustic sensor inside the DOM is a piezo ceramic element as described in sec-
tion 2.1. Furthermore, there are calibration units, whose bases host additional acoustic
beacons, as well as hydrophones at known distances, that allow constant measurements
of sound speed, which varies, depending on pressure, temperature and salinity of the wa-
ter [14] [13].
The Time of Flight (ToF) between signal emission and reception is measured to deter-
mine distances between beacons and DOMs. With signals from at least three beacons, the
DOM’s position is calculated using multilateration, where each ToF measurement defines
a sphere centered on the beacon, and the intersection of spheres determines the DOM
location [13]. The data evaluation happens at the PC farms on shore. With consideration
of more beacons and calibration data, the positioning accuracy is refined further. In ad-
dition, onboard tilt-meters (and compasses) within the DOMs provide orientation data,
which aids in determining the local geometry of the detection units further increasing the
localization accuracy.
While this system meets the desired accuracy, it is based on the assumption that the po-
sitioning signals (pings) propagate like plane waves in water, which introduces systematic
uncertainties in the positioning system. These uncertainties can reduce angular resolution
and might introduce errors in source identification. The assumption of plane waves is not
the issue, as the beacons are far away relative to the diameter of the DOM. The problem
arises, when the acoustic wavefront impacts the DOM away from the piezo sensor, as part
of the energy couples into the glass shell and propagates through it as Lamb-like waves.
Since the speed of sound in glass (vg ∼ 5000m/s) (see appendix C) is significantly higher
than in seawater (vw ∼ 1500m/s) [8], these internal glass waves can lead to early arrival
times that deviate from the assumed pure-water propagation model, as illustrated in figure
3.
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Figure 3: Illustration of the cross section of a DOM, with the black arrow representing its
usual orientation. The black rectangle represents the piezo sensor. Planar wave fronts of
the signal are represented by the green lines with propagation in the direction of the green
arrow. Where the planar waves come into contact with the DOM an additional wave,
propagating only in the glass is formed. The ”glass-wave” reaches the piezo sensor before
the plane wave, due to higher velocity.

Though this effect was studied for ANTARES using the modified AMADEUS system [6], a
systematic analysis tailored to KM3NeT’s signal shapes has not yet been performed. This
thesis addresses that gap through finite element simulations of acoustic wave propagation
in KM3NeT DOMs, in order to better understand and minimize these systematic errors.
FEM is ideally suited for this task, as it can handle complex geometries, such as the DOM
and account for material interfaces.
The procedure for this research is as follows. First the feasibility of simulations on this
topic is researched, by comparing simulation results of simple geometries (thin plate) to
theoretical expectation, in this case the formation of different lamb wave modes and dis-
persion. Next, the simulation of acoustic signals through a DOM is run with the goal of
reproducing AMADEUS results, which adds a layer of validation, before the KM3NeT-
signal is implemented and the newly obtained insight on Lamb wave propagation speed is
discussed.
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3 Lamb waves

Lamb waves are solutions to the partial differential equation governing an elastic system at
its boundary. They describe energy propagating at the boundary of solid, elastic media as
waves. More specifically, Lamb waves are the solutions to the problem of a solid isotropic
plate with finite thickness and infinite lateral extent, commonly referred to as the free
plate problem [15]. In solids, such as the plate, elastic waves either propagate through the
bulk of the material or at the boundaries, called bulk waves and guided waves respectively.
This differentiation makes Lamb waves a type of guided waves, meaning that they describe
the displacement at the plate’s boundary. They are the result of the interaction of elastic
waves with the boundary by a way of reflection and refraction [15], more specifically the
reflections between the top and bottom surface of a solid plate. The analytical solution to
the equation of motion is difficult to obtain, as it is solved with respect to the boundary
conditions, which is not the case for the bulk waves. In the following the free plate problem
will be discussed, before the interesting insights are summarized for the simulation.

3.1 The free plate problem

The free plate problem describes a solid plate made from an isotropic material with finite
thickness d = 2h and an infinitely large base area, meaning the plate extends infinitely
in the x1 and x2 Cartesian directions, as illustrated in figure 4. The infinite extension
simplifies the calculations for the solution of the guided waves at the surfaces of the plate,
as wave reflections and other interactions at the edges need not to be considered [16].
Furthermore, it is assumed that wave propagation is invariant along the x2 direction, so
that the displacement in the x2 direction is zero for all times and all fields are only de-
pendent on x1 and x3. This reduces the three-dimensional problem to a problem in the
x1-x3-plane [16]. The result will still be sufficiently accurate, as the modes of displacement
in the propagation direction (x1) and the transverse, out-of-plane displacement (x3) are
of most interest. The shear modes in the x2 direction exist independently of the other
two modes and can be calculated with other methods [15]. This approach is known as
the plane strain assumption and is a conventional method of solving the free plate prob-
lem [15]. It is consistent with classic treatments by Achenbach (1984) and Auld (1990) [15].

The differential equation governing the elastodynamic problem, can be deduced to the
expression,

µui,jj + (λ+ µ)uj,ji + ρfi = ρü (1)

where the term µui,jj represents how shear deformation contributes to internal forces,
with µ being the shear modulus (or second Lamé parameter) and ui,jj the second spatial
derivative of the displacement with respect to xj , or the Laplacian of the displacement
in index notation. The expression (λ + µ)uj,ji contributes to the internal forces due to
volume changes, such as compression or expansion, in other words it describes longitudinal
stress. Here λ is the first Lamé parameter, not the wavelength, which together with the
shear modulus µ describes the material response. uj,ji represents the divergence of the
displacement gradient in index notation. The final term of the left hand side describes
external forces, where ρ is the material density and fi is the ith component of the body
force vector in units of force per mass [16].
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Figure 4: Geometry of the free plate problem [15]. Only the x1-x3-plane is of interest.

The right hand side of the equation represents the inertial force per unit volume, with the
structural acceleration (ü) times the mass density ρ of the material.
To solve the equation the displacement field is rewritten according to Helmholtz decom-
position

u = ∇ϕ+∇× ψ (2)

and substituted into (1). This results in two uncoupled wave equations, governing
longitudinal and shear waves [15],

∂2ϕ

∂x21
+
∂2ϕ

∂x23
=

1

c2L

∂2ϕ

∂t2
, for longitudinal waves; (3)

∂2ψ

∂x21
+
∂2ψ

∂x23
=

1

c2T

∂2ψ

∂t2
, for shear waves. (4)

with ϕ and ψ describe the displacement field of longitudinal and shear modes respec-
tively. The equations describe the relation of the second spatial derivatives of the displace-
ment fields to the second derivative in time, scaled by the respective mode speeds cL and
cT . They describe how elastic disturbances propagate through the plate at characteristic
speeds. In this calculation the speeds are defined as

cL =

√
λ+ 2µ

ρ
and cT =

√
µ

ρ
(5)

The resulting displacements and stresses can be written in dependence of these new
separate displacement fields [15].

u1 =
∂ϕ

∂x1
+
∂ψ

∂x3
(6)

u2 = 0 (7)
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u3 =
∂ϕ

∂x3
+
∂ψ

∂x1
(8)

σ31 = µ(
∂u1
∂x3

+
∂u3
∂x1

) (9)

σ33 = λ(
∂u3
∂x3

+
∂u1
∂x1

) + 2µ
∂u3
∂x3

(10)

with the u2 displacement being 0 according to the plain strain assumption and σ31
and σ33 the relevant components of the stress tensor. The solution is found by assuming
infinite plane harmonic waves of the form [15]

ϕ = Φ(x3) exp(i(kx1 − ωt)) (11)

ψ = Ψ(x3) exp(i(kx1 − ωt)) (12)

these waves assume a harmonic plane wave solution in the x1 direction (exp(i(kx1 −
ωt))), with an additional unspecified transverse wave shape Φ(x3) or Ψ(x3) across the
thickness of the plate. These assumed waves can be plugged into the governing equations
for the different modes (3) and (4), to obtain classic second order differential equations of
the form,

Φ′′(x3) + p2Φ(x3) = 0 (13)

Ψ′′(x3) + q2Ψ(x3) = 0 (14)

with p2 = ω2

c2L
− k2 and q2 = ω2

c2T
− k2.

These equations are solved with sinusoidal solutions,

Φ(x3) = A1 sin(px3) +A2 cos(px3); (15)

Ψ(x3) = B1 sin(qx3) +B2 cos(qx3); (16)

which gives us the amplitude factor dependent on x3 for the assumed harmonic waves
(11) and (12). The displacements and stresses can be obtained by substituting the as-
sumed waves into equations 6 - 10.

