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Abstract

This thesis presents a method for reconstructing positions in the KM3NeT-
ORCA detector using the arrival times of acoustic signals from a moving
source. First, a plane wave approximation is used to estimate the signal direc-
tion, followed by a full multilateration fit based on spherical wavefronts and
realistic sound speed profiles. It is shown that the sound speed model has a
clear impact on the reconstruction accuracy. The final results achieve position
uncertainties on the order of one meter and show systematic offsets of a few
meters, depending on model assumptions. In a second step, the method is
inverted to determine detector unit (DU) positions based on known source
positions, reaching sub-meter precision. The results confirm that acoustic po-
sitioning in KM3NeT works reliably when the geometry is favorable and the
data quality is high.
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1 Introduction

Neutrino detection is a difficult task for scientists all over the world. These particles
hardly ever interact with anything. This property, however, makes them an inter-
esting source of information about the cosmos. Neutrinos can travel huge distances
through space without being absorbed or deflected, even when passing through stars
or entire galaxies. That means they carry direct information from the places where
they were created like the core of the sun, exploding stars (supernovae) or even more
extreme objects like black holes. Since they interact so weakly, they reach earth un-
changed and can give insight into processes and regions of the universe that are
otherwise invisible. But since they interact so weakly, it’s nearly impossible to see
them with a small detector. That’s why the neutrino detectors need to get bigger
and bigger to maximize the probability of a neutrino interaction [1]. The core of
KM3NeT (,Cubic-kilometer (km?) Neutrino Telescope®) is an observatory located in
the Mediterranean Sea consisting of two main telescopes: ARCA (Astroparticle Re-
search with Cosmics in the Abyss) and ORCA (Oscillation Research with Cosmics
in the Abyss). Their positions can be seen in figure [I These telescopes use sea-
water as the detector material and can observe massive volumes of water in search
of neutrino interactions in the form of Cherenkov radiation, which can be detected

using photomultipliers.
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Figure 1: Position of the two main detectors of Km3NeT in the Mediterranean sea
2]

The Cherenkov radiation is emitted when a charged particle travels faster than
the local speed of light in a medium like water in this case. This radiation is faint and

directional, allowing the reconstruction of particle trajectories and energies. Since



KM3NeT aims to measure these signals with high precision, the exact positions
of the photomultipliers must be known at all times. This positioning happens via
acoustic signals and trilateration under water. The digital optical modules (DOMs),
which house the photomultipliers, are mounted on flexible lines that move with the
sea current, so their positions are constantly changing. To track these changes, two
separate acoustic systems are installed to ensure the positioning with the required
accuracy [3].

On July 9th 2024 a research ship passed by the ORCA telescope, which is lo-
cated offshore the coast of Toulon in France. The ship sent acoustic signals that
the hydrophones of the positioning system recorded [4]. In this Bachelor thesis I
will study some of the recorded data and try to reconstruct the position of the
ship by comparing the time of arrival of the same signal at different hydrophones.
This process will help with understanding the accuracy of the positioning system
and will give new insight into the positioning process |5|. Moreover, by compar-
ing reconstructed positions to known ship tracks, the performance of the acoustic
triangulation method can be independently tested, which is especially valuable for
verifying the calibration of the detector’s infrastructure.

The first chapter introduces the KM3NeT experiment and focuses on the struc-
ture of the ORCA detector, since the data used in this thesis originates from it. The
reconstruction of the ship’s position is carried out using a fitting method, and for
this purpose, the program Iminuit is used. Therefore, the second chapter will ex-
plain how Iminuit works and how it can be applied. The third chapter is dedicated
to the sea mission conducted above ORCA, followed by a section on the necessary
steps for data processing and analysis. Finally, the results of the three different fits

performed in the course of this thesis will be presented and discussed.

2 Km3NeT

The KM3NeT collaboration is a project of scientists, engineers, and institutions from
more than ten European countries, including France, Italy, the Netherlands, Greece,
and Germany. KM3NeT is the organizer of the projects which are also supported
by research organizations such as CNRS in France, INFN in Italy, NWO in the
Netherlands, and many universities and laboratories throughout Europe. KM3NeT
is funded by national science foundations, the European Union, and public research
funding bodies [5|. The ARCA Telescope is capable of detecting neutrinos gener-
ated by the most powerful and farthest astrophysical sources like active galactic
nuclei, supernovae, gamma-ray-bursts, and colliding neutron stars. Neutrinos have
the property of traveling the universe without much disturbance, so they carry the

most intact information from their sources in contrast to photons or charged parti-



cles which are scattered or absorbed on their way to Earth. This makes it a strong
instrument for astronomy [5]. Other than the astrophysics field, the KM3NeT re-
search is also of importance for fundamental particle physics, particularly due to
its ORCA (Oscillation Research with Cosmics in the Abyss) section. The ORCA
project is aiming at investigating the neutrino oscillations, which is a quantum effect
of neutrinos switching their type almost randomly. ORCA’s objective is to find out
which neutrino mass is preferred and why by accurately detecting oscillations. The
neutrino mass hierarchy is still unexplained. Explaining this would be a big step
forward for the Standard Model and beyond [5]. In addition to the physics objec-
tives of KM3NeT, it is also engaged in technological innovation, marine science, and
international partnership. The infrastructure that has been set up in the oceans is
a great source of information about marine life, oceanography, and geophysics, thus

KM3NeT is a multifunctional observatory [5].

2.1 Detector setup at ORCA

The Oscillation Research with Cosmics in the Abyss (ORCA) detector is one of
the two main components of the KM3NeT infrastructure, located in the Mediter-
ranean Sea near Toulon, France. ORCA is specifically optimized for the detection
of atmospheric neutrinos with energies in the range of a few GeV, which are crucial
for studying neutrino mass hierarchy and oscillation parameters [3]. The ORCA
Telescope consists of 23 separate Detection Units, also known as DU’s. Every DU
consists of 18 different vertically spaced Digital Optical Modules (DOM), each con-
taining 31 photomultipliers. The DUs are anchored to the see floor and fixed on top
with a buy as can be seen in figure [2l Due to currents or other turbulations in the
water, the position of each DOM is variable. That’s why hydrophones are installed,
that can guarantee precise positioning under water.

