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Abstract

Accurate pointing and high detection efficiency when observing the Galactic Plane
with muon neutrinos rely on precise muon track reconstruction. To suppress the
dominant background of atmospheric muons, the Earth is used as a natural filter. This
yields a pure neutrino dataset on the hemisphere below the local horizon. Therefore,
combining data from neutrino telescopes in both hemispheres, IceCube in the Southern
Hemisphere and KM3NeT in the Northern Hemisphere, increases sensitivity to an
anisotropic astrophysical neutrino flux. For example, this is useful when observing
the Galactic Plane. This thesis presents joint sensitivity studies obtained using MC
datasets from the IceCube and ARCA detectors. Studies of the diffuse astrophysical
neutrino flux are performed using a binned forward-folding likelihood approach. For
IceCube, all statistical modeling is performed using the NNMFit framework. However,
to encourage collaborative work and modernize the software, the open-source framework
PyFF is being tested. This thesis presents the initial steps in implementing an ARCA21
diffuse all-sky analysis, including muon background and detector systematic handling,
in this framework. The principle of using PyFF for ARCA analyses is evaluated by
comparing it to other KM3NeT analyses.
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1 Introduction

The first astronomical observations began several thousand years ago [1]. It started by
observing the light of astronomical objects seen by eye. In the last century, by the
development of telescopes, the observation of light from the universe in frequencies
other than visible light began. With that, lower frequencies like radio-frequency or
higher frequencies, for example, in the gamma-ray regime, can be observed. This made
the discovery of new astronomical objects possible. Additionally, our understanding of
these objects and the mechanisms of the universe improved. But not only are photons
produced in astronomical objects. Instead, there exist more messenger particles
than photons, such as astrophysical neutrinos. The astrophysical neutrinos were
first discovered by the IceCube neutrino telescope in 2013 [2]. This opens the field
of neutrino astronomy. Neutrinos are not deflected and are only rarely absorbed
or scattered in dense environments. Making them an ideal messenger particle for
understanding processes in the universe.
A recent discovery of the IceCube detector is the neutrino emission in the galactic plane
with a significance of 4.5σ [3]. Still, the processes of neutrino production in our Galaxy
are not fully understood yet. One problem is the low detection rate of astrophysical
neutrinos compared to the atmospheric background. Statistically, within the IceCube
detector, a ratio of 108 atmospheric background events to one astrophysical event
is measured [3]. When focusing on neutrino events detected with high directional
resolution (track events), the IceCube detector is only able to observe neutrinos from
the Northern sky. The Southern sky region has to be cut off due to high backgrounds
from that direction. As shown in Figure 1.1, the galactic center region is located in
the Southern sky. So, it cannot be observed with track events in IceCube.

Figure 1.1: Neutrino flux predicted from gamma-ray observations for the galactic plane.
The neutrino emission is shown in galactic coordinates. The galactic center is the brightest
spot in the middle. It is located on the Southern Sky of the Earth [3].

However, further neutrino telescopes, which can observe the galactic center region
with track events, are currently being built or will be built in the future. One that
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1 Introduction

is currently under construction is KM3NeT/ARCA, located in the Mediterranean
Sea. The ARCA detector can, due to its location on Earth, observe about 90% of the
galactic plane by track events as shown in Figure 1.2. As the detector is currently
under construction, its detection volume and livetime are small compared to IceCube.

Figure 1.2: Expected neutrino flux from the galactic plane according to the CRINGE
flux model for ARCA21. The plot shows the galactic plane in equatorial coordinates. The
ARCA detector sees the galactic plane in the declination region −1 < sin(δ) < 0.9 with
track events (below red dashed line). The galactic centre is located in the brightest region.

The sensitivity on the galactic plane with track events can be enhanced by combining
the data of both the IceCube and ARCA detectors. With a joint analysis, the full
galactic plane can be observed, and the limitations due to the low number of galactic
neutrino events can be improved.
The objective of this thesis is to perform sensitivity studies on the joint ARCA-IceCube
analysis of the galactic plane. To achieve this, NNMFit, the IceCube software used for
diffuse analyses, is employed, and the ARCA Monte Carlo data are implemented. This
thesis analyses the current detector status with ARCA21 and the future ARCA115
detector. As the NNMFit software is not currently publicly available, a new framework
called PyFF is tested. PyFF is an open-source software framework for diffuse neutrino
analyses. This thesis performs a diffuse all-sky analysis on simulated data for the
ARCA21 detector. The aim is to validate the functionality of PyFF and test the
ARCA21 implementations of background fluxes and detector systematics, modernizing
the current ARCA all-sky measurement. In the end, the Asimov test results are
compared to current KM3NeT diffuse all-sky analyses.
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2 High-Energy Neutrino Physics

In order to analyse the astrophysical or galactic neutrino flux, it is necessary to under-
stand the fundamentals of neutrino astronomy. This chapter provides an introduction
to the fundamentals of neutrino physics and explains the motivation behind neutrino
astronomy. It also describes how high-energy neutrinos can be detected.