In a plate, two different modes need to be differentiated. For the symmetric mode, the
u3 displacement is symmetric with respect to the midplane of the plate (x3 = 0), meaning
that for a fixed x1 the particles inside the plate either move away from the midplane or
to the midplane equally, akin to a ”breathing motion”. Importantly this makes the u1
displacement antisymmetric with respect to the midplane.
The antisymmetric mode describes the movement of all particles inside the plate to be
an oscillation in the x3 direction, meaning they all equally move ”up” and ”down” in the
x3 direction, resembling a ”seesaw” motion. This implies, that the u3 displacement is
antisymmetric and the u1 displacement symmetric, with respect to the midplane.
With the assumption of the two different modes we obtain two different sets of solutions,
where the u3 displacement is either only composed of sinusoidal terms (symmetric) or
cosinusoidal expressions (antisymmetric). These solutions are the two fundamental types
of Lamb waves, which are guided waves across a plates surface. The solutions for the
symmetric and antisymmetric modes can be derived by substituting (11) and (12) into
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the relations (6) - (10). For the different modes the respective amplitude factors Ψ(x3)
and Φ(x3) are

ΦSym = A2 cos(px3); ΨSym = B1 sin(qx3) (17)

and

ΦAsym = A1 sin(px3); ΨAsym = B2 cos(qx3). (18)

We have now successfully derived expressions for the different displacements, as well
as the different stress tensor components for both possible modes of the free plate prob-
lem, with unknown amplitude parameters A1, A2, B1, B2 as well as no defined dispersion
relation. These can also be determined by accounting for the boundary conditions. As we
have a traction free boundary, the normal and tangential component of the strain vector
need to vanish at the surface, so [15]

σ31 = σ33 ≡ 0 at x3 = ±h. (19)

For the symmetric modes application of these boundary conditions results in a homo-
geneous system of two equations with the parameters A2 and B1. Similarly, application
to the solutions of the antisymmetric modes will give a homogeneous system of two equa-
tions with the parameters A1 and B2. The dispersion relation is obtained by requiring
the determinant of the coefficient matrix to vanish, ensuring a non-trivial solution for the
amplitudes. Under this condition we obtain an equation of the form

(k2 − q2) sin(qh)

2ikp sin(ph)
=

−2µikq cos(qh)

(λk2 + 2µp2)(k2 − q2)
(20)

where p, q, λ andµ are defined as before, h is half the plates thickness and k the wave
number. By utilizing the definitions of p and q, as well as the expressions λ = c2Lρ − 2µ
and c2T = µ/ρ, derived from (5), this expression can be simplified.

tan(qh)

tan(ph)
= − 4k2pq

(q2 − k2)2
(21)

A more thorough calculation is done in [15]. With this equation we have a relation
of the angular frequency ω and the wave number k for the symmetric modes. Equations
of this nature are called dispersion relations. For a given ω, k can be derived and the
displacements calculated with the equations derived before. Analogously a similar relation
is derived for anti symmetric modes.

tan(qh)

tan(ph)
= −(q2 − k2)2

4k2pq
(22)

Both of these relations are transcendental, which makes them unsolvable analytically
and results are only obtainable by numerical methods. With these solutions the different
Lamb mode propagation speeds can be calculated for different frequencies and plate thick-
nesses. In the calculation the material is assumed to be isotropic, which is not the case
for most real materials, such as glass. A calculation for anisotropic materials is also possi-
ble, but would result in more complicated coupled equations. The fundamental approach
however, is similar to the conducted calculation.
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3.2 Application of the free plate problem

For the analysis of wave propagation in the finite plate, as well as the DOM shell the wave
propagation cannot be calculated analytically. Instead it requires numerical methods such
as the method of finite elements, discussed in section 4, to approximate the displacements.
The discussion of the analytical free plate solution is important for understanding the
formation of different propagation modes. An important remark regarding the rest of the
thesis is, that Lamb waves are the solution to the ideal free plate problem, but that the
simulation results of the finite plate model, as well as the glass spherical shell technically
exhibit propagation of Lamb-like waves, meaning they behave similarly to theoretical Lamb
waves.
In the following work these Lamb-like waves are often referred to as Lamb waves, for the
sake of simplicity. The observation of Lamb-like waves in the simulated models is not
surprising, as the finite plate behaves almost like the free plate for short time periods,
before the propagating wave can interact with the sidewards boundaries. Furthermore,
if the plate is large in comparison to the analyzed wavelengths, the Lamb like waves are
expected to behave almost as derived analytically. In the plate geometry used later, with
a base area of 63 cm× 114.5 cm the expected wavelengths are

λS0 =
vS0

50 kHz
=

5600m/s

50 kHz
≈ 11.2 cm (23)

λA0 =
vA0

50 kHz
=

3430m/s

50 kHz
≈ 6.86 cm (24)

where S0 is the symmetric base mode, A0 the anti symmetric base mode. The expected
speeds and the 50 kHz frequency are explained in detail in section 5. These wavelengths
are sufficiently small for the free plate approximation to yield an accurate model of the
finite plate’s response over short time periods. With this in mind, the measurements of
dispersion for the plate model are expected to follow the dispersion curves for Lamb waves,
as calculated above.
Similarly, a spherical shell behaves like a curved plate, which is why Lamb-like waves are
observed. In this geometry the free plate solution is not an accurate depiction of the
problem, as boundary conditions and exact mode shapes are different for curved surfaces.
However, the explanation for the formation of two different propagation modes is similar
to the explanation earlier. There is different ways to approximate the wave propagation
in spherical shells mathematically, which is not too relevant for this thesis as simulation
results are compared to experimental data obtained from the modified AMADEUS exper-
iment.
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4 Finite Element Method (FEM)

This section outlines the basic principle of the finite element method, while omitting
advanced mathematical details exceeding the scope of this thesis. It is useful to briefly
introduce the FEM and why it is of interest for this project. In physics, the behavior
of most systems and processes can be described mathematically, using partial differential
equations (PDEs). These PDEs can quickly become quite complicated, which is why they
are usually not analytically solvable for non idealized problems.
With discretization, numerically solvable equations can be constructed as approximations
of the original PDE. From here an approximate solution for the problem can be determined
via numerical methods. The FEM is a possible method to compute such approximations
[1]. How exactly this computation works via FEM is best explained, when we consider the
different steps separately. For simplicity, we can divide an approximation with FEM into
three main steps. The discretization of the domain, the definition of material properties
and boundary conditions and with it the construction of the system of equations and,
lastly, the solving of these equations.

4.1 Governing equations

For the purposes of this thesis, the specific case of acoustic analysis is of greatest interest.
The governing equations are the equations that determine the system response for given
boundary conditions. In our case, the approximation of elastic wave propagation through
solid material, the governing equations are

ρ
∂v

∂t
−∇ · S = Fv (25)

∂E

∂t
− 1

2
[∇v − (∇v)T ] = 0 (26)

S = C : E (27)

where v is the structural velocity, ρ is the density of the material, S is the stress tensor,
E is the strain tensor, C is the elasticity tensor and Fv is a possible force vector [3]. Note
that the : operator is a representation of a double contraction, as C is a fourth-order tensor.
In the FEM formulation presented here, the elasticity tensor C is treated in general form,
but unless specified otherwise, the simulations in this thesis assume isotropic elasticity.
These equations describe the fundamental physics of an elasticity problem. As they are
impossible to solve analytically for complex geometries, such as a KM3NeT module, we
need to approach the calculation with FEM.

4.2 Discretization

Discretization is a critical step to construct a system of solvable equations. How it works
is best explained with a simplistic example. Consider some one-dimensional function u(x),
which represents the primary field variable (e.g. displacement or structural velocity) of
the physical problem. This function can be approximated with a finite amount of linear
combinations of some basis functions Ψi from a suitable function space.
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Figure 5: Visualization of the basic discretization principle. The blue line represents the
original function u(x), while the red, dotted line is the approximated function uh. The
solid black line represents the, in this case linear, basis functions, with which the linear
combination is constructed. In this example we have 8 coefficients denoted u0 through
u7. [1]

Mathematically this corresponds to,

u ≈ uh

with,

uh =
∑
i

uiΨi

where uh is the approximated value of the function and ui are the coefficients of the
linear combination. To visualize this principle we consider 5 [2].