Due to strong absorption of electromagnetic radiation in seawater, the method
of using radio or optical signals for long-range communication or positioning is prac-
tically impossible. The ocean severely limits the use of radio or optical signals for
long-range communication or positioning because of the rapid attenuation of electro-
magnetic radiation in seawater. Acoustic waves have an advantage over optical and
radio waves since they suffer from much less attenuation and can propagate over sev-
eral kilometers in the ocean depths. This inherent characteristic makes sound waves
the only feasible choice for underwater positioning systems [6} [7]. At the KM3NeT
neutrino telescope, the positioning of the detection elements is something that has
to be continuously and accurately done with high precision, because of the flexibility
of the Detection Units and sea currents that can displace them. During the deploy-

ment process, the absolute position of the lower end of each DU, which is fixed to



Figure 2: An artist impression of the layout of an Km3NeT detector the DU’s are
anchored to the seafloor and stabilized by a yellow buy. One DOM is shown in
detail. The round spots are the photo multipliers [5].

the seabed, is determined using the Navigation and Absolute Acoustic Positioning
System (NAAPS) [8]. This source of locational information acts as a fixed baseline
for all other registration measurements. KM3NeT relies on the Relative Acoustic
Positioning System (RAPS) for the real-time tracking of the Digital Optical Mod-
ules (DOMs) along the DUs. To accomplish this, there are acoustic emitters and
receivers installed that are built right into the infrastructure. The acoustic emitters
of the NAAPS are called acoustic beacons and they are spaced outside of the DU
formation. When using triangulation, the distances between various parts of the
detector can be calculated from the travel times of the acoustic signals between the

different known positions of the emitters and receivers [3].

2.2 ORCA Footprint

The ORCA array currently consists of 23 DUs arranged in a dense oblique Bravis
lattice, the formation visible in figure [3] The layout of the ORCA detector is opti-
mized for the detection of low-energy atmospheric neutrinos, typically in the range
of a few GeV. Because these neutrinos produce relatively short particle tracks in
water, a high granularity of the optical modules is necessary to ensure accurate

reconstruction of the interaction topology and kinematics |3, [9].
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Figure 3: A layout of the ORCA footprint on the seafloor. The DU’s (black) are
spaced in a lattice. The red squares are the acoustic beacons that can emit acoustic
signals for triangulation.

To meet this requirement, the Detection Units (DUs) in ORCA are deployed
much closer together than in ARCA. The vertical spacing between the Digital Op-
tical Modules (DOMs) in ORCA is about 9 meters, and the horizontal spacing
between DUs is approximately 20 meters. In contrast, ARCA, which is designed
to detect high-energy neutrinos above several TeV, uses a much larger spacing of

approximately 36 meters between DOMs and over 90 meters between DUs [9} §].

2.3 Hydrophones in KM3NeT-ORCA

Each DOM of the KM3NeT-ORCA detector is equipped with a piezoelectric acoustic
sensor. This sensor is fixed on the inside of the glass sphere. These sensible sensors
serve as hydrophones and have multiple purposes, including acoustic positioning,
ambient noise monitoring, and detection of calibration signals. The piezo elements
are sensitive to acoustic frequencies in the range of 2-125kHz. They are directly

coupled to a preamplifier and a digitizing system within the DOM [10].
The hydrophones digitize the acoustic signals at a sampling rate of 195.3 kHz.

The gathered data is sent to shore via the optical network of the detector and further
processed by the onshore Data Acquisition System (DAQ). This process allows more
precise data analysis for Time-of-Arrival (ToA) measurements and faster positioning

corrections |10} |11].



3 Speed of sound in sea water

A sound wave is generated by a change of pressure in respect to the equilibrium.
The speed of propagation in an acoustic medium is described by

oP
2 _ _

Cc

That means that the speed of sound c is a measure of how the density of the acoustic
medium changes with a variation in pressure. If small changes in density result in
large changes in pressure, the speed of sound is fast [12].

In the seawater, the speed of sound is mostly dependent on three parameters: the
temperature, the salinity, and the pressure.

Temperature has the greatest impact on how fast sound travels in seawater, espe-
cially near the surface. When the water gets warmer, the molecules move around
more because they have more energy. This leads to more collisions between them,
which helps sound waves move through the water more quickly. So, in warmer water,
the speed of sound increases. This effect is strongest close to the surface where the
temperature changes a lot with depth. In deeper waters, the temperature changes
only slightly and mostly stays constant [13]. In the Mediterranean Sea, this effect
is very drastically seen. Figure ] shows the behavior of the temperature near the
location of the ORCA detector.
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Figure 4: Variation of the temperature with depth. It changes rapidly near the
surface and then reaches a constant level. The blue line is a measurement in Au-
gust after the summer months and the red one is a measurement in spring. These
measurements were conducted in the Mediterranean Sea near the ORCA site.

Salinity affects the density and compressibility of seawater. An increase in salin-

ity increases the speed of sound, though the effect is more modest compared to



temperature. As depth increases, so does pressure. Higher pressure compresses the
water slightly, so under pressure it becomes denser and harder to compress, and thus
the speed of sound gains. The speed of sound increases by about 1.7m/s per 100 m
of depth, making pressure the dominant factor at great depths, because temperature
reaches a lower limit fast.

These three factors interact in complex ways. Near the surface, temperature domi-
nates, often resulting in a sound speed maximum at shallow depths. But the effect
of the temperature can be neglected going deeper because it reaches a constant
value. Due to the linear growth of the pressure with depth, the speed of sound

grows linearly with depth at constant temperature [13].