2.1 Neutrinos

The neutrino as a particle was first postulated by Wolfgang Pauli in 1930 [4]. The
newly postulated particle solved the contradiction of a continuous energy spectrum in
the β-decay when only assuming electrons emitted in this decay. Three years later,
Enrico Fermi was able to include the neutrino in his theory of the β-decay, describing
it as a massless and chargeless particle. The first neutrino discovered by an experiment
was the electron antineutrino in the reactor experiment conducted by Clyde L. Cowan
and Frederick Reines, published in 1956. This was followed by the discovery of the
muon and tau neutrinos in later decades.
Nowadays, we can classify the neutrino within the Standard Model of particle physics
as a fermion, as it has a spin of 1/2 [5]. More precisely, the neutrino belongs to
the class of leptons (in contrast to the quarks) which can be subdivided into three
generations (referred to as flavors), νe, νµ, and ντ , each having an electrically charged
partner particle, together referred to a “weak iso-doublets”: e−, µ−, τ−.
In contrast to their doublet partners, neutrinos do not interact via the electromagnetic
interaction. Furthermore, as leptons, they do not interact via the strong interaction.
Thus, in addition to gravity, neutrinos interact only via the weak interaction. Neutrinos
are referred to as almost massless. However, since the discovery of neutrino oscillation,
it is known that different mass eigenstates of a neutrino exist. The current upper limit
for the neutrino mass, as set by the KATRIN experiment, is mν < 0.45 eV [6].
Neutrinos interact with matter only via the weak interaction (by exchanging either a
W ±- or a Z0-Boson) [7]. Their cross-section for the interaction with matter is very
low compared to charged or more massive particles. As they are rarely absorbed
by matter and are not deflected by magnetic fields, they are ideal messengers for
observing astronomical objects. By detecting and reconstructing a neutrino’s path,

3



2 High-Energy Neutrino Physics

one knows the direction of its origin. That opened the field of neutrino astronomy
and the development of neutrino telescopes (discussed in section 2.4). Using these
telescopes, neutrinos from various sources are detected (see section 2.3). In general,
within this thesis, only high-energetic neutrinos (> 100 GeV) are discussed.

2.2 Cosmic Rays

Cosmic rays (CR) are a non-thermal population of particles originating from extrater-
restrial sources [8]. They consist mostly of protons and atomic nuclei. They have a
characteristic energy spectrum reaching from tens of MeV to the EeV energy range.
Cosmic rays are accelerated to very high energies, but the mechanisms for producing
and accelerating such particles are not yet fully understood. The characteristic energy
spectrum follows a falling power-law dNCR

dE ∝ E−γCR (seen in Figure 2.1) [8]. Only
the spectral index γCR changes at characteristic energies, giving hints to their origin.
Cosmic ray particles between hundreds of MeV and a few PeV are believed to originate
from galactic sources. Candidates are supernova remnants, star cluster winds, or,
among others, the Galactic Center region, which could accelerate the particles. Above
the EeV energy range, Cosmic rays are most likely from extragalactic sources. They
are possibly accelerated by active galactic nuclei, gamma-ray bursts, or starburst
galaxies.
The fundamental question when observing particles with such high energies is about
the acceleration mechanisms in these astronomical objects. The standard explanation
is currently the Fermi acceleration [10]. That mechanism is based on the creation
of a shock wave of magnetized plasma in astronomical objects. Charged particles
gain energy by repeatedly crossing that shock front. This acceleration mechanism is
not specific to an astrophysical object. The change in the spectral index for different
sources can be explained by a slowdown of the shock wave by the accelerated particles,
or by the influence of the Milky Way on the observed cosmic rays at Earth. However,
only a fraction of the charged particles can leave the source region of a high-density
environment with strong magnetic fields. Therefore, these particles, predominantly
protons p, re-interact with the dense environment or the photon γ background. In this
re-interaction process, neutral π0 and charged pions π± are created. Additionally also
other hadronic products, denoted by X, can be produced [5]:

p + γ → π+X + n (2.1)

p + γ → π0X + p (2.2)

or
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2.2 Cosmic Rays

Figure 2.1: Characteristic energy spectrum of cosmic rays from different air shower
experiments. The cosmic ray flux is multiplied by E2.6 and shown as a function of Energy.
The flux follows approximately a broken power-law, where the spectral index γCR changes
at specific energies, denoted as the Knee, the 2nd Knee, and the Ankle. Figure taken from
[9].

p + p → π0 + X (2.3)

p + p → π± + X (2.4)

The charged pions decay into muons and neutrinos π± → µ± + (—)

νµ, whereas the
muons also decay to an electron and neutrinos µ± → e± + (—)

νe + (—)

νµ. The neutrinos, in
contrast to the charged particles, do not re-interact in the dense environment and can
escape. Therefore, the neutrino flux from astronomical objects is directly related to
the acceleration mechanism of the cosmic rays.
That is why neutrinos can help answer the question of particle acceleration mechanisms
in the universe. As they also cannot be deflected, neutrinos detected at Earth directly
point back to their source of origin.
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2 High-Energy Neutrino Physics

2.3 Neutrino Fluxes

The discovery of an astrophysical neutrino flux in 2013 by the IceCube Collaboration
opened the field of neutrino astronomy [2]. To perform such analyses on neutrinos from
cosmic sources, the understanding of the processes in which neutrinos can be created
and reach the detector becomes important. There are also a lot of background events,
like atmospheric neutrinos and atmospheric muons, which need to be considered and
understood.