This discretization method works analogously for higher dimensions, as well as for a
non-uniform distribution of elements unlike seen in figure 5. This means, that in locations,
where a smaller approximation error is advantageous, such as system boundaries, the
elements may be placed closer together.
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4.3 The weak formulation

The calculation of the weak formulation of the PDE is a standard procedure in FEM. This
is because it is a numerically solvable. Most importantly it still is based on the information
of the original PDE, but is formed by projecting it onto a finite function space H [1]. This
projection is often done with the Galerkin method. Technically it states that the solution
parameters are defined by the equations∫

Ψj g dD = 0; j = 1, 2, ..., n (28)

where D is the solution domain, Ψj are the test functions, and g is the residual of the
PDE [2]. In the specific case of our momentum equation 29 we can calculate it [2]

ρ
∂v

∂t
−∇ · S = Fv (29)

ρ
∂v

∂t
−∇ · S − Fv =: g(x, t) (30)

Substituting the residual into the Galerkin condition 28 and applying the previously
defined discretization to estimate the velocity field v(x, t) yields

v(x, t) ≈ vh(x, t) =
∑
i

vi(t)Ψi(x) (31)

to finally obtain [4]∫
Ψj (ρ

∑
i

∂vi(t)

∂t
Ψi(x)−∇ · S(vh)− Fv) dx = 0; (32)

Important is, that in this formulation the boundary condition
∫
Ψi · (S · n) (n is the

surface normal) allows for any traction (S · n) at the boundary ∂D. [1] [4]. This equation
produces large systems of equations that can be solved using linear algebra.

4.4 Solution

Finally we obtain a linear algebra problem of the form

M
∂v(t)

∂t
+Kv(t) = F (t) (33)

In literature M is the so-called mass matrix which contains contributions from time-
dependent terms (not to be confused with the elasticity tensor), K the stiffness matrix,
which arises from spatial derivatives and material properties via the elasticity tensor C
and F is a force vector [5]. Once assembled, the resulting system of ODEs is solved
numerically using time-stepping schemes (e.g., implicit Euler), with FEM software like
COMSOL automating much of the process. The following simulations all rely on these
mathematical principles, although COMSOL automates most steps because of an intuitive
user interface.
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4.5 Sources of error in FEM

Finite element simulations are based on approximations, which introduces various sources
of errors. In FEM the primary source of is the discretization of the domain, with errors
depending on element size, particularly in regions, where the solution exhibits strong gra-
dients. Additional inaccuracies may arise from the choice of the basis functions, numerical
integration and the approximation of boundary conditions.
In sources like [4] and [2] the error sources are not always summarized explicitly although
they identify discretization, modeling assumptions and numerical approaches as key fac-
tors influencing the error. Both sources provide great error estimation approaches, and
cover different methods of minimizing the errors, including mesh refinement and appro-
priate time integration.
A detailed FEM error discussion lies beyond the scope of this thesis, but an awareness of
these limitations is essential for critical analysis of the simulated resuls.
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5 Simulations

The central focus of this work is the setup and analysis of simulations. As previously
described, they are set up with the COMSOL multiphysics software. COMSOL allows for
efficient geometry construction, selection of materials with different physical properties
and setup of the necessary physics for numerical analysis.
For the most part the elastic waves, time explicit (elte) module in COMSOL was used.
Alternative attempts were made with the solid mechanics module. Both modules solve
the problem as described in section 4, although the elte module produced better results
for time-explicit problems. Multiple complete setups were made, with results varying
depending on different factors, such as mesh size, time-stepping and boundary conditions.
This chapter focuses on the setups that yielded the most accurate results. In appendix A
an overview of the simulation development process is presented.
Two geometries were analyzed to study elastic wave propagation. The first goal was to
observe the propagation of Lamb waves in a thin glass plate and to compare the observed
propagation speeds of the different modes with expected dispersion. Once the simulated
results matched with expectation, the gained knowledge is applied to the more complicated
geometry of the glass shell of a DOM. Once validated with AMADEUS experimental
results, the final simulation was repeated with KM3NeT signal frequencies, which is the
objective of this thesis.

5.1 Simulation 1: Glass plate

This subsection discusses the simulating process of the plate geometry. First, the simula-
tion setup is briefly outlined, with more details provided in appendix B. Then, the results
are analyzed and compared to theory.

5.1.1 Simulation setup

Geometry and materials The setup consist of two plates stacked atop of each other.
Each has a rectangular base, with side lengths dy = 63cm, which is the outer diameter
of the OM glass and dx = 114.5cm to analyze wave propagation across a larger distance.
The plates each have different heights, zg = 15mm for the bottom plate, which is the
minimal thickness of the glass spherical shell and zp = 10mm for the upper plate as shown
in figure 6. On the top surface of the upper plate, a circular excitation area with a radius
of re = 40mm is defined at the center. This area is subject to the boundary condition of
an oscillating pressure, acting as the wave excitation. Because this problem is symmetric,
it is cut in half, meaning the base of the plates are now 57.25 by 63cm as seen in figure
6. This reduces computational cost without sacrificing accuracy, as symmetry boundary
conditions can be specified in COMSOL.
At the underside of the bottom plate there is 5 points, spaced 6cm apart, at which the
displacement is tracked over time, as shown in figure 6.
The bottom plate is modeled with Vitrovex glass, while the top plate uses a plastic material
with a density close to water. Material properties can be looked up in appendix C. The
top plate was a later addition to this problem to simulate the waves going through water
first, before arriving at the glass, which is an approximation of the real behavior of Antares
or KM3NeT DOMs. While wave propagation in solids differs from that in liquids, this
approximation is sufficient to produce representative results in the glass.
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Figure 6: Simulated geometry as displayed in COMSOL. a) shows the top view, meaning
the plastic plate points in our direction, b) is the bottom view with the glass plate visible
and c) is the side view of the problem. We can see, that everything is cut in half because
of symmetry. In a) the excitation area is visible. In b) we see the point probes.

Boundary conditions Next, the boundary conditions are defined. In this simulation,
the sideward surfaces are set to be low-reflecting, to reduce interferences. The surfaces at
the symmetry plane are defined to be symmetry boundaries. The upper and bottom side
are set to be free boundaries as presented in figure 7. The spherical excitation area will be
used to exert a boundary load, which is our pressure signal. In between the two plates we
need to define how the program should handle the touching faces 7. This will be realized
with an identity boundary pair, which makes the fields across the entire connecting side
continuous [7].
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Figure 7: This figure specifies how the boundaries are defined. Note the the arrows pointing
to the side faces mean, that top and bottom plate are defined with this condition. The
connecting boundaries are the two touching surfaces in between the plates.

Excitation signal The excitation pressure is modeled after the ANTARES localization
signal, also used in the AMADEUS experiment [6]. The time dependent signal is a cosine
wave 34

S0(t) = A · cos(2πf0(t− td) (34)

where A is the amplitude, f0 is the signal frequency and td is a time delay. It is
modulated with a Gaussian envelope with respect to time 35.

Gt(t) = exp

(
−(t− td)

2

2σ2

)
(35)

where σ is the width of the Gaussian envelope. In addition, another modulation of the
signal with two step-down functions, forming a signal window is multiplied 36.

W (t) =

(
1− 1

exp
(
t−t0
λ

)
+ 1

)
·

(
1

exp
(
t−t1
λ

)
+ 1

)
(36)

Here t0 is the start time of the window, t1 the end time and λ defines how sharp the
step is. To reduce sharp cut-offs in the signal pressure at the edges of the excitation area,
as in earlier simulation versions described in A, another Gaussian envelope is multiplied
with respect to space 60.

Gr(x, y) = exp

(
−(x− x0)

2 + (y − y0)
2

r20

)
(37)

with x0 and y0 being the coordinates of the circles center and r0 the radius. This
envelope ensures a smooth decay in pressure from the center of the excitation area.
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Figure 8: The resulting signal shape with respect to time. The spatial modulation is
observed to be working as well.

The final signal applied at the boundary is:

S(t, x, y) = S0(t) ·Gt(t) ·W (t) ·Gr(x, y) (38)

With the parameters A = 5mPa, f0 = 50 kHz, td = 50µs, σ = 20µs, t0 = 10ns,
t0 = 60, µs and λ = 15µs a nice signal form is accomplished, visualized in figure 8. The
spatial gauss window is dependent on geometry definition and for this exact geometry
is defined in the modeling instructions in appendix B. These parameters were adjusted
by trial and error and ensure a well shaped signal, resembling the signal shape of the
localization signals used in AMADEUS [6].

Meshing Meshing the geometry is a critical step, as it defines how many elements
are created. With finer elements a more accurate result is achieved at the cost of more
computation. As the observation of lamb waves propagating through the glass is of most
interest, the expected wave speeds need to be considered. Two wave modes are expected
as explained in section 3, with expected propagation speeds in Vitrovex glass [6]

vlong =
√
M/ρ = 5.60mm/µs (39)

vtrans =
√
G/ρ = 3.43mm/µs (40)

with M = 70.00GPa the P-wave modulus and G = 26.25GPa the shear modulus of
the glass.
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According to COMSOL documentation [7] the maximum element size hmax for study-
ing elastic wave propagation is

cmin

2 · fmax
< hmax <

cmin

1.5 · fmax
(41)

This would mean that the maximum element size needs to be within a width of the
element 34.3mm < hmax < 45.7mm for the given parameters. However, for accurate
lamb wave simulations, this value is too coarse. Therefore, a maximum element size of
hmax = 16mm is used, which provides a suitable compromise between resolution and
computational cost. After meshing the geometry, a time dependent study is set up. In
total 150µs is simulated with the time steps each being 0.5µs.