Behavior of the speed of sound at the ORCA site
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Figure 5: That behavior can be seen in this plot which contains data from a measure-
ment of the sound speed dependent on the depth conducted directly at the ORCA

site.ﬂ

It can be seen in figure [f| that in the Mediterranean Sea the speed of sound
changes very drastically at the surface. Hence, a selection of a correct model which
represents the speed of sound is crucial for getting an accurate fit since the time of
travel of the signal is directly related to the way the sound travels in the medium. In
case the sound speed profile is not consistent with the actual situation, the position
reconstruction can be off to a large extent. Therefore, using authentic and local

sound speed information makes the fit more reliable.

'Data obtained from Sharif EI Mentawi/Vincent Bertin (CPPM), May 2025.
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4 The Iminuit library

Iminuit is a Python library designed for numerical minimization, which is par-
ticularly well-suited for problems in scientific data analysis. It provides a Python
interface to the MINUIT2 minimizer, a software originally developed at CERN (the

European Organization for Nuclear Research) [14].

4.1 Functionality and outputs of Iminuit

The fit procedure starts by defining a function that encodes how well a choice of
parameters matches the data. This function is often a chi-squared function, denoted
x2. The lower this function’s value, the better the model fits the data. Iminuit

finds the parameter values that minimize this function.

eey (wr Ly 2)

=1

To find the minimum of this function, Iminuit follows an algorithm called MI-
GRAD. This algorithm gets an initial guess for the parameters # and checks how
the function changes when each parameter changes. From the evaluations, it esti-
mates the gradient of the function. It changes the parameters values in the direction
of the most rapid decrease. This process is repeated iteratively and the algorithm
lowers the step size each iteration as it approaches the minimum [14].

Iminuit allows to set parameter limits. In a physical system this is often important
because there are solutions that don’t represent the real world. By setting the limits
to a physically plausible interval it is ensured that the resulting solution is correct.
The limits, however, do affect the minimization procedure. It transforms the inter-
nal variable Pj;,; into an external variable P.,; which ranges from lower bound to
upper bound via a trigonometry function.

b_
Pezt:a+ ¢

(sin Py, + 1) (3)

The internal variable can take on any value, while the external variable can take
on values only between the lower limit ¢ and the upper limit b. So the result is an
approximation of a linear problem and this has side effects. Near the boundaries
where OP..;/0P;,; ~ 0 the program cannot give a meaningful result for the param-
eter and its errors [14].

Iminuit also receives information about how the y? function curves around the
minimum. This is important because the curvature around the minimum indicates
how sensitive the function is to changes in each parameter. Strong curvature means

that the parameter is well constrained and has small uncertainty, while minimal cur-



vature means that the parameter is not well determined. This curvature is encoded
in the Hessian matrix. Once the minimum is found, Iminuit returns the best-fit
parameter values and their errors that are computed from the Hessian matrix. Pa-
rameter correlations are also returned, which indicate how changes in one parameter
affect others. If parameters are very strongly correlated, then one of the parameters
can be discarded or the choice of parameters should be renewed completely [15].

The minimization stops when the changes in the function value and in the param-
eters become smaller than a certain threshold and the estimated distance to the
minimum (EDM) is below a predefined limit. These criteria ensure that a local
minimum has been reached with reasonable precision. The minimization also stops
automatically if the number of function evaluations exceeds a predefined maximum
(by default, 10000). This ensures that the algorithm does not run indefinitely in
case the function has no well-defined minimum or if the convergence is too slow.
If this happens, the fit usually terminates with a warning and the status flag will
indicate that the result is not reliable. In such cases, improving the initial param-
eter guesses, checking the y? function, or relaxing parameter limits can help. The

stopping conditions can be tuned but usually the default values are sufficient.

Once the fit is complete, Iminuit prints several useful outputs. The best-fit
parameter values and their uncertainties are displayed, along with the x? value at
the minimum and the number of degrees of freedom. The uncertainties are estimated
using the inverse of the Hessian matrix. Figure [ shows how the best fit parameters

are displayed along with their errors.

Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed

0 a 0.002 0.029
1 b 0.500 0.005
2 sigma 0.98 0.04 0

Figure 6: This is the table of the best fit parameter values and their corresponding
hessian errors. It can be seen that a lower limit has been applied to the parameter
sigma which ensures that it stays greater than 0 [15].

The correlation matrix, as displayed in figure [7, shows how strongly the fit pa-
rameters are correlated. Values close to £1 indicate strong correlations, meaning

that changing one parameter would significantly affect the others.



a b sigma

a 0.000839  0.004e-3(0.030) -0 (-0.027)
b 0.004e-3(0.030) 2.43e-05 | -0.141e-3 (-0.718)
sigma -0(-0.027)  -0.141e-3 (-0.718) 0.0016

Figure 7: This is the displayed correlation matrix which is color coded. The darker
the color, the higher the covariance until it reaches a dark red approaching +1 [15].

Other diagnostics such as the status flags, the EDM (estimated distance to min-
imum), and the number of function calls are also printed. A low EDM and a status
flag of 0 usually mean that the fit converged successfully. If the status flag is nonzero
or the EDM is too high, the result should be treated with caution. The outputs of
the Migrad algorithm can be displayed like in figure |8| to check the validity of the

results.

Migrad
FCN = -8.774e+04 Nfcn = 95
EDM = 1.33e-06 (Goal: 0.0002) time = 12.5 sec
Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate

Figure 8: This is the most important output of iminuit. It displays the final
value of the x? function (FCN), the estimated distance to the minimum (EDM), the
number of tries and the time it took (Nfcn). Additionally, there is a color coded
field that basically tells if the fit is valid. If any of the stats is at yellow or worse at
purple, the fit results are not fully reliable [15].

4.2 The y? distribution

The x? distribution is a common distribution in statistics. It naturally arises in
problems in situations like fitting. It can be formed by summing up the square of
independent normally distributed random variables Z;. The statistical distribution

of a variable .
=Y 7; (4)
i=1

is a x2 distribution with n degrees of freedom. For large values of n the x? distri-
bution converts to a normal distribution. The behavior of the probability density of
the x? distribution for different degrees of freedom is visualized in figure [9] to get a
better intuition|16].