2.3.1 Atmospheric and Prompt Flux

High-energy cosmic rays hitting molecules in Earth’s atmosphere create a cascade of
secondary particles evolving in the atmosphere. In a hadronic interaction, pions π±

and kaons K± are produced. These mesons can decay into atmospheric muons and
atmospheric neutrinos [5]:

π± → µ± + (—)

νµ (2.5)

K± → µ± + (—)

νµ (2.6)

The muons created decay into an electron and neutrinos as described in section 2.2,
giving the conventional component of the atmospheric neutrino flux. The meson decay
is dominant for lower energies, Eν ≪ 100 GeV, and the neutrino energy spectrum
follows the primary cosmic-ray spectrum. For higher energies, the re-interaction of
Pions and Kaons becomes more important, and fewer neutrinos are produced. The
energy spectrum becomes about one power steeper than the cosmic-ray spectrum [5].
The atmospheric neutrino spectrum is also dependent on the zenith angle at which the
neutrinos reach the detector. With decreasing zenith angle, less dense air is crossed
by the mesons. This makes re-interactions of Pions and Kaons less likely, and more
neutrinos are produced by the Meson decay [11].
A subdominant component of the atmospheric neutrino flux is the prompt flux [12].
Higher-energy cosmic rays interact in the atmosphere, and heavier hadrons consisting
of charm or bottom quarks can be produced. These heavy mesons decay promptly due
to their high mass, among other particles, into neutrinos. Because of the prompt decay,
no re-interaction of these mesons is possible. This results in the prompt component
having no angular dependence, and following the cosmic-ray energy spectrum. Due to
the harder energy spectrum, it becomes important for energies above ∼ 10 TeV [11].
Until now, a prompt neutrino flux had not been observed [12].
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2.3 Neutrino Fluxes

2.3.2 Diffuse Cosmic Flux

In contrast to measuring a single astrophysical neutrino source, the overall diffuse
astrophysical flux is also studied in its energy spectrum and flux strength. The diffuse
astrophysical flux does not resolve any specific sources in the angular distribution. The
production mechanisms leading to that flux are not fully understood yet. There are
various candidates for producing astrophysical neutrinos, e.g., choked Gamma-Ray-
Bursts (GRBs), active galactic nuclei (AGNs), or tidal disruption events (TDEs) [13].
The acceleration mechanism of neutrinos from such sources is explained in section 2.2,
as neutrinos are produced by cosmic rays that are accelerated in magnetic fields and
interact in these dense environments. Consequently, the neutrino flux would follow the
same power law as the initial cosmic rays originating from these astronomical sources.

2.3.3 Diffuse Galactic Flux

Cosmic rays can also interact within the denser environment of galaxies. In that
process, neutral pions (cf. Equation 2.3) and charged pions (cf. Equation 2.4) are
created. Neutral pions decay into photons π0 → γ + γ, whereas charged pions produce
neutrinos in their decay [3]. The observation of the Milky Way in gamma rays is
proven. It is the most prominent feature in the gamma observation above 1 GeV. The
charged pions decay as described in section 2.2 into neutrinos. Therefore, knowledge
of a gamma-ray flux also allows for the prediction of a diffuse neutrino flux from the
Milky Way.

Figure 2.2: Significance for a neutrino flux from the galactic plane over the isotropic
background flux. It is shown for the galactic band observed by the IceCube detector,
leading to the discovery of a diffuse galactic neutrino flux with a significance of 4.5σ, taken
from [3].

A diffuse galactic neutrino flux was discovered in 2023 by the IceCube Collaboration
with a significance of 4.5σ (shown in Figure 2.2) [3]. However, various gamma-ray
point sources in the Milky Way are also potential cosmic-ray accelerators and therefore
can potentially emit neutrinos. An individual neutrino point source within the Milky
Way could not be identified yet.

7



2 High-Energy Neutrino Physics

2.3.4 Atmospheric Muon Background

One main background in the high-energy neutrino detection are cosmic-ray induced
muons. As explained in subsection 2.3.1, they are created by cosmic rays hitting the
atmosphere. Muons have a mean lifetime of a few µs, which is long in comparison
to the mesons produced. With enough energy, they can cross several kilometers of
matter such as water and ice. To reach the IceCube detector at a depth ∼ 2 km
they need a minimal energy of ∼ 0.5 TeV [5]. As mentioned in subsection 2.4.3, the
neutrino signal and atmospheric muon signal are distinguished by using only up-going
events. However, there are still mis-reconstructions of the event, and the classification
of up-going events does not always work correctly. That is why it is important to also
consider atmospheric muon contamination in the neutrino flux.

2.4 Neutrino Telescopes

The previous sections explain why the high-energy neutrino flux is interesting to
investigate. This section describes how these neutrinos can be detected.
The detection mechanism of neutrino telescopes is based on detecting charged secondary
particles, created from the weak interaction of neutrinos with a nucleon of the detector
medium (see subsection 2.4.3). That means the neutrino itself cannot be observed,
only products from its interaction with matter. The charged secondaries can then
be detected via the Cherenkov effect [14]. This effect occurs in dielectric media with
a refractive index n > 1 for charged particles traveling with a velocity v larger than
the phase velocity of light v > c

n in that medium. Some of the particle’s energy is
converted into light, resulting in a cone-shaped wave front traveling with the charged
particle.
The low cross-section of neutrinos is a major challenge in detecting these particles. As
an example, assuming a neutrino flux for a bright point-source similar to the Crab
Nebula at energies in the TeV regime, the neutrino cross section is approximately
10−35 cm2. Using one km3 of water as a target volume, a rate of approximately 10
neutrinos per year is expected to interact within this volume [5]. Therefore, for the
detection of high-energy neutrinos, large detector volumes are needed.
Gigatons of a transparent but dense medium for the detection of the Cherenkov
light exist naturally on Earth in the form of water and ice. That is why the first
km3-scaled neutrino telescope, IceCube, was built in the Antarctic ice at the South
Pole [5]. Another km3-scaled neutrino telescope in the water of the Mediterranean Sea
is currently under construction - ARCA by the KM3NeT collaboration.
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2.4 Neutrino Telescopes

2.4.1 IceCube

The IceCube neutrino telescope is located at the geographical South Pole. To reach
the instrumented volume of 1 km3, 86 detector lines, each having 60 digital optical
modules (DOMs), are frozen into the ice [5]. The DOMs, not in the DeepCore area,
on one line have a spacing of 17 m, sitting in a depth between 1450 m and 2450 m
(see Figure 2.3). The detector lines have a spacing of 125 m. The DeepCore area
consists of six denser deployed detector lines and seven normal lines. It is optimized to
detect lower-energy neutrinos. On the surface of the detector lines, the IceTop array is
built. This consists of a pair of tanks near each line top, having two DOMs each. The
IceTop array detects cosmic rays reaching the top of the detector. IceTop is used for
investigating the cosmic ray flux, and it can be used for vetoing background events.