5.1.2 Simulation results

Several types of curves can be generated with this simulation. These include pressure,
structural velocity and displacement curves, as well as 3D animations of velocity and
pressure across the structure. For the purposes of this analysis, the displacement curves
are of most relevance, as the piezo sensors utilized in AMADEUS also measure a voltage
that is proportional to the displacement. Other types of curves, and the reasons, why
they were not utilized are discussed in appendix A. Multiple displacement curves were
generated, enabling an analysis of signal propagation speed. This is best conducted by
plotting u(t)-curves at the points marked in figure 9, where u denotes the displacement
at each point probe. Additionally, u(x)-plots were generated along the underside of the
glass, which is a valuable benefit of simulations, as this plot would be hard to measure
experimentally. For this, a cut-line 3D object is set up in the results tab, also shown in
figure 9.

The wavefront reaches the cut line object at approximately ta = 60µs. For wave speed
analysis the u(x)-plots are best suited at times in between 100 and 140µs. For these
times the different lamb wave modes are clearly visible propagating across the plate. At
earlier times the waves have not fully propagated and at later times, the results become
less reliable due to interferences from reflections and potential numerical artifacts. The
propagation speed is easily measured by plotting multiple u(x)-curves for different times
as seen in figure 10 and measuring the distance between different maxima. The different
times are always ts = 10µs apart, which simplifies the speed calculation.

With known values ∆xl ; ∆xt and ∆t = ts = 10µs the propagation speed is calculated.
The travel distance is measured for adjacent, corresponding peaks as shown in 10. These
curves are not completely continuous, which is expected of a finite element simulation and
their resolution mostly depends on utilized element size. For an accurate speed measure-
ment, the local maxima are determined, and the corresponding x-values are utilized for
speed computation. The mean of the calculated speed values is then formed to give an
accurate result.

vt = (2.18± 0.06)mm/µs (42)

vl = (5.35± 0.08)mm/µs (43)

these values are significantly lower, than calculated before, due to dispersion effects
described in section 3.
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Figure 9: The picture shows the underside of the glass plate with the different black point
probes and the red cut-line-3D-object.

Figure 10: u(x)-plots for different time steps ts = 10µs. The wave propagation of the
different modes is clearly visible. The longitudinal mode has a much smaller amplitude
and travels faster than the transverse mode.
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Figure 11: Phase velocity vs. frequency×thickness dispersion plot. The continuous lines
represent the theoretical dispersion relation as derived in section 3. The dashed lines la-
beled cL and cS represent the calculated values vlong and vtrans respectively. The measured
values and their errors are marked in orange and blue.

To further analyze dispersion, a similar simulation was conducted. This time the glass
plate has a thickness of zg = 7.5mm. According to the correlation of the frequency ×
thickness product and the wave propagation speeds, this should yield different propagation
speeds. A third simulation was also performed with zg = 30mm, providing three data
points for a dispersion curve. The speeds are calculated as before with the curves as
shown in figures 25 and 26 which are located in appendix D. The speeds from these
additional simulations are:

vt,7.5mm = (1.70± 0.18)mm/µs (44)

vl,7.5mm = (5.40± 0.06)mm/µs (45)

and

vt,30mm = (2.68± 0.06)mm/µs (46)

vl,30mm = (5.21± 0.15)mm/µs (47)

These values will now be plotted, to confirm that expected dispersion is observed. Figure
11 shows a dispersion plot with the speed measurements for different plate thicknesses
and the theoretical dispersion curve for Lamb waves, as calculated in section 3 for Vitro-
vex glass. The dispersion plot shows, that the measured values align with the theoretical
curves, confirming that the observed wave propagation exhibits Lamb-like behavior.
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Figure 12: u(x) of the 30mm plot for a time, where the highest peak of the transverse
wave is visible. The ratio is calculated with the highest peak value of the transverse wave
and the highest peak value of the longitudinal wave.

Although the speeds are the main interest in this analysis another interesting observa-
tion is made regarding the amplitudes. In all measurements for different plate thicknesses,
the longitudinal wave has a much lower amplitude, than the transverse wave. If however,
the ratio of those two amplitudes is considered, it is observed, that with increasing wave
thickness, this ratio increases. This ratio is defined as

R = Atrans/Along (48)

with the amplitude values Atrans and Along as illustrated in figure 12. the ratios for the
different plate thicknesses are calculated utilizing the plots 28 and 27, found in appendix
D and the one seen in 12. The calculated ratios are,

R7.5mm = 0.012 (49)

R15mm = 0.034 (50)

R30mm = 0.163 (51)

This demonstrates, that the amplitude ratio of transverse and longitudinal wave also de-
pends on plate thickness. The cause of this trend, will not be further discussed in this
thesis, but a comparison of these ratios to AMADEUS results is made in the context of
the DOM geometry.
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Figure 13: The u(t)-curves for the first two point probes at x1 = 175mm and x2 = 235mm.
Both wave modes can be seen.

In addition to the u(x) plots, the u(t)-plots shown in figure 13, also clearly illustrate
the propagation of lamb waves. These plots are mainly interesting for comparison with
the AMADEUS results, as the longitudinal wave is not as accurately distinguishable as
in the u(x)-plot and they were not utilized for speed calculations. A comparison of these
plots and the experimental AMADEUS plots is done for the u(t) curves generated in the
DOM-simulation, as the plate geometry introduces a major difference in analyzed geome-
try, which makes the plate results incomparable to the experiment.
An additional observation from figure 13, is how the simulation accounts for wave atten-
uation. In physical materials, signal amplitude decreases, due to the energy loss. This
simulation replicates this behavior. In figure 13, the amplitude decreased over the trav-
eled 60mm. By measuring the amplitude of the highest peak in both probe plots, the
amplitude decreased by 36%. For probes farther from the source plotted in figure 29,
found in appendix D, an amplitude decrease of 15% over a traveled distance of 60mm
is measured. While a detailed comparison to theoretical attenuation is beyond the scope
of this work, these results confirm that the simulation realistically models wave damp-
ing. Overall, the plate simulation provides a strong foundation for the spherical model.
It confirms the expectation of lamb like wave propagation and allows for credible speed
measurements. In the next subsection this spherical shell is simulated and the physically
relevant propagation speeds extracted from the results.
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5.2 Simulation 2: Glass spherical shell

In this subsection, the process of simulating the DOM geometry is briefly described, with
exact modeling instructions found in appendix B. In the second part of this section the
results are presented. Two separate simulations are conducted with different excitation
signal frequencies. The first replicates conditions from the AMADEUS experiment, val-
idating the methodology. The second uses lower frequencies replicating the KM3NeT
positioning signal. Reproducing the AMADEUS results adds credibility to the extracted
wave speeds at KM3NeT frequencies.

5.2.1 Simulation setup

Geometry and materials The geometry of this simulation is composed of two primary
components. A spherical shell with an outer radius of ro = 216mm and an inner radius of
ri = 201mm. This makes the shell 15mm thick, which is the minimal thickness specified
for the shells used for the DOMs [11]. The inside of the shell is empty, meaning it is
treated as a vacuum on the inside by the simulation. Furthermore, the shell is embedded
at the center of a plastic cube with side lengths l = 452mm, mimicking the water around
the DOM.
On the inner surface of the glass shell there is a total of seven points, placed in equal
distances of each other across the upper quarter of the shell. These points will become the
point probes, at which the u(t) displacement curves are measured as shown in figure 14.
To optimize computational efficiency, geometric symmetry is exploited by modeling only
half of the system. A symmetry boundary condition is applied along the central plane, as
in the previous plate simulation. The spherical shell is assigned the material properties of
Vitrovex glass, while the surrounding cube is made of the same plastic material, as utilized
in 5.1. An overwiew of the geometric properties and boundary conditions is presented in
figure 14.

Boundary conditions As in the previous simulation, the boundaries need to be de-
fined. All outward facing surfaces, except the top face, are set as low-reflecting boundaries
to suppress artificial reflections that could affect the resulting curves. Furthermore, all
faces at the cut plane are selected as symmetry boundaries. A boundary load is applied
uniformly across the entire upper surface, to simulate plane waves arriving at the DOM. To
ensure continuity between block and spherical shell, an identity boundary pair condition
is utilized, making the fields across the touching faces of DOM and block continuous. The
exact application of this condition is explained in the modeling instructions in appendix B.
All remaining surfaces are set to be free boundaries. An overview of the applied boundary
conditions is visualized in figure 14.