10
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Figure 9: The behavior of the probability density of the x? distribution for different
degrees of freedom (doF’). For large numbers of doF' this resembles a normally
distributed variable.

The concept works under the assumption that the random variables Z; are nor-
mally distributed with an expectation of 0 and a variance of 1. With this the
expectation of Z? can be derived. (Notation: F[x] is the expectation of z, also

Elax + y| = aE|[x] + E[y] is linear, which stems from the linearity of the integral)
Var(Z) := E[(Z — E|2))’] = E[2°| — 2ZE[Z] + E[Z]’ (5)

Note that E[Z] = 0 and take the expectation of both sides (expectation of a constant

value is the value itself) which leads to the result.
Var(Z)=E[Z’] -0+ 0* = E[Z}] =1 (6)

This result holds because the assumption was a variance of 1. Now it can be con-
cluded that for independent random variables, the expectation of the sum is just
>, 1 =n. The behavior of the x? distribution can be studied for different degrees

of freedom.

4.3 Applications of the y? distribution for the fit

Taking a look at the x? function it is similar to a y? distributed variable because
it contains measurement which are always normally distributed and a model which
describes the measured variable, so if the model is correct, the expectation of a single
residuum would be 0. By dividing every residuum by the error of the measurement
o; it is ensured, that the resulting variable has a variance of one. So with a perfect
model the x? function is x? distributed. Without a fit, just by modeling the situation,
the function of n measurements would be x? distributed with n degrees of freedom.

In the fit, variables are left open to be chosen freely by the fit program so that

11



the difference between the model and the data is minimized. As a result, after
this process the residuals are not as independent as before. For every fit parameter
chosen, the x? distribution of the x? function loses one degree of freedom. So, the

distribution of the x* function is a x3, distribution.
dof = number of measurements — number of fit parameters (7)

Assumed that all the errors for the measured quantity are correct, the final value of
the x? function is a measure of the goodness of the model used. Statistically, it is
expected that the mean value of the final x? function for every measurement is equal
to the degrees of freedom. If this value differs a lot, then the model used is imprecise
or the fit went wrong. This method is called the x? test. Another application is to
scale the o; so that the function value equals the number of degrees of freedom. This
method is used when the errors of the measurement are unknown, and the errors of
the fit are of interest. By doing this it is implied that the model used is correct and

the focus is on still getting valid errors for the fit parameters [17].

5 Sea campaign

On July 9th, 2024, a see campaign took place in the seas over the ORCA detector.
The mission was to send signals from a small research ship and receive the signals
with the hydrophones of the DU’s. The event started in the morning at about 9
o’clock and ended in the afternoon on the same day. In this time, the ship followed a
specific track above the detector as displayed in figure[I0] The goal of the mission was
to test an alternative triangulation of the ORCA DU anchors. For this a maximum
number of hydrophone data is needed. For this thesis, the recovered time of arrival
data of nine different DU’s got analyzed and was, among other things, used to

reconstruct the positions of the detection units using multilateration [4].

Movement of the ship during the whole see mission

—— gps position
* DuUs

1500

1000

position north (m)

500

—-1000 =500 0 500 1000
position east (m)

Figure 10: The gps position of the reserarch ship during the mission.
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The data is split up into different runs which can be analyzed separately. Some runs
are positioned directly over the detector, and some are further away. In this thesis,
the data of two separate runs are analyzed. The first run (DOORCA023 _run_20711)

was a circular motion directly over the DUs and the and the second run

(DOORCA023_run_20710)P| was a triangular motion further away [4].

6 Data analysis

Before beginning with the fit, the data gathered from the different detection units
must be filtered because it contains a lot of noise. The noise stems from the process
of data acquisition. The system assigns a value to every cross-correlation it performs
and saves this value along with the time of arrival. If this value called “quality factor”
is high, then the hydrophone data was very similar to the waveform and if it is very
low, the recorded signal was different to the compared waveform. This means that
the quality factor of background noise can get very high by chance or the real signal
can get canceled out by some other noise that interferes with it. When analyzing
the data, the periodicity of the signal sent by the boat helps a lot, finding the right
values in the noise. But sometimes it is not possible to determine the right time of
arrival from the data and it is better to discard the value because the fit is of course
very sensitive to small errors in time. The speed of sound at the sea floor is roughly
1,546 m/ms and the distance between the DUs is about 20 meters, so a change of
milliseconds in the time of arrival can completely ruin the fit. A final test of the
acquired data is to plot the time of arrival against the distance to the real position
of the ship. A linear relationship is expected because the farther the distance, the
longer the travel time. For the first run, the test reveals that there was an error
with the data processing of two different DU’s as displayed in figure

They obviously do not match the linear progression. There is an offset of about
two milliseconds to the value expected. A plausible explanation is, that the cross-
corelation failed in determining the maximum of the waveform and assigned the
wrong time of arrival. The exact reason for this is not clear. It is sure that the
correlation still found the right signal because the waveform is about five milliseconds
long, so the two millisecond offset is still in this range. Figure (12| shows the test

applied to the data of the second run, the triangular motion.

2Data obtained from Sharif El Mentawi/Vincent Bertin (CPPM) May 2025
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Figure 11: The time of arrival over the distance from DU to the ship which was
calculated by using the real GPS positions. DU 9 and 3 have a constant offset in
the data. The origin of the offset is not clear.
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Figure 12: Additionally to 9 and 3, DU 4 is also faulty but with a smaller offset of
only 0.2 milliseconds. Though very small this error is disturbing the fit greatly.

With these techniques the useful data is filtered. With the found time of arrivals
the fit can finally be performed. The detection units that did not match the linear
progression in the test will most probably not be part of the fits.