Figure 2.3: The IceCube neutrino telescope built in the Antarctic ice at the South Pole.
The image shows the layout of the detector array consisting of 86 detector lines, each
equipped with 60 DOMs, and was taken from the IceCube Collaboration [15].

Each of the 5, 160 in-ice DOMs is equipped with one photomultiplier tube (PMT)
and associated electronics. The PMT is sitting on the bottom half of the hemisphere,
facing toward the Earth. They are specifically designed to detect the Cherenkov light
of charged particles traveling through the ice, emitting light at a wavelength between
300 nm and 500 nm [16].
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2 High-Energy Neutrino Physics

2.4.2 KM3NeT/ARCA

The KM3NeT collaboration is currently constructing two neutrino detectors in the
seawater of the Mediterranean Sea, currently under construction: ARCA (Astroparticle
Research with Cosmics in the Abyss) and ORCA (Oscillation Research with Cosmics
in the Abyss). Both detectors contain mostly the same hardware, where the optical
modules are aligned on vertical detector lines. In the ORCA detector, the detector
lines are deployed much densely than in the ARCA detector [17]. Additionally, the
DOMs on one line have a denser spacing in the ORCA detector. The reason for that
is that each detector is optimized for its science case: ARCA detecting high-energy
cosmic neutrinos and ORCA registering lower-energy atmospheric neutrinos. As this
thesis focuses on high-energy neutrinos, only the ARCA detector is considered in the
following.
The ARCA detector is located 100 km offshore from the town of Portopali di Capo
Passero on Sicily. The detector lines, also called detection units (DUs), are anchored
at a depth of 3500 m. They are each equipped with 18 DOMs with a spacing of 40 m
[18]. The horizontal spacing of the DUs is about 100 m for ARCA. In comparison
to IceCube, the DOMs contains more than one PMT. Instead, they have 31 PMTs
each. The PMTs are arranged to detect light from all directions, where 19 PMTs sit
on the lower hemisphere of the DOM. The PMTs are optimized to detect light in the
same wavelength regime as the IceCube PMTs, as water and ice have about the same
diffractive index [16].
The first building phase of the ARCA detector is planned to install one block of the
ARCA detector, consisting of 115 DUs. The construction phase of KM3NeT 2.0 is
planned to end with two building blocks of ARCA, consisting of 230 DUs [18]. With
the two building blocks, ARCA will have an instrumented volume of about one cubic
kilometer. The array design is shown in Figure 2.4. As of writing this thesis, 51 DUs
are deployed and operational. During the construction, the deployed part of ARCA
can already measure data. This raises the opportunity for first analyses, which can be
performed with a smaller detector volume than the planned one. These analyses refer
to a certain building phase by labeling the detector name ARCA with the number of
DUs in operation during that time period. The most relevant ARCA configuration for
this thesis is ARCA21, which is the ARCA detector with 21 DUs. The data obtained
from that detector configuration has a livetime of 287 days.

2.4.3 Event Signatures in Neutrino Telescopes

The predominant interaction between high-energy (Eν > 100 MeV) neutrinos and
nucleons of the detector material is deep-inelastic scattering. Consequently, two primary
event signatures are observed in the detector: cascades and tracks (cf. Figure 2.5).
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2.4 Neutrino Telescopes

Figure 2.4: The ARCA detector is located 100 km offshore from the coast of Sicily in
the Mediterranean Sea. After building phase 2.0, it is planned to consist of two building
blocks, including 230 DUs. The image shows the top view of the layout, where blue and
black dots indicate DUs of the planned cubic kilometer-sized detector array. The lines
represent the different sea cables deployed in the Sea. The image is taken from [17].

The production of track-like events is exclusively attributable to muon neutrinos
interacting via charged-current (CC) interaction with a nucleon N , exchanging a
W −-Boson [5]:

νµ + N → µ− + X (2.7)

νµ + N → µ+ + X (2.8)

In addition to the hadronic component X, a muon µ is created. The hadronic
particles created additionally can directly re-interact with the surrounding medium
and therefore produce a cascade of particles. High-energy muons can travel several
kilometers through ice or water. As they travel through the detector medium, they
lose energy and emit Cherenkov light. This is observed as a track signal in the detector
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2 High-Energy Neutrino Physics

Figure 2.5: These sketches show the IceCube detector, detecting different event signatures.
On the left is a neutrino interacting within the instrumented volume and creating a cascade
signature. On the right is a muon from a neutrino interaction in the ice crossing the
detector, which is seen as a track signature. All DOMs measuring a signal from the event
are shown in color. The colors represent the arrival time of the light in the PMTs: red
DOMs measure the signal earliest, followed by green, and then blue. Sketch taken from
[19].

as shown in Figure 2.5 on the right. Only the energy deposited by a muon passing
through the detector can be measured. Therefore, the neutrino energy is determined
on a statistical basis. Since muons can travel several kilometers through ice, the CC
interaction can occur either inside the detector, which is denoted as a starting track
event, or outside the instrumented detector volume. There, the neutrino interacts
with the surrounding medium, and only the muon passes through the detector as a
throughgoing track event. For that, the concept of an effective area becomes important.
It describes the hypothetical detector area that is able to detect every neutrino passing
through this area. The effective area is energy and directionally dependent. In the case
of track events, the effective area of a neutrino telescope can exceed the instrumented
volume because high-energy neutrinos can interact outside of this volume and still be
detected.
Cascade events can originate from a CC interaction between a nucleon and an electron
neutrino