Excitation signal The pressure signal applied at the upper surface is similar to the
signal utilized in the first simulation. It consists of the product of three different temporal
functions, as defined in equations 34 through 36 fulfilling the already described purposes:

S(t, x, y) = S0(t) ·Gt(t) ·W (t) (52)

with S0(t) defined as in equation 34, Gt(t) like in equation 35 and W (t) from equation
36.
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Figure 14: Utilized geometry as displayed in COMSOL. The geometry is cut in half
making use of the symmetry to reduce computational cost. The boundary conditions for
the different faces are described.

In this case the spatial gaussian is not applied, ensuring the pressure to be equal across
the whole surface, mimicking a plane wave.
The parameters are chosen as before, so A = 5mPa, f0 = 50kHz, td = 50µs, σ = 2µs,
t0 = 10ns, t0 = 60µs and λ = 15µs, producing a shape as seen in figure 8.
This signal replicates the signals utilized in the AMADEUS experiment, where frequencies
of f0 = 50 kHz where utilized. After simulating with the 50 kHz signal the simulation is
repeated with a signal frequency of f0 = 20 kHz, aligning with KM3NeT’s positioning
signal frequency range 20 kHz to 40 kHz [13].

Meshing Meshing of this geometry has the same requirements as before, and needs to
be optimized for the observed wavelengths. The mesh sizes utilized for the plate with
a maximum element size of hmax = 16mm, this larger geometry allows for a slightly
coarser mesh without compromising accuracy. Therefore, a maximum element size of
hmax = 18mm is used to reduce simulation runtime.

5.2.2 Simulation results

As before, the resulting displacement curves are analyzed, for the reasons discussed above.
The u(t) and u(x) plots are measured along the inner side of the glass shell as seen in
figure 14, because the piezo sensor is also located inside the DOM. Propagation speed is
measured with the u(x) curve with the same method utilized in the plate simulation.
First, the results of the simulation with a signal frequency of f0 = 50 kHz are discussed
and compared to the AMADEUS experiment results. Later, the propagation speeds are
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Figure 15: The plot shows the u(x) z-displacement for the times t1 = 90µs and t2 = 100µs,
across the red line marked in figure 14. The propagation of two modes, longitudinal and
transverse, is observed.

calculated for the second simulation with a signal frequency of f0 = 20 kHz. With these
speed values a potential correction for the positioning in KM3NeT can be derived.

50 kHz signal The u(x)-plots for the 50 kHz simulation are generated and analyzed
first. With these plots the propagation speeds of the two observed modes are calculated
analogically to the method displayed in figure 10. The utilized u(x)-plot is seen in figure
15.

In the plot both wave modes are clearly visible. Using three time steps for improved
accuracy seen in figure 30,located in appendix D average propagation speeds are calculated
as:

vt = (2.21± 0.14)mm/µs (53)

vl = (5.02± 0.05)mm/µs (54)

In the AMADEUS experiment the propagation speeds of both waves were measured
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for a signal of frequency f = 50 kHz. The simulated propagation speeds are compared to
the the measured speeds in this experiment [6, Table 3]:

vt = (2.04± 0.01)mm/µs (55)

vl = (5.16± 0.09)mm/µs (56)

The simulated results closely match experimental results. The measured speed for the
transverse (late) wave is slightly overestimated, while the speed for the longitudinal (early)
wave slightly underestimated. If the errors are taken into account, the simulated speeds
are a rather accurate representation of the experimental results, although the speeds of
the late wave are not within the standard deviation errors. These discrepancies likely arise
from discretization errors in identifying wave peaks, which could be minimized with finer
meshing.
As was the case for the plate simulation, the amplitude of the early wave is consistently
lower than the amplitude of the late wave. In AMADEUS the measured amplitude ratio
was approximated to be roughly ∼ 1 : 10 [6]. Using peak values from figure 15, the am-
plitude ratio is calculated for the simulated case, analogously to the ratios in the plate
simulation as illustrated in figure 12. The measured ratio is roughly ∼ 2 : 100, which is
a lot lower than the estimate of the AMADEUS results. This can be explained because
of the different method of measuring the ratio. In AMADEUS, the ratio is calculated
with the second maxima of each wave. Re-calculating the ratio with this approach yields
a ratio of ∼ 5 : 100, demonstrating reasonable agreement and reinforcing the qualitative
behavior of a weak, fast wave and a stronger, slower one.

The u(t)-plots are generated for the probe locations at the previously defined points
with x and z-coordinates x1 = cos(π/6) · 201mm, z1 = sin(π/6) · 201mm and x2 =
cos(π/12) · 201mm, z2 = sin(π/12) · 201mm respectively. To accurately compare the
resulting curves with the AMADEUS experimental results, the distance to the the point
of impact (POI), i.e. the point on the glass sphere, where the plane waves first interact
with the material, need to be calculated. As the POI in the simulation is conveniently
defined to be at coordinates xPOI = 0 and zPOI = ro, with ro the radius of the outer
sphere of the shell, this calculation is easily done. For the sake of simplicity the distance
is calculated relative to the POI of the inner sphere so with zPOI = ri = 201mm, which
should not have much of an impact on the results. The distance to the probes from the
POI are exactly 5

24 and 6
24 of the whole inner circumference ci = 2π ·201mm. The distances

from the POI to the first probe is 5
24ci ≈ 263.2mm and the distance in between the POI

and the second probe is 6
24ci ≈ 315.7mm. These values are important for the comparison

made later. The recorded u(t)-plots are seen in figure 16.
In these plots there is a clear distinction between both waves visible. Using this plot

for rough estimation yields similar speeds:

vt,u(t) ≈ 2.21mm/µs (57)

vl,u(t) ≈ 5.20mm/µs (58)

Wave attenuation is observed as reduced amplitude at the farther probe, although
interference makes precise amplitude comparison difficult.
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Figure 16: u(t)-plots for the two distances from the POI as described in the text. The
blue curve is the displacement for the closer probe and the green curve is the displacement
at the point farther from the POI. Here in both curves the first peak of the early wave
is visible in both plots. The late wave with the original signal shape is clearly visible in
both curves.
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Figure 17: The piezo readings of the sensor located 300mm away from the POI from the
AMADEUS experiment are marked with the blue line. The simulated displacements for
the probe 315mm away from the POI. The amplitude of the early wave in the measure-
ments are a lot smaller than in the simulation.

To compare the simulated u(t) curve with AMADEUS measurements, the displacement
curve at 315.7mm is overlaid with piezo sensor data from AMADEUS at ∼ 300mm. The
distances from the POI need to be similar for both measuring points, because the early
wave will have separated from the late wave to similar amounts. The plot is generated
using python with the data from AMADEUS for the 50 kHz signal for the correct sensor
and the exported data from COMSOL for the correct probe. Both signals are scaled and
aligned using the late wave peak. The x-axis is an arbitrary time axis. The plot is seen in
figure 17.

In this figure the peaks for the late wave were aligned and the first observation is that
the frequencies utilized are the same. An alignment of the early wave peaks is conceptually
visible, although the amplitude of the measured values is quite low, which makes it difficult
to properly identify the early wave. Furthermore, the distance of the sensor to the POI in
the experiment is estimated to be accurate up to ±10 − 15mm, limiting the precision of
this comparison further. However, especially at the first early wave minimum of the blue
curve an alignment of the early waves is visible, confirming that simulation and experiment
observe similar wave behavior. In a more controlled environment, with better comparison
standards, as well as a more sophisticated simulation setup, this comparison might be
better possible.
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Figure 18: Signal shape of the 20 kHz signal utilized as the excitation of the plastic plane
waves. In total it compromises less oscillations.

20 kHz signal As the measured speeds in the 50 kHz simulation were quite close to
the ones measured in AMADEUS, the simulation is repeated with a KM3NeT 20 kHz
positioning signal.
The signal has the same shape as described in equations 34 through 36, although the
parameters were modified to accomodate the lower frequency.
The parameters modified is the time gaussian width σ = 25µs, the end time t1 = 80µs
and of course the frequency f0 = 20 kHz. This new signal is plotted in figure 18. Because
of these changes in signal shape the simulation is extended to 180µs and the meshing size
increased, to an maximum element size of hmax = 20mm, to reduce computational cost.

A simulation over a longer time period, with an excitation signal compromised of
more full oscillations like in figure 8, could produce better results, however, this was not
attempted as the simulation would have significantly longer run times.
Figure 19 shows the u(x) displacement at t = 100µs and t = 110µs, as this kind of plot
proved to be effective for propagation speed calculation.

Both wave modes are visible, though the early wave shows a prominent and unexpected
negative peak, which is likely a numerical artifact. The propagation of both modes is
accurately observable and the speeds are measurable. In the u(x)-plot the waves clearly
propagate slower then in the 50 kHz u(x)-plot 10 and the speeds are calculated as before.
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Figure 19: u(x)-plot for the times 100µs and 110µs. Both waves are visible, but the early
wave has a lower amplitude. Furthermore there is an interestingly dominant minimum of
the early wave, visible even in plots for higher times.