7 Fit of direction

The first goal is to reconstruct the correct direction of the ship with the time of

arrivals at the different DU’s. For this we assume a sound wave passing through the

14



water as a plane. The time of arrivals encode this plane: If a time is bigger than
the others, then it means that the ship is far away from this DU. This is interpreted
as a high point, while a low point is defined by a low time of arrival. The first step
for this plane wave fit is to define a point where the plane hits the detectors. It is
plausible to take the center point of all detection units. The plane can be described
with this point and a vector, which is normal to it, the unit vector. The goal of the
fit will be to find this unit vector to fully describe the plane wave of the sound signal
passing through the detector. This also allows for an approximate reconstruction of

the ship’s position by following the vector of direction to the surface as displayed in

figure [13]

Fit-plane through DU’s with unit vector and ship at surface

® T o

=500

® Dus

B Ft-plane |

—— unit vector —1000,5

@® ship N

surface 1500
f ~2000
T-2500
0
oﬂogOO
600 500 400 Xlao? 200 100 o ud@o%P@Y\m\
m

Figure 13: A sketch of how the plane wave fit works. It assumes a plane going
through the detectors which is defined by the time of arrivals. The vector pointing
at the position of the ship is the unit vector normal to the plane.

7.1 Model

For simplicity reasons the speed of sound in this fit is assumed as constant. This
is not of interest because the goal of the fit is not to determine the position of the
ship most accurately, but to test the data and get a first idea of the direction and
the position of the ship, which can be useful later. The sound wave travels as a unit
to the detector until it hits the first DU. From this point on it matters how fast
the signal travels to the next DU’s because this difference is what defines the plane.

That’s why the speed of sound on the sea floor is used. It’s value is ¢ = 1546 m/s.

A vector describes the plane. The length of the vector is irrelevant, so it can be
assumed as one. This makes the fit much easier because only two parameters are

needed to describe this unit vector. In spherical coordinates, these would be the
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polar and azimuth angles # and ¢. The vector is described by

sin @ cos ¢
n(0,¢) = | sinfsin ¢ (8)

cos

If z; is the position of the i-th DU then the distance along the direction of propaga-

tion of the wave is the projection

d; = (; — 2p) - 1 + const (9)
To this distance, a constant distance is added, which is the same for all DU’s. The
x? has to be in units of meters to be interpreted correctly. Thats why the time of
arrivals have to be converted into lengths by multiplying them with c¢. Then they

can be compared with the calculated distance in the y? function.

X2<9>¢, ty) = Z (t;-meas cc— (to-c+ (T; — ap) ﬁ(9,¢)) (10)

oF]

i

With the constant offset ¢, - ¢ and the errors o; which are assumed to be all the
same. By minimizing this function, Iminuit can find values for the parameters of
interest 6, ¢ and the time offset .
The position of the ship at the surface can be reconstructed by assuming the z
position of this point as 0 and starting at x(, adding the unit vector until reaching
the surface

O=2i+A-n" —A=—— (11)

Q?ship:l'o—i—)\'ﬁ (12)

The position of the ship at surface is a nice way of displaying the results because

the angles are much harder to interpret and compare.

7.2 Results of the Fit

Before the data could be fitted, some challenges needed to be solved. The actual
ship position was not clear, so a grid search of the x? function had to be performed
to get better initial guesses for the fit parameters. With the initial guesses, the fit
was able to reconstruct the direction of the incoming signal very well as displayed
in figure [I4 The direction vector points in the right direction, so the shape of the
trajectory is correct. However, the whole trajectory appears to be shifted in space.
This shift happens because all detection units (DU’s) were projected onto one single

center point Zp in the fit. The direction is then fitted based on this point, which
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makes the reconstruction simpler, but also causes an offset. The direction stays the
same, but the position is slightly shifted. For this fit, data from six of the DU’s was
used. To ensure, that Iminuit finds the correct solution, limits were applied to

the polar angle so that the mirror solution is ruled out.

position of the ship at surface
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Figure 14: True trajectory and reconstructed trajectory. The direction is correct,
but the trajectory is shifted because the DUs were projected to one center point Z.

This is not a central problem for this fit, where only the rough direction is
the goal, but if the full trajectory in space is needed, a more complex model that
includes the real positions of the DU’s should be used. Despite the offset, the fit
gives a very useful estimate of the direction of the signal. In many applications, such
as determining where the signal came from in the sky or linking the signal to an
astrophysical source, this direction is the most important result. The method is also
fast and reliable, which makes it practical to apply for a first test on the recovered
data.

8 Spherical Fit (Multilateration)

The goal of this fit is to reconstruct a precise position of the ship. This can be done
by using the distance from each DU to the ship. This distance can be interpreted as
the radius of a sphere around the DU. Each DU will have a sphere with a different
radius as it has a different distance to the ship. The position of the ship is defined
as the intersection point of all the spheres. In three dimensions, three points are

needed to recreate a position. This process shown in figure [15]is called trilateration.
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Figure 15: A nice illustration of the sphere problem. The intersection points A and
B are mirror solutions [18].

In three dimensions, there is either a precise solution or no solution for the
intersection point of three spheres but if you add more like in this case, there will
not be a clear intersection point, but only an approximation. By adding more anchor
points the problem changes from trilateration to multilateration. Like in the other
problem, there are mirror solutions but only one is physically correct. The other
one would be under the sea floor, and it can be again avoided by applying limits to

the parameters.