νe + N → e− + X (2.9)
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νe + N → e+ + X (2.10)

In this case, an electron and a hadronic shower are produced. These particles interact
directly around the interaction point due to their small interaction length. The electron
produces an electromagnetic cascade that carries most of the neutrino’s energy, and
the hadronic cascade carries ∼ 20% of the remaining neutrino energy [5]. So the full
neutrino energy is deposited in the detector. Alternatively, the cascade event can
result from a neutral-current (NC) interaction involving a nucleon and a neutrino of
any flavor νl:

νl + N → νl + X (2.11)

This results from a Z0 boson-mediated interaction, whereby a neutrino leaves the
interaction vertex with reduced energy and a hadron shower. Most of the energy is
carried by the scattered neutrino, and only the hadronic cascade, which has about
30% of the energy, can be detected [20].
Both event types come with advantages and disadvantages for physical analyses.
Cascade events generally have good energy resolution, because most of the light is
emitted inside the detector. However, their spatial resolution is limited as they are
typically several meters long (∼ 10 m) [5]. So their size is smaller than the spacing of
optical modules in high-energy neutrino telescopes. Therefore, the energy resolution
is worse for track events, but the spatial resolution of a neutrino-induced muon is
less than one degree. At high energies, the directions of the neutrino and muon are
approximately the same. Thus, by reconstructing the muon track, the spatial location
of the neutrino’s origin can be determined within the detector resolution of the muon
direction.
In order to have an event sample with good spatial resolution, some analyses consider
only track events. The main challenge is distinguishing signal events from muons
resulting from the interaction of muon neutrinos and high-energy atmospheric muons
reaching the detector. This is why the direction of a track passing through the detector
is also important. Neutrino telescopes are located several kilometers deep in the sea
or ice to shield them from lower-energy atmospheric muons. However, high-energy
atmospheric muons can pass through several kilometers of the detector medium and
might be detected. The Earth can be used as a shield that high-energy atmospheric
muons can not pass through anymore. Therefore, upgoing muons with a zenith angle
z > 85◦ must result from neutrinos that have crossed the Earth [21].
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3 Analysis Method

Two analyses were performed within this thesis. The first is a diffuse galactic analysis
using the software framework NNMFit (NewNuMuFit) [22], and the second is a diffuse
all-sky analysis using the software framework pyFF (pyForwardFolding) [23]. Both
analyses are based on a forward-folding likelihood fit (cf. subsection 3.3.2). To perform
such a fit, flux models that model the physical neutrino flux (described in section 2.3)
must be implemented. Additionally, the weighted Monte Carlo events must be correctly
implemented, including an event selection, as discussed in the following section. The
following subsections will also discuss a method for muon background handling and
the treatment of systematic uncertainties.

3.1 Flux Models

Each neutrino flux component (from section 2.3) considered in the analysis needs to be
described by a physical model. The all-sky diffuse analysis considers the astrophysical
flux as the signal and the atmospheric flux as the background. In the diffuse galactic
analysis, all fluxes from the all-sky analysis are background, and the galactic neutrino
flux is the signal.
The atmospheric flux is modeled by the Matrix Cascade Equation (MCEq) code [24].
It models the conventional and prompt neutrino flux by solving cascade equations
for particle cascades in the atmosphere. With MCEq, splines are built containing a
primary cosmic ray flux model and a hadronic interaction model. There are two splines
built, one (wGaisser-H4a) with the cosmic ray model Gaisser-H4a and the interaction
model Sibyll2.3c. The other one (wGSF) uses the same interaction model, but the GSF
model for the primary cosmic ray flux. Within the analysis, it is interpolated between
those two model predictions by fitting an interpolation factor λint:

λintwGaisser-H4a + (1 − λint)wGSF (3.1)

Within this thesis, this factor is in all Asimov tests set to λint = 1. In addition to the
flux models, a factor

(
Eν

Emedian

)Γ
is implemented, accounting for uncertainties in the

cosmic ray energy spectrum. The spectral index of this factor is fitted in the analysis.
For all Asimov tests, the atmospheric spectral index is set to Γ = 0. The whole model
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3 Analysis Method

can then be scaled in the analysis by a flux normalization Φconv for the conventional
atmospheric and Φprompt for the prompt flux.
The energy spectrum of the diffuse astrophysical neutrino flux is described by a
single-power-law (SPL) spectrum for primary neutrino energy Eν :

Φastro(Eν) = Φastro
0 ×

(
Eν

Eref

)−γastro

(3.2)

A reference energy Eref is defined, so that the unit of the flux normalization is not
spectral index dependent. Within this thesis, a reference energy of Eref = 100 TeV is
used. The free fit parameters in that flux are the flux normalization Φastro

0 , with units
10−18 GeV−1 cm−2 s−1 sr−1, and the spectral index γastro.
For modeling the diffuse galactic neutrino flux, the CRINGE (Cosmic Ray-fitted
Intensities of Galactic Emission) model is used [25]. This model predicts a diffuse
galactic neutrino and gamma-ray flux, fitted to measured cosmic ray data.
The distribution of the diffuse galactic neutrino flux predicted with the CRINGE model
is shown in Figure 3.1 in galactic coordinates. The galactic centre is in the centre of
the Mollweide view. The model predicts the highest neutrino flux from that region. In
the analysis, it is implemented in equatorial coordinates, with one free normalization
Φgalactic parameter for scaling the neutrino flux of the model.