Using a u(x)-plot with five time steps for improved accuracy found in appendix D, the
propagation speeds are calculated as

vt = (1.705± 0.11)mm/µs (59)

vl = (5.00± 0.10)mm/µs (60)

With the errors determined by the standard deviation. These values are slower than those
at 50 kHz, consistent with dispersive behavior. In figure 20 a comparison with theoretical
Lamb wave dispersion in a plate is illustrated.

This figure shows, that the transverse wave speeds align reasonably well with theo-
retical expectations. However, the longitudinal wave speeds are lower than theoretically
expected for the glass plate. The spherical shell geometry is not expected to have the
same dispersive behavior as the plate, but it should be similar, which is observed.
The final analysis considers the u(t) curves for two probes along the inner side of the glass
sphere, shown in figure 21.

Again, the propagation of both modes is observed, with the amplitude of the early
wave being significantly smaller, than the amplitude of the late wave. The attenuation
of the wave again is visible clearly in the reduction of the amplitude measured at the
later probe. The simulations confirm the presence of two wave modes in both 50 kHz and
20 kHz cases. Fast and weak longitudinal waves, and slower, stronger transverse waves.
The measured propagation speeds matched closely with the AMADEUS measurements,
confirming the simulations to form a reliable basis for correcting errors in the KM3NeT
positioning system.
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Figure 20: Theoretical dispersion curves and measured speeds plotted. The observed
longitudinal wave speeds are lower than expected for the plate.

Figure 21: u(t)-plots for the probes located 158mm (blue) and 210mm (green) away from
the POI.
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6 Summary and conclusions

The acoustic positioning system of the KM3NeT neutrino telescope is subject to system-
atic uncertainties, one of which arises from the simplifying assumption that acoustic signals
propagate exclusively through water. However, results from the modified AMADEUS ex-
perimental setup demonstrated that part of the acoustic signal couples into the glass shells
of the digital optical modules (DOMs), forming Lamb-like waves. This effect introduces
uncertainties in the expected arrival times not accounted for in the original system design.
With experimental analysis a correction for the positioning system of ANTARES was de-
rived, however, this experiment performed no analysis on KM3NeT signals. To address
this experimental gap, and asses the feasibility of FEM simulations for modeling such
effects, a series of simulations with increasing complexity were conducted.
The initial simulation employed a simple geometry of a thin glass plate, to evaluate the
ability of FEM to capture the formation of Lamb waves. The results matched the theo-
retically derived dispersion relation, confirming the suitability of this method.
Subsequently, a more realistic geometry representing a DOM glass shell in a simplified
surrounding medium was analyzed. The water domain was modeled as a solid, plastic
material, to simplify the simulation. Using an excitation signal at 50 kHz, the simulation
reproduced measurements of the AMADEUS experiment, validating the simulation setup.
To extend the analysis to frequencies relevant for KM3NeT, the simulation was repeated
with a 20 kHz signal. From these results, new propagation speeds were extracted and an
updated dispersion plot for both DOM simulations was generated. The resulting speeds
can inform corrections to the KM3NeT positioning algorithm by accounting for the dif-
ferent arrival times.

Overall, the study demonstrated the practicality of FEM for the modeling of elastic
waves, providing a resource efficient alternative to experimental set ups. While the current
model simplifies the fluid-solid interaction, the measured propagation speeds of the 20 kHz
simulation already offer practical insights on the systematic error of the KM3NeT posi-
tioning system. Future work, building upon this study, should incorporate fluid-structure
interaction to further refine the corrections and decrease the systematic positioning error.
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Figure 22: The first constructed plate model. Boundary conditions and graph acquisition
is marked by the arrows.

A Simulation history

This appendix contains the different models that were created to analyze the impact of
different simulation parameters on the results. These models all had problems, but are
still broadly described to avoid running into known issues again, if there is any further
analysis conducted on this topic. In table 1 a short summary of the plate model evolution
is given.

A.1 Glass Plate

First model

The first plate model was composed of a single 15mm thick plate made from VITRO-
VEX glass with side lengths d = 0.63m. On the top side there was a central, circular
excitation area with a radius of re = 100mm. Two points were defined, also on the top
side of the plate as the point probes, as seen in figure 22. The boundaries are defined to
be low reflecting on all sideward faces and free on the top and bottom sides.

the utilized signal was like the signal described in refsection3, apart of the spatial gaus-
sian window. Meshing was also as fine as already described. The results of this simulation
were acquired for the same time window as all the following models. In this stage, the
pressure graphs were studied, which proved to be more prone to simulation errors and did
not show the formation of lamb waves. In the pressure plots no lamb wave propagation
could be properly observed. This was most likely due to a sharp pressure fall of at the
rim of the excitation area as there was no spatial gaussian pressure modulation. The
direct pressure excitation at one side of the glass plate, also does not represent the ana-
lyzed scenario properly as in AMADEUS the arrival of plane acoustic waves, propagating
through water is studied as the excitation signal of the lamb wave. Also we will see that
the displacement are a more accurate representation of the AMADEUS measurements.
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Figure 23: Figure of the two plate model with the probes and cut line object not covered.
In the figure, the blue arrows represent boundary conditions, the red connecting boundary
is the whole face touching the bottom plate.

Optimization 1

The first major change in the second attempt is the implementation of symmetry
boundaries to reduce necessary computational power as well as reducing file sizes. For this
the plate was cut in half and the condition was applied. This was the only change before
re-running the simulation to produce the same results as before, proving the symmetry
boundary condition to be a reliable tool. The signal was also modified with the spatial
gaussian window, as described in sec3. With the new signal the sharp pressure cut-offs
were not further observed in the resulting curves. The pressure plots still showed no
formation of lamb waves. This was due to the other problems described in refpar1 of this
simulation not being an accurate representation of the experimental situation, which is
why from now on the displacement curves were generated using the Compute Displacement
function of the Elastic Waves module. For this model, even these graphs did not show
the clear formation of lamb waves. This could only be fixed with a change in utilized
geometry.

Second model

The second model was composed of the half, glass plate as described before, with a
second plate made of plastic stacked atop it. This plate was introduced, to simulate the
wave propagating through water first. Both plates were defined as different domains, with
an Identity Boundary Pair condition at the connecting boundaries. The excitation area
was moved to the top side of the plastic, the point probes were not moved. The u(x)-plot
data acquisition line also stayed on the top side of the glass plate. This proved to be
problematic as the data at the boundary in between the plates was prone to simulation-
based errors. In fact there was no observation of lamb waves using this setup. To fix this
issue another model was created, in which the size of the plastic plate was reduced, to no
longer cover the probes and the cut line object, as seen in figure 23.

In the resulting curves different mode speeds of lamb waves propagating could be
observed, although for larger times the displacement seemed to diverge. To isolate the
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problems leading to this effect, the different test simulations were run. First, the signal
shape was changed to an single gaussian pulse, with a width of σgauss =

1
2Tsin, with Tsin

being the oscillation period of the 50kHz signal. With this excitation, the problem of
diverging displacement for larger times could still be seen in the resulting curves. The
sinusoidal signal is utilized for further simulations.

Third model

This model again, consists of two plates of the same size stacked on top of each other.
This time the data acquisition happens at the bottom side of the glass plate. This is
already quite similar to the final version of the plate model, with the major difference
being that the excitation area has a much larger area of re = 200mm. The problem
remains the same, so the next attempt is made, with an excitation area of re = 100mm
this was a step in the right direction, as results were more promising but wave speeds
could not be measured as good as in the second model.

Solid Mechanics module

The Solid Mechanics (solid) module could theoretically also grant interesting insights
on the acoustic behavior of the plates. This is because it directly solves for the displacement
field as a dependent variable. A boundary load can still be applied and the rest of the setup
of the physics works similarly to the Elastic Waves, Time Explicit (elte) module. In the
results no wave propagation could be observed. This is because this module normally is
better suited for tasks such as mode analyses. The utilization of the Elastic Waves module
is advantageous for simulating the time explicit lamb wave propagation. The following
models are constructed with this module.
In the next simulation attempt all outer boundaries, except the symmetry boundaries,
were set to low-reflecting, to reduce interferences with reflected waves in the plate. The
results showed the propagation of lamb waves, although they were strongly dampened
across the bottom face, which is due to the boundary condition. This change also was
reverted, as the observation of lowly dampened lamb waves was the goal.

Fourth model

This model is constructed as the model before, with only a change in the geometry.
This time, the plate width was increased to reduce interferences with reflections off the
sides. The resulting curves were the same as before and this change was reverted. For
the next try the meshing of the model was set-up to finer, with a maximum element size
of m = 8mm. This simulation took a lot more time to run and the results had better
resolution along the curves, although the qualitative progression was not as expected from
the AMADEUS results.