8.1 Model

In the spherical model, it is assumed that a signal is emitted from an unknown point
source at position Zgp;, = (25, Ys, 25). The signal propagates at first approximation
isotopically through the medium with a constant speed ¢, forming a spherical wave-
front. The DU’s are located at fixed positions #; and the record time is given by
tEheo = %(fl —Zspip). The next step would be to model the speed of sound dependent
on the depth. This of course means that there are no perfect spheres anymore, but
the idea of the fit stays the same. In a realistic underwater environment such as the
Mediterranean Sea at the ORCA site, the speed of sound is not constant, but de-
pends on the depth. This depth dependence must be included in the model in order
to get better results. But no matter how the modeled times !¢ are calculated, the

x? function has the same form:

) fineas _ ti;heo temit . 2
Wl gzt = 3 (M) (13

0;

)

where o; denotes the uncertainty in the measurement and is assumed to be the

same for all detectors. The minimization is performed with respect to the spatial
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coordinates of the source (zs,ys,2;) and the time offset ™ which is important
because the time of arrival (ToA) values are not calibrated to the time of emission
so it has to be part of the fit.
A simple way of implementing a variable sound speed ¢(z) is by assuming a path
from the emitter to the receiver. The speed of sound along this path is dependent
on the position on the path. Assuming a sound wave travels along a straight-line
path in three-dimensional space, the travel distance depends on the local speed of
sound, which may vary with a dependency on the depth z. Let the unit vector of
the direction of the wave be denoted by 7, and let the path be parameterized by a
scalar A\ such that

7(A) =70 + An (14)

where 77 is a reference point on the path (e.g. the emission point).

If the sound speed depends on the vertical position (depth), i.e. ¢ = ¢(z), then
the local speed along the path becomes ¢(7(A)) = ¢(z(\)). Since the differential
path length is di = |d7] = |n|dX = d\, the total travel time ¢ from A =0 to A = L

is given b
g i t—/L dA (15)
Jo ezV)

This integral accounts for the fact that the sound wave travels at different speeds

depending on the depth z(\) along its path.

—

tl
tredel = [ ——d¢ 16
ac 1o

Different models for the speed of sound can be plugged into this formula by
changing c(z) appropriately [19]. For this fit, different models for the speed were
tested. The first step, changing from a constant speed of sound to a better ap-
proximation is a linear model as demonstrated in figure [16] This describes how the
sound speed changes very accurately after a certain depth, but at the top it fails.
In ORCA, the use of this model is valid, because all the trilateration is done under

water near the sea floor.
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Figure 16: The model for the linear speed of sound used in the calculations and
widely used in Km3NeT for underwater triangulation where the deviation at the

surface is irrelevant.

This approximation is in general better in describing the time of flight in these
situations as the model of a constant sound speed but it is still not accurate at the
surface. For this fit, the behavior of the surface is relevant that’s why the speed of

sound is modeled different for this purpose. By interpolating the data measured, an

almost perfect function

When or if this is useful at all will be discussed in the results. Cubic interpolation

was chosen in this case.
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of the sound speed can be acquired as shown in figure [I7]

This new sound speed profile can be again plugged in the

path integral formula to get the time from point one to point two.

Function generated by interpolating the measured data
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Figure 17: This model describes the behavior of the speed of sound more accurate
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and can possibly be used to reduce the errors of the fit.
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8.2 Results of the Fit

The results of this fit need to be analyzed carefully in order to obtain the correct
errors in the z an y position. The model still has systematic errors. These errors are
not represented in the outputs of Iminuit. The first way to analyze the results is
to again plot the coordinates of x and y of the GPS positions and the reconstructed
positions. Figure 18 shows the results for the linear model of the sound speed. This
looks almost the same for both the linear and the interpolated model, so only the

result of one is displayed this way.
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Figure 18: In contrast to the fit of direction the position got reconstructed almost
perfectly but there is a constant offset visible which is caused by systematic errors.

Systematic errors in the fit come from the fact that the model used is not fully
accurate. The biggest sources of error are the model of the speed of sound and the
assumption that the sound travels in a straight line. In reality, the speed of sound
changes with depth, and this causes the signal path to bend, which is not taken into
account in a simple spherical model. This means the calculated distances based on
arrival times can be slightly wrong. Other disturbances like small time offsets or
signal reflections can also affect the result and lead to a small additional offset in
the reconstructed position. Two models for the speed of sound were tested. To see,
which one is more accurate the systematic errors for both cases can be determined
and compared like in figure (19 To estimate the systematic errors, the distance
between the GPS and the reconstructed position can be plotted in a histogram. A
gaussian fit of this histogram data gives the mean value p which can be interpreted as
the systematic error and the standard deviation ¢ which would be a rough estimate

of the overall error [20].
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Figure 19: Results of the fit: pu; = 42+05 07 = 1.1 4+0.4 and ps = 4.7+ 04
0o = 1.1 +0.8. It can be seen that the interpolated data is shifted to the left which
means it is slightly closer to the gps position than the linear model.

Due to the smaller p;, it can be concluded that the systematic error is slightly
reduced by implementing the more detailed model of the sound speed. The Param-
eter o consists of combined uncertainties, including statistical and model errors. To
obtain the z and y errors the outputs of Iminuit can be taken. For consistency
reasons the o values of the gaussian fit should be round about the same as the Hesse
errors of Iminuit and it turns out they are. Some parameters of the fit had limits
applied to ensure that the correct solution is found but the limits are counterpro-
ductive for error analysis due to the trigonometric projection. That’s why the fit has
to be redone with the exact positions that came out earlier as the starting values.

By doing this, the following errors for different signals are obtained:

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
0, Im| | 1.2050 1.2069 1.2062 1.2046 1.2043 1.2035 1.4774 1.2031 1.0961 1.2050 1.2052 1.4763 1.4751
oy [m] | 1.0335 1.0315 1.0237 1.0213 1.0320 1.0297 1.0993 1.0331 1.1124 1.0318 1.0332 1.1668 1.0975

Table 1: Uncertainties of x and y positions from the fit. The mean values 4 standard
deviations are: 0, =1.2m £ 0.1m and 0, = 1.05m 4 0.04m

These values give an idea of how precisely the position of the ship can be recon-
structed using the hydrophones. The slightly smaller error in the y-direction could
be due to the geometry of the detector setup. Although the detection units (DU’s)
are a little more spread along the x-axis, this actually improves the accuracy of the
y-position. Since the hydrophones cover a wider range in x, the arrival times of the
signals are more sensitive to changes in the y-direction. This means that the fit can
better constrain the y-coordinate of the ship. In contrast, variations in x are a little
harder to detect because the DUs are not distributed across y to the same extent.