Galactic

Mollweide view

5.38947e-32 7e-29

Figure 3.1: Mollweide view of the CRINGE model for the galactic neutrino emission
in the galactic plane. The Plot shows the model in galactic coordinates; therefore, the
galactic center is at the center of the Mollweide sky map with the highest neutrino flux.
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3.2 Monte Carlo Simulations

3.2 Monte Carlo Simulations

Conclusions about the physical values of the incoming particle cannot be directly made
by detecting a neutrino event without accounting for the detector response. To achieve
this, a Monte Carlo (MC) simulation is used to model the expected events occurring in
the detector from specific physical values. The MC simulation produces neutrino and
atmospheric muon events, modelling their interaction in the detector. For an analysis,
datasets are required to determine how these simulated events would be seen in the
neutrino telescope. For that, a full chain is developed, processing the neutrino itself
until the reconstructed simulations, which are then used for the analysis.

3.2.1 Event Weighting

The simulations for neutrino telescopes start by simulating the neutrino or atmospheric
muon events. To account for a good statistical spectrum in the observation variables
(usually true MC Energy E and direction via two angles ϕ, θ), the events are not
simulated in a physical spectrum. Instead, a generation spectrum f(E, θ, ϕ)gen is
used. To still be able to account for a physical spectrum, each event is simulated
with a specific weight wevt = wgen · f(E, θ, ϕ)phys. Where f(E, θ, ϕ)phys is the physical
spectrum and wgen = 1

f(E,θ,ϕ)gen the simulation weight with the simulated spectrum
[26].

3.2.2 Simulated Dataset KM3NeT/ARCA

The KM3NeT/ARCA simulations start by simulating all-flavor high-energy neutrinos
with the gSeaGen software package [27]. Each event is simulated with an w2 =

ntot
f(E,θ,ϕ)gen weight, given in the units [GeVm2sr] [28]. The atmospheric muon events are
simulated by the MUPAGE software package, having a direct physical muon weight
wmuon. Once the particle has been simulated, its propagation through the Earth and
its interactions, as well as any possible secondary particles, are simulated.
In the next step, the light production and propagation through water, as well as the
detection on the PMTs, is simulated. Additionally, background light from K40 decays,
bioluminescence, and the PMT electronics are simulated.
In the end, the information about simulated hits on the PMTs has the same format as
in the data, and the reconstruction algorithm used for the data can also be applied.
For handling the track reconstruction, the JPP package [29] is used. So all events have
the information of the true simulated properties and the reconstructed properties.
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3.2.2.1 ARCA21 MC Simulations

The ARCA21 detector had a data-taking lifetime of 287.4 days. This lifetime is
separated into multiple runs, each having a duration of a couple of hours. The
simulation dataset (DST-format) for ARCA21 is taken from the mass procession of the
KM3NeT collaboration with version v9.1. The DST (Data Summary Tape) files are
summary files of the official KM3NeT MC production [30]. They include all simulated
and reconstructed variables, but no direct PMT hit information to speed up analyses.
This simulation is performed in a run-by-run approach. That means for each run during
the data acquisition phase, a simulated dataset is created, containing atmospheric
muons, all-flavor neutrinos, and pure noise simulations. For the simulations, the optical
backgrounds retrieved from real data, as well as PMT response and efficiency, are used
in each run [31].
Because of the run-by-run based approach, the weights per flux and detector lifetime
are calculated by wflux, ARCA21 = w2 ·Φflux/ntot ·tDAQ-livetime, where w2 is the generation
weight in the simulation. ntot is the total number of events simulated within the run,
and tDAQ-lifetime is the time of one run.

3.2.2.2 ARCA115 MC Simulations

The ARCA115 detector is currently still under construction and therefore has no
data-taking period yet. Within this thesis, the KM3NeT MC production for ARCA115
with version v6.0 is used. As this simulation at the moment can not be performed
run-based, the flux weights are calculated by wflux, ARCA115 = w2 ·Φflux/ntot per second.

3.2.3 Simulated Dataset IceCube

In contrast to the ARCA simulation, IceCube does not use a run-by-run approach for
simulating neutrino events. All flavor neutrino events are generated using the NuGeN
[32] software and are randomly distributed within an injected spectrum of energy and
direction. The propagation of the neutrinos through the Earth is modeled, as well
as the interaction of neutrinos in the ice or bedrock near the detector. In the next
step, the charged products (e.g., hadronic cascade or muons) of such an interaction are
modeled, including their propagation through the ice. When modeling the Cherenkov
photons, an ice model has to be considered. In the end, the DOM response is modeled,
and the simulated hits are saved as the experimental data.
Within this thesis, the IceCube MC simulation set containing the Northern track
selection (c.f. section 3.5.1.1) is used. The events contain some baseline weights
wbaseline with a certain weight per second. The weights for each flux model i per
second are calculated by multiplying by the flux wj = wbaseline · Φflux. To account for a
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detector lifetime, the weights have to be multiplied by the detector lifetime in seconds.
Within this thesis a current detector lifetime for IceCube of 11.67 years is assumed.

3.3 Statistical Method

All analyses performed within this thesis use the forward-folding method. This is based
on comparing the expected event distribution to the events observed in the detector
by a likelihood function. For that, the observed events are binned in the reconstructed
variables: (energy, zenith) for the diffuse all-sky analysis and (energy, declination,
right ascension) for the galactic plane analysis. This gives a histogram containing
the observed event numbers per bin. The expected event distribution is obtained by
re-weighting MC simulated events. The weights depend on the flux parameters, free
parameters in the description of the neutrino flux.