Final model

The next attempts were made with the setup of the third model, with only the exci-
tation are decreased further. This time the radius was re = 10mm. The results showed
promising lamb wave progression, but were quite noisy with reflections and, for higher
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times, with numerical errors. For the next attempt the radius was increased to re = 40mm
which is about half the expected wavelengths of the S0 mode λex = 5000m/s

50000 hz = 100mm.
The results showed nearly undisturbed lamb waves for time periods of t = 60µs as well
as expected dispersion for simulations of of plates with different thicknesses. This model
was utilized to study the wave behavior in the plate.
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Table 1: Summary of FEM Simulation Model Evolution of the plate model
Model Key Features Modifications Results / Observations

1 (Initial) Single glass plate,
re = 100mm, top
pressure excitation

No spatial Gaussian
window, direct pres-
sure excitation

No Lamb waves, edge arti-
facts, inaccurate representa-
tion of AMADEUS

Optimization 1 Half-plate (sym-
metry BC), spatial
Gaussian signal
added

Applied symmetry,
better signal shape

Still no Lamb waves; pres-
sure plots insufficient;
switched to displacement
plots

2 Two plates (plas-
tic on glass), Iden-
tity boundary con-
dition

Plastic plate simu-
lates water; excita-
tion moved to plastic

No clear waves due to probe
placement; boundary inter-
face issues

2 (revised) Same geometry,
plastic size reduced

Plastic avoided
probe region

Lamb modes visible, but dis-
placement diverged at longer
times

Pulse test Same as above Used single Gaussian
pulse (σ = 1

2T )
Divergence persisted; sinu-
soid used for further studies

3 Two plates, excita-
tion re = 200mm,
probes at bottom
glass

Reduced re to
100mm

Waveform improved but
wave speed harder to mea-
sure

Solid Mechanics Solved displace-
ment directly

Switched to Solid
Mechanics module

No wave propagation ob-
served; not suitable for time-
dependent Lamb wave mod-
eling

Boundary test Low-reflecting BC
on all except sym-
metry

Damped reflections Over-damped wave propaga-
tion; reverted

4 Increased plate
width

Reduced edge reflec-
tions

No significant improvement;
reverted

4 (refined) Same geome-
try, finer mesh
(h = 8mm)

Finer spatial resolu-
tion

Better numerical accuracy
but no qualitative gain

Final Two plates, re =
40mm, sinusoidal
excitation

Smaller excita-
tion area (≈ half-
wavelength)

Clear Lamb waves up to
60 µs, dispersion visible;
used for final study
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Figure 24: The first DOM-model. The blue arrows represent boundary conditions, the
red and black arrows show the data acquisition line/points. The connecting boundary is
the outer surface of the DOM touching the inner spherical surface of the block.

A.2 DOM geometry

First model

The first DOM model implemented a lot of properties from the plate simulation, as
it was a well working basis. The main difference is the geometry which is now an glass
spherical shell with a thickness of 15mm embedded into a plastic cube with a densitiy of
ρplast = 0.91 g

cm3 , simulating the ambient water. The circular excitation area is centrally
located on the top side of the block with a radius of re = 40mm. The problem is cut
in half, making use of the Symmetry boundary condition. Data acquisition points are
located across the inner surface of the spherical shell in the upper half. The u(x)-plots are
generated across a line segment across the inner side of the spherical shell in the upper
half as seen in 24.

In this simulation both the u(t) and u(x) displacement plots showed promising results.
The two different propagation modes could be clearly observed and the speeds measured.
As in AMADEUS the signal source is much farther away, the radius of the excitation area
was further increased to re = 100mm, to come closer to the plane wave approximation.
The results were of similar quality so that the final change could be applied.

Final model

This model consists of the same geometry as before, with only the excitation area
changed. This time the whole upper surface of the plastic block is excited with the same
amplitude across the surface, meaning there is no more spatial gaussian modulation of the
signal. This is the most accurate approximation of plane waves propagating through the
plastic. As the results are an accurate depiction of AMADEUS measurements, this is the
utilized setup for signal speed analysis.
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B Modeling instructions

This appendix contains exact modeling instructions of the utilized models. All simulations
were made and run in COMSOL Multiphysics 6.3, with the Physics module Elestic Waves,
Time Explicit (elte) installed.

B.1 Glass plate

From the File menu, choose New.

New

1. In the New window click Model Wizard.
2. In the Select Space Dimension section click 3D.
3. In the Select Physics interface open the Acoustics tab and then the Elastic

Waves tab and select the module Elastic Waves, Time explicit (elte).
4. Click Add.
5. Click Study.
6. Open the General Studies tab and click Time Dependent.
7. Select Done at the bottom of the menu.

Global Definitions

1. Open the Global definitions tab.
2. Click on Parameters 1.
3. Enter the following parameters:

4. In the Label field enter Model Parameters

Geometry

1. Click Geometry 1.
2. In the Label section enter System.
3. Right click System and click Block.
4. In the Label section enter Plate Glass.
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5. Enter the following sizes in the Size and Shape section:

6. Right click System and click More Primitives and then Point.
7. In the Label section enter Probe1.
8. Enter the following values in the Point section:

9. Repeat steps 6. through 8. six more times increasing the label number by 1 as well
as the x-coordinate by 60mm each time.

10. Right click System and click Block.
11. In the Label section enter Plate Plastic.
12. Enter the following values in the Size and Shape section:

13. Enter the following values in the Position section:

14. Right click System and click Work Plane.
15. In the z-coordinate section type p h+p h plastic.
16. Open the Work Plane 1 tab.
17. Right click Plane Geometry and click Circle.
18. In the sections Size and Shape, Position andRotation Angle enter the following

values:

19. Right click System and click Booleans and Partitions and then Union.
20. Select the plastic plate and the work plane as input objects by clicking on them in

the 3D view.
21. Right click System and click Booleans and Partitions and then Union.
22. Select the glass plate and all points as input objects by clicking on them in the 3D

view.
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23. Click on Form Union.
24. In the Form Union/Assembly section under action select Form an assembly.

Definitions

1. Right click the Definitions tab and click on Probes then Point Probe.
2. In the Source Selection section choose manual and remove all points from the

selection by clicking on the selection and pressing delete on the keyboard.
3. Select the point Probe1 in the 3D-view.
4. In the Expression section type elte.uz as the expression.
5. Repeat steps 1. through 4. for the remaining probes.
6. Right click the Definitions tab and click on Pairs then select Identity

Boundary Pair.
7. Select the Source Boundaries, in this case the side of the plastic plate touching

the glass plate in 3D view. To click this side in 3D-view it is recommended to use
the Click and Hide tool in the Graphics interface and hiding the top side of the
plastic. Before selecting the underside as the source boundary the tool has to be
manually disabled by clicking again.

8. Toggle the selection to the Destination Boundaries by clicking the switch
button.

9. Select the top side of the glass plate, again using the Click and Hide tool.
10. Click System and then Build All in the settings section.

Materials

1. Right click the Materials tab.
2. Click Blank Material
3. Select the bottom Plate in 3D-view.
4. In the Label field type glass.
5. In the Material Contents sections enter the following values:

6. Right click the Materials tab.
7. Click Blank Material
8. Select the top Plate in 3D-view.
9. In the Label field type plastic.
10. In the Material Contents section enter the following values:
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Physics

1. Under Elastic Waves, Time Explicit (elte), right click on Elastic Waves,
Time Explicit Model 1 and select Compute Displacement.

2. Select only the bottom plate in 3D-view.
3. Right click Elastic Waves, Time Explicit (elte) and select Boundary

Load.
4. Select the semi-circular area in the 3D-view.
5. Under the section Force select the Load type Force per area and enter the following

expression:

6. Right click Elastic Waves, Time Explicit (elte) and click on Symmetry.
7. Select the sideward faces next to the semicircular area of top and bottom plate in

the 3D-view.

8. Right click Elastic Waves, Time Explicit (elte) and click on Low-Reflecting
Boundary.

9. Select the remaining sideward faces in the 3D-view.

Mesh

1. Right click Mesh 1 and select Free Tetrahedral.
2. Click on Size 1 and in the Element Size section click Custom.
3. In the Maximum element size field type 16[mm].
4. In the Minimum element size field type 6[mm].
5. Click Build All.

Study

1. Click on Step 1: Time Dependent.
2. In the Study Settings section locate theOutput times field and enter range(0,5.0e-

7,1.5e-4).
3. Click on Compute.
4. Wait for the simulation to finish computing, which might take up to 3 hours depend-

ing on utilized hardware.

Results

1. In the Results tab right click on Datasets and select Cut Line 3D.
2. In the Line Data section enter the following values:

3. Right click the Results tab and select 1D Plot Group.
4. In the label section enter Signal.
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5. Right click Signal and select Global.
6. In the section y-Axis Data enter the signal expression from before into the table.
7. Right click the Results tab and select 1D Plot Group.
8. In the label section enter u(x).
9. Right click u(x) and select Line Graph.
10. In the Data section select Cut Line 3D 1 as the dataset.
11. Still in the Data section select From List for the Time selection. The times for

which the plot is generated can be selected from the list. Hold the control key to
select multiple.