As a result, the mean error in y is slightly smaller than in . All in all, the the
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results hint, that the systematic error of the fit can be reduced by implementing the
non linear depth dependency of the speed of sound but the deviation to the GPS
position still is about four to five meters. The internal error caused by uncertainties
in the measurements, disturbances of the signal in the water or most importantly
correlations of the fit parameters, accumulates to an uncertainty a little over one
meter in the x and y direction. The errors could be reduced by adding more degrees

of freedom to the system which means in this case using more detection units.

9 DU positioning via Multilateration

Locating the positions of the DU is the actual goal of the whole procedure. Normally
the position is determined via triangulation with the help of the acoustic beacons
placed in a short distance around the DU’s. It is very important to have data from
different sides because the triangulation method relies on the intersection of spheres
discussed earlier. If these spheres are not placed around the target, then there might
be no overlap of the spheres due to errors. In this case the positions and emission
times of the ship are known and utilizing them and the time of arrivals the position
of the DU’s can be reconstructed. With the data received from the ship the concept
from before still holds so it’s important to take many different ship positions that

are spaced around the detector in order to make this work.

9.1 Model

To reconstruct the positions of the DUs, the time of emission and the time of arrival
(ToA) of each signal are used together with the position of the ship at the time of
emission. The ship’s position is not directly measured for each signal but recon-
structed by interpolating the GPS data. This interpolation gives an estimate of the
ship’s position at the moment when each signal was sent.

The main idea of the model is that the sound propagates spherically from the
ship, and reaches each hydrophone after a time delay that depends on the distance
and the speed of sound. By taking the time of emission and the corresponding ToA,

the distance the signal has travelled can be calculated as

T
m:c-/ —dv (17)

the time calculated via a path integral scaled with the constant c. For this model,
the interpolated function gathered from measurement data is used to get the best
results.

A y2-function is constructed to quantify the agreement between the expected dis-
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tances from the ship to the DU and the distances derived from the times. Addition-
ally, a time offset dt is implemented because ORCA was not perfectly synchronized
with the GPS of the ship.

X* = (I1Tpu — Zaipll —ri —dt - 0)* (18)

%

The minimization of this y2-function gives the best estimate for the DU position
that fits all measurements. The fit is performed using the Iminuit package. This
method uses the timing and position information of the ship for as many signals as

possible to reconstruct the hydrophone positions with high precision.

9.2 Results of the Fit

The accuracy of the reconstruction of the DU’s positions is directly dependent on
the accuracy of the data used. The fit was tested for all DU’s, even the ones that
had a time offset in the ToA data. DU9 is not included because its data for the
second run was not recovered. As a start, the result of the fit for every DU is plotted

at once in figure 20| to give an overview. The errors can then be analyzed separately.
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Figure 20: The position of most DU’s at the sea floor got reconstructed almost
perfectly but there where positioning offsets with number 4 and 40.

It was expected, that the positioning of DU4 could fail, it was even filtered out
earlier because its data for the second run was faulty. Exactly what happened with
nr. 40 is not clear. The data of the other ones is good and their results can be
analyzed. The errors in the fitted DU positions mainly originate from two things.
First, there can be small delays or noise in the timing of the ToA measurements
for example, due to hardware jitter, the electronic timing resolution, or the way

the signal crosses the threshold to be detected. So even if the signal is clean, the
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exact arrival time might still be a bit off. Second, the ship positions used in the
fit result from GPS data that had to be interpolated to get the estimated position
at the exact time of emission. The positions of the ship are saved every second
so if the GPS points are not very dense or the ship moves irregularly, the linear
interpolation might not give the exact correct position at the time of emission. To
get an estimation of the systematic error, the mean value and the standard deviation
of the distances to the real positions can be observed: u = 1.2, ¢ = 0.2. The reason
why the errors are much smaller in this fit compared to the previous ones is likely
due to a few combined factors. First of all, the emission time was taken from the
data and not part of the fit, which gives it fewer variables to optimize and makes the
result more stable. Another big difference is the number of degrees of freedom: this
fit used 23 signals to determine one position, which gives the fit a lot more data to
rely on. That also means that small measurement errors like ToA uncertainties or
timing jitter from the hardware do not have such a strong effect anymore, because

they can average out across many signals.

The fit was started with all parameters open. Due to a very strong correlation
between the time offset dt and the z coordinate, this led to problems with the
correlation matrix. The positions of the ship were approximately directly over the
detector so a shift in time is equal to a shift in z so they were nearly 100% correlated.
So, the value of dt is fixed in the next step. This value was 0.24 s and it accounts not
only for the wrong synchronization but also for a simplistic speed of sound model

or other systematic errors. After fixing dt to this value, the fit stabilized.

For a correct error analysis the limits of the parameters were lifted and the errors
had to be rescaled so that the value of the y? function equals the degrees of freedom
[17] [14]. With dt fixed, the fit parameters were the coordinates of the DU’s so with
23 signals and ship positions used, the number of degrees of freedom is 20. Figures

, 22 and 23| show how the outputs of the fit for DU17 are displayed as an example.

Migrad
FCN = 20.08 Nfcn = 121

EDM = 0.000182 (Goal: 0.0002)

Valid Minimum Below EDM threshold (goal x 10)
No parameters at limit Below call limit
Hesse ok Covariance accurate

Figure 21: The final minimum is normalized to the degrees of freedom and the
number of tries as well as the distance to the minimum are displayed. All in all its
a valid minimum and there are no warnings.
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Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed

0 X 435.76 0.23
1 y 546.23 0.16
2 z -2449160e3 0.000014e3
3 dt 0.2400 0.0024 yes

Figure 22: The values of the fit parameters are displayed along with their Hesse
errors. No limits are applied and dt is fixed.