3.3.1 Analysis Histograms

Before performing the statistical analysis, the histograms containing the binned expect-
ation are calculated. So for every bin j, the bin expectation is µj . This is constructed
by summing up the event numbers per bin of each flux contribution. For example, for
the diffuse flux, the bin expectation is given by

µj(θ) = µconv.
j + µpompt.

j + µastro.
j + µmuons.

j (3.3)

It is dependent on the free flux parameters θ, as the bin expectation for each flux
component is the sum over the flux weights wi of the single events i:

µflux
j =

∑
i

wj
i (3.4)

The weight of a single event is then dependent on the simulated properties and the flux
assumptions. Whereas the flux assumptions depend on the free fit parameters/flux
parameters θ within the flux models.
The data events are also binned in a histogram in the reconstructed variables. The
number of data events per bin is denoted as dj .

3.3.2 Forward-Folding Method

This method is referred to as forward folding, because the flux parameters are processed
through the detector response before being compared to the data. Theoretical flux
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models are defined in terms of true physical quantities and do not account for detector
effects. To account for these effects, the Monte Carlo (MC) simulation provides true
physical values at generation and corresponding reconstructed values after detector
simulation and event reconstruction.
During the fitting process, the MC events are reweighted according to each trial set of
flux parameters, using their true physical quantities. The weighted events are then
binned according to their reconstructed quantities, whereby the detector response is
implicitly incorporated.
The comparison between expected and detected events is performed in terms of a
likelihood, comparing the binned number of expected events µj and the binned number
of data events dj over each bin j [33]:

L(µj(θ)) =
∏
j

Lj
bin(µj(θ); dj) (3.5)

This comparison in reconstructed space explicitly depends on the flux parameters
through event reweighting, which ensures that the detector response is consistently
incorporated into the model prediction throughout the fitting procedure.
In the following analyses, a Poisson likelihood and an effective likelihood (SAY likeli-
hood) [34] are used for the fit.

3.3.3 Effective and Poisson Likelihood

When performing a binned likelihood analysis, the number of events is assumed to
follow a Poissonian distribution. For one bin, the Poisson likelihood is given by [34]:

L(θ | d) = Poisson
(
µ(θ); d

)
= µ(θ)d e−µ(θ)

d! (3.6)

The MC simulation is a statistical process and can only simulate a finite number of
events. This can lead to statistical fluctuations in the number of MC events across the
observable bins. This can result in statistical fluctuations in the number of MC events
across the observable bins. Consequently, some bins may contain only a few MC events,
resulting in significant statistical uncertainties in the MC-based expectation values. In
the limit of large MC statistics, the uncertainty on the predicted expectation value
becomes negligible. However, for limited MC statistics, some bins may contain only
a small number of simulated events, leading to sizable uncertainties in the predicted
expectation values.
The standard Poisson likelihood assumes that the expectation value in each bin is
known exactly and accounts only for statistical fluctuations in the observed data. It
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therefore neglects the additional uncertainty arising from finite MC statistics. This
motivates the usage of the effective (SAY) likelihood. The SAY likelihood accounts for
uncertainties in the MC based expectation values per bin σ2

j = ∑
i(w

j
i )2, depending on

the weights of the single MC events, and is given by [34]:

Leff(θ | d) =
(

µ

σ2

)µ2

σ2 +1
Γ

(
d + µ2

σ2 + 1
)  d! Γ

(
µ2

σ2 + 1
) (

1 + µ
σ2

) d+ µ2

σ2 +1
−1

(3.7)

In this likelihood function
where Γ is the gamma function, and µ and σ2 depend on the model parameters θ via
the weight wj

i . In cases where the number of MC events per bin increases, the SAY
likelihood converges to the Poisson likelihood. Within this analysis, the SAY likelihood
is used for testing the MC statistics. For example, for varying the number of bins or
adding a binning axis.

3.3.4 Maximum Likelihood Method

When comparing the expected event distribution by the detected events, within the
forward-folding workflow, the free flux parameters are fitted. The best-fit values are
determined by minimizing the negative log-likelihood − log(L(µj(θ))) for the flux
parameters.
Additionally, the confidence intervals of the best-fit parameters are determined. This
is done by varying a set of fit parameters α on a fixed grid and minimizing the
log-likelihood for the other free fit parameters [35]. This is referred to as a profile
likelihood scan. Usually, it is done in one or two dimensions, so α consists of one or
two fit parameters. The ratio of the likelihood with all fit parameters free L(θ | d) and
with some fit parameters fixed α, L(θ, α | d) is defined as the test-statistic [36]:

TS = −2 · log
(L(θ, α | d)

L(θ | d)

)
= −2 · ∆log(L) (3.8)

According to Wilk’s Theorem [37], the test statistic follows a χ2 distribution with
n degrees of freedom, where n is the number of varied fit parameters in the profile
likelihood. The test statistic can be translated into a p-value, giving an n-dimensional
confidence interval [a, b] (for n > 1 often referred to as a confidence contour). This
confidence interval gives the probability 1 − γ (confidence level) of containing the true
parameter α. The values for the test statistic in one and two dimensions referring to
a certain confidence interval are given in Table 3.1 [35]. So an interesting point for
one-dimensional likelihood scans is the 1σ confidence interval, given by −2·∆log(L) = 1.
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Table 3.1: Values of the test statistic for different confidence levels according to Wilk’s
theorem for one and two-dimensional likelihood scans [35].