12. In the y-Axis Data section type elte.uz
13. In the Legends section tick the Show legends box.
14. The probe plots should be generated automatically. To Rename click on Probe

Plot Group 1 and in the label section enter u(t).

B.2 DOM geometry

New

1. In the New window click Model Wizard.
2. In the Select Space Dimension section click 3D.
3. In the Select Physics interface open the Acoustics tab and then the Elastic

Waves tab and select the module Elastic Waves, Time explicit (elte).
4. Click Add.
5. Click Study.
6. Open the General Studies tab and click Time Dependent.
7. Select Done at the bottom of the menu.

Global Definitions

1. Open the Global definitions tab.
2. Click on Parameters 1.
3. Enter the following parameters:

4. In the Label field enter Model Parameters

Geometry

1. Click Geometry 1.
2. In the Label section enter System.
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3. Right click System and click Sphere.
4. In the Label section enter Outer Sphere.
5. Enter the following sizes in the Size and Shape section:

6. Right click System and click Block.
7. In the Label section enter Plastic Block.
8. Enter the following sizes in the Size and Shape section:

9. In the Position section for Base select Center.
10. Right click System and click Booleans and Partitions Difference.
11. In the Difference section select the plastic block in 3D-view as the Objects to add.
12. Toggle the selection to Objects to subtract by clicking the switch button and

select the outer sphere for Objects to subtract. To click the sphere in 3D-view it
is recommended to use the Click and Hide tool in the Graphics interface and
hiding a side of the plastic. Before selecting the sphere the tool has to be manually
disabled by clicking again. For this model this tool is quite important.

13. Tic the boxes Keep objects to subtract and Keep interior boundaries.
14. Right click System and click Sphere.
15. In the Label section enter Inner Sphere.
16. Enter the following sizes in the Size and Shape section:

17. Right click System and click Booleans and Partitions Difference.
18. In the Difference section select the outer sphere in 3D-view as the Objects to add.
19. Toggle the selection to Objects to subtract by clicking the switch button and

select the inner sphere for Objects to subtract.
20. Tic the box Keep interior boundaries.
21. Right click System and click More Primitives and then Point.
22. In the Label section enter Probe1.
23. Enter the following values in the Point section:

24. Repeat steps 6. through 8. six more times increasing the label number by 1 as well
as decreasing the angle in the sin and cos by π

12 each time.
25. Right click System and click Booleans and Partitions and then Union.
26. Select the spherical shell and all the points by clicking on them in the 3D view.
27. Right click System and click Booleans and Partitions and then Union.
28. Select the plastic block by clicking on it in the 3D view.
29. Right click System and click Work Plane.
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30. In the Plane Definition section for Plane select yz-plane.
31. Right click System and click Booleans and Partitions and then Partition

Objects.
32. In the Partition Objects section select both unions as the objects to partition.
33. Select Work Plane from the Partition with: drop down menu. The correct work

plane should be automatically selected.
34. Right click System and click Delete Entities.
35. in the Entities or Objects to Delete section select Domain in the Geometric

entity level: selection.
36. Select the half of the block as well as the half of the spherical shell with negative

x-coordinates, using the Click and Hide tool.
37. Click on Form Union.
38. In the Form Union/Assembly section under action select Form an assembly.

Definitions

1. Right click the Definitions tab and click on Probes then Point Probe.
2. In the Source Selection section choose manual and remove all points from the

selection by clicking on the selection and pressing delete on the keyboard.
3. Select the point Probe1 in the 3D-view.
4. In the Expression section type elte.uz as the expression.
5. Repeat steps 1. through 4. for the remaining probes.
6. Right click the Definitions tab and click on Pairs then select Identity

Boundary Pair.
7. Select the Source Boundaries, in this case the inner 4 curved faces of the plastic

block touching the glass sphere in 3D view. To click them in 3D-view it is recom-
mended to use the Click and Hide tool in the Graphics interface and hiding the
outer sides of the plastic block.

8. Toggle the selection to the Destination Boundaries by clicking the switch
button.

9. Select the outer curved faces of the spherical shell, again using the Click and
Hide tool.

10. Click System and then Build All in the settings section.

Materials

1. Right click the Materials tab.
2. Click Blank Material
3. Select the spherical shell in 3D-view.
4. In the Label field type glass.
5. In the Material Contents sections enter the following values:

6. Right click the Materials tab.
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7. Click Blank Material
8. Select the block in 3D-view.
9. In the Label field type plastic.
10. In the Material Contents section enter the following values:

Physics

1. Under Elastic Waves, Time Explicit (elte), right click on Elastic Waves,
Time Explicit Model 1 and select Compute Displacement.

2. Select only the spherical shell in 3D-view.
3. Right click Elastic Waves, Time Explicit (elte) and select Boundary

Load.
4. Select the top face of the block in the 3D-view.
5. Under the section Force select the Load type Force per area and enter the following

expression:

6. Right click Elastic Waves, Time Explicit (elte) and click on Symmetry.
7. Select all the sideward faces at x = 0 in the 3D-view.

8. Right click Elastic Waves, Time Explicit (elte) and click on Low-Reflecting
Boundary.

9. Select the remaining outer sideward faces of the block in the 3D-view.

Mesh

1. Right click Mesh 1 and select Free Tetrahedral.
2. Click on Size 1 and in the Element Size section click Custom.
3. In the Maximum element size field type 16[mm].
4. In the Minimum element size field type 6[mm].
5. Click Build All.

Study

1. Click on Step 1: Time Dependent.
2. In the Study Settings section locate theOutput times field and enter range(0,5.0e-

7,1.5e-4).
3. Click on Compute.
4. Wait for the simulation to finish computing, which might take up to 8 hours depend-

ing on utilized hardware.
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Results

1. Right click the Results tab and select 1D Plot Group.
2. In the label section enter Signal.
3. Right click Signal and select Global.
4. In the section y-Axis Data enter the signal expression from before into the table.
5. Right click the Results tab and select 1D Plot Group.
6. In the label section enter u(x).
7. In the Data section select From table in the Time selection: menu. The times

for which the plot is generated can be selected from the list. Hold the control key
to select multiple.

8. Right click u(x) and select Line Graph.
9. In the Data section select from parent as the dataset.
10. In the Selection section select manual for the Selection.
11. Still in the Selection section select all line segments across the inner side of the

spherical shell at y = 0.
12. In the y-Axis Data section type elte.uz
13. In the Legends section tick the Show legends box.
14. The probe plots should be generated automatically. To Rename click on Probe

Plot Group 1 and in the label section enter u(t).

C Material properties

This appendix contains the relevant material properties of the utilized materials. For
the case of elastic wave propagation we need to know the density, Young’s modulus and
Poisson’s ratio. For VITROVEX glass the properties are retrieved from [19]. They are:

Specific gravity at 25◦C: ρ = 2.23 g/cm3 (61)

Young’s modulus: E = 63GPa (62)

Poisson’s ratio: ν = 0.20 (63)

The plastic material utilized is low density polyethylene, with the Young’s modulus
retrieved from [17] and the density from [18]. There was no poisson’s ratio specified in the
source, which is why an arbitrary value, based on the poisson’s ratio of similar polymers
was utilized. The values utilized in the simulation for the plastic are:

Specific gravity at 25◦C: ρ = 0.91 g/cm3 (64)

Young’s modulus: E = 1.08GPa (65)

Poisson’s ratio: ν = 0.15 (66)

D Figures

This appendix contains additional figures utilized for measurements.
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Figure 25: u(x) curves for different times for the 7.5mm plate. Both propagation modes
are clearly observable
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Figure 26: u(x) curves for different times for the 30mm plate. Both propagation modes
are clearly observable
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Figure 27: u(x)-plot of the 7.5mm plate for a time, where the highest peak of the transverse
wave is observed. The ratio is calculated with the highest peak value of the transverse
wave and the highest peak value of the longitudinal wave.
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Figure 28: u(x)-plot of the 15mm plate for a time, where the highest peak of the transverse
wave is observed. The ratio is calculated with the highest peak value of the transverse
wave and the highest peak value of the longitudinal wave.
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Figure 29: u(t)-plot of the 15mm plate for probes at x1 = 475mm and x2 = 535mm. It
is used to calculate the amplitude decrease.

55



Figure 30: u(x)-plot of the 50 kHz DOM simulation for three different times. These peaks
were utilized to determine the waves speeds.
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Figure 31: u(x)-plot of the 20 kHz DOM simulation for five different times. These peaks
were utilized to determine the waves speeds.
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