X y z dt

X 0.0508 -0.023 (-0.622) -1.34e-3(-0.415) 0.00
y  -0.023 (-0.622) 0.0265 -0.39e-3 (-0.167) 0.000
z -1.34e-3 (-0.415) -0.3%e-3 (-0.167) 0.000205 0
dt 0.00 0.000 0 0

Figure 23: The correlation matrix of DU 17

The strongest correlation is observed between the x and y coordinates, with a
correlation coefficient of —0.622. This moderately strong negative correlation implies
that variations in x are compensated by opposite variations in y during the fit. A
moderate negative correlation is also found between z and z (—0.415), while the
correlation between y and z is weaker (—0.167). These values indicate some degree
of parameter coupling but are not considered critical. The error in z and y is in
general much higher than the error in z this is also seen in the correlation matrix
because they are correlated stronger. This means that a change in x can be easily
compensated in a small change in y this often leads to a less steep x? function at
the minimum which is what the errors are defined by. An explanation for these
bigger errors might be the interpolated x and y coordinates of the ship while the z
coordinate was held constant at —2.7m because that is the position of the emitter

on the ship. In Tabld2] the Hesse errors for all DU’s are summarized.

Table 2: Position uncertainties from the fits in x, y, and z directions (in meters).

DU | o, [m] | oy [m] | 0. [m]
39 0.217 | 0.209 | 0.015
40 - - -

41 0.226 0.149 0.013

4 - - .

19 0.126 | 0.116 | 0.012

17 0.225 0.163 | 0.014
3 0.049 | 0.087 | 0.012

The errors are fairly consistent but for DU3, the x and y errors are smaller than

for the other detection units. The correlation matrix for DU3, which is shown in
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figure is also different from the others. The correlations for z and y are much

smaller in this case.

X y z dt

X 0.00243 0.0020 (0.468) -0.18e-3 (-0.322) 0.0000
y 0.0020 (0.468) 0.00762 -0.43e-3 (-0.419) 0.000
z -0.18e-3 (-0.322) -0.43e-3 (-0.419) 0.000135 0
dt 0.0000 0.000 0 0

Figure 24: The correlation Matrix of DU3 differs from the others in the correlations
of x and y.

The reason why the errors of DU3 are smaller could lie in the track of the ship
which is displayed in figure 25l During the first run, the ship had a phase where it
stopped directly over DU3 and hardly moved. Although the same signal data were

used to fit the positions of all DUs, DU3 ends up with much smaller uncertainties.
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Figure 25: A cluster of 10 data points is located exactly over DU3 this leads to
smaller errors.

Because of this, the signal arrival times at DU3 are especially useful for narrow-
ing down its exact position. Small uncertainties in the emission time or the ship’s
position don’t affect the result as much for DU3 as they do for DUs that are further
away. The fit can “lock in” the position of DU3 more precisely. This geometric
advantage can lead to smaller errors in the final result for DU3, even though all

DUs had the same signal input.

Overall, it was a successful reconstruction of detection unit (DU) positions using
the arrival times of acoustic signals and interpolated GPS positions of the emission

source. Despite minor issues with some units, the majority of the fits produced
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highly accurate results, with position uncertainties way under a meter. The analysis
demonstrated that signal geometry, especially the spatial distribution of emission
points, plays a crucial role in the precision of the reconstruction, as seen with DU3.
The systematic offset in emission time could be effectively accounted for by intro-
ducing dt, and the overall behavior of the x? function confirmed the validity of the
fits.

10 Summary and Conclusion

In this work, the positions of acoustic signal sources and detection units (DU’s) in
the KM3NeT-ORCA detector were reconstructed using arrival times of sound waves
and the method of multilateration. The direction of the signal was first estimated
using a simplified plane wave model, which worked well for getting the angles but
introduced a spatial offset because the DUs were projected to a central point and
the model used a most simplified speed of sound, which assumed a constant speed
which in reality, is not accurate. To improve accuracy, a spherical model was used
that considers real positions of all DUs and includes different models for the depth-
dependent speed of sound. It turned out that the speed of sound model has a
noticeable effect on the result. The interpolated sound speed profile reduced the
systematic offset between reconstructed and GPS positions by about 0.5 m compared
to a simple linear model. Still, there remained a systematic deviation of around 4 m,
likely caused by remaining model assumptions like straight-line propagation. The
internal errors due to uncertainties in arrival time and parameter correlations were
about 1.2m in = and 1.05m in y direction. These were consistent with the error
estimates from the Gauf-fit. Finally, the same method was successfully used in
reverse to reconstruct DU positions based on known ship locations. The average
error was below 0.2m for most DUs, showing that the method is reliable when
sufficient high-quality data is available. It was shown that more signal paths and
better spatial distribution of sources lead to smaller uncertainties. The geometry
of the problem had also an effect on the errors as observed with DU3. Overall,
the results show that this alternative acoustic positioning in KM3NeT can work
with sub-meter-level precision, but model improvements and careful calibrations are

crucial for reducing both statistical and systematic errors.

I would like to thank Sharif El Mentawi and Vincent Bertin (CPPM) for pro-
viding the processed data used in this analysis, and for always being available for

questions and discussions.
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A Measurement data

Table 3: Speed of sound profile

Depth [m] Velocity [m/s] Depth [m| Velocity [m/s|
0.000 1533.803 100.017 1508.691
5.006 1533.803 105.010 1508.835

10.005 1530.662 110.007 1509.053
15.006 1527.491 200.0 1510.203
20.008 1519.221 400.0 1513.040
25.008 1513.936 500.0 1514.510
30.001 1512.830 600.0 1516.060
35.008 1511.763 800.0 1519.120
40.025 1511.013 1000.0 1522.120
45.016 1510.768 1200.0 1525.160
50.010 1510.523 1400.0 1528.430
55.001 1509.843 1500.0 1530.030
60.001 1509.382 1600.0 1531.760
65.027 1509.176 1800.0 1535.170
70.015 1508.938 2000.0 1538.630
75.005 1508.725 2200.0 1542.130
80.007 1508.517 2300.0 1543.880
85.014 1508.479 2400.0 1545.630
90.006 1508.514 2500.0 1547.360
95.001 1508.584 2600.0 1549.060
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