Confidence Level (1 − γ) n=1 n=2
68.27% (1σ) 1.00 2.30
90% 2.71 4.61
95.45% (2σ) 4.00 6.18
99% 6.63 9.21

3.3.5 Asimov Dataset

It is necessary to test the sensitivity of the analysis before actually performing the
analysis. This is done by using an artificial data set, referred to as the Asimov data set,
instead of the measured data [36]. The Asimov dataset is constructed by assuming true
parameter values for θ, in the MC dataset. By fixing these values, the event numbers
per bin in the Asimov dataset are calculated, adding up all events from all flux models.
From that, the data histograms are created. The Asimov event numbers per bin can
have non-integer values, which is not a problem in the likelihood calculations. The
constructed Asimov dataset does not contain statistical fluctuations and is ideal for
performing sensitivity studies for new analyses.

3.3.6 Combining Datasets of Different Experiments

For combining the datasets of different experiments, here ARCA and IceCube, the
datasets have to be statistically independent [36]. For each dataset i, an individual
likelihood functions Li(θi, ηi | d) is defined, where θi denotes the parameters common
in all datasets (e.g., flux model parameters), and ηi refers to the dataset-specific
nuisance parameters.
The full likelihood function is then given by the product over all likelihood functions
of the different datasets [36]:

L(θ | d) =
∏

i

Li(θi | d) (3.9)

The maximum-likelihood method is then applied as in the single-detector case by
minimizing the combined negative log-likelihood. Parameters shared between datasets,
in particular the physics parameters of the flux model, can be more tightly constrained
through the joint fit. Dataset-specific nuisance parameters can be included independ-
ently for each detector; however, unless they are correlated or constrained by common
priors, their constraints are not significantly improved by the combination.
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With this approach, the analysis binning for the different detectors can differ. The
binning enters only when constructing the likelihood function. Once the likelihoods
are defined, their combination and subsequent minimization are independent of the
chosen binning. This method is used within this thesis to combine the IceCube and
ARCA detectors in a galactic analysis. Both software used within this thesis, NNMFit
and PyFF, can handle joint detector fits.

3.4 Software for Analyses

As mentioned before, for the different analyses performed within this thesis, differ-
ent software frameworks are used. The diffuse galactic analysis uses the NNMFit
(NewNuMuFit) software framework, and the diffuse all-sky analysis uses the pyFF
(pyForwardFolding) software framework.
NNMFit is an established tool for diffuse analyses in the IceCube collaboration. It
efficiently handles the forward-folding likelihood fit with a back-end on the aesara
package [38]. Diffuse galactic analyses with IceCube could already be performed within
this framework [39]. This thesis aimes to process KM3NeT simulated events for galactic
analyses and perform sensitivity studies for joint IceCube-ARCA galactic analyses
The pyFF framework [23] is the modernist version of NNMFit. Its back end is the JAX
package [40], which allows for the efficient handling of the forward-folding likelihood
fit. It is important to note that pyFF is an open-source framework accessible to all
collaborations on GitHub. It has not been used in any diffuse analyses before. This
thesis tests it by performing a diffuse all-sky analysis with ARCA. The diffuse all-sky
analysis also serves as a proof of concept for using the framework for the ARCA
detector.
One challenge of using one framework for different detector datasets is that all MC
simulations must be implemented according to one common weighting definition. As
both frameworks, NNMFit and PyFF, were originally developed for analysing IceCube
data, both use the IceCube definition of a baseline weight wbaseline. The baseline weights
correct for the simulation spectrum, and therefore follow a flat spectrum. From these
baseline weights, all j flux models with flux Φflux are calculated: wj = wbaseline · Φflux.
The number of events per bin and per second is determined by summing all the
flux weights in bin i: µi = ∑N

j wij . The simulated detector lifetime can then be
scaled up or down, as the number of events per bin per second is multiplied by the
simulated detector livetime tdetector-lifetime. The weights in NNMFit are given in units
of GeVcm2sr.
In order to achieve the same weighting definition for the ARCA21 detector, one has to
divide the flux weights wflux, ARCA21 by the detector lifetime to have the weights per
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second. Multiplying the flux weights with a factor 104 ensures the same unit as used
by NNMFit: wARCA21

baseline = 104 · wflux, ARCA21/tdetector-livetime.
For the ARCA115 detector, the baseline weight is computed by wARCA115

baseline = 104 ·
wflux, ARCA21 as the simulation is not performed on a run-by-run basis.
The correct implementation of the binning for ARCA can be validated by computing the
event numbers, assuming a specific flux model with NNMFit. They can be compared
to the event numbers computed with a KM3NeT framework.

3.5 Methods for Diffuse Analysis

As explained in subsection 3.3.2, both analyses performed within this thesis are based on
the forward-folding method. In general, the handling of a diffuse and galactic analysis
is quite similar. Differences between both analyses are explained in subsection 3.5.4.
The MC events and also the data events later have to be preprocessed with different
cuts, as explained in the next subsections. Another important step is handling the
background and systematic uncertainties of the detector. If all these parameters are
set, sensitivity studies, fitting the Asimov dataset, are performed. For determining
the statistical significance of such fits, likelihood scans are performed as described in
subsection 3.3.4. In an analysis, the last step would be to fit the data events to the
modeled flux. This, however, will not be covered within this thesis.

3.5.1 Event Selection

Not all events measured in the detector are suitable to be used in an analysis. Within
this analysis, only up-going track events should be used as they have a good pointing
resolution. So the events have to fulfill criteria on the track quality, e.g., a certain
number of DOMS are hit, or the likelihood for track reconstruction has to be high
enough to qualify the events as a track. It also has to be considered that the direction of
the track passing the detector can be mis-reconstructed. So there are still atmospheric
muons contained within an up-going neutrino sample.

3.5.1.1 Event Selection - IceCube

IceCube already has a standardized up-going track selection. These tracks are referred
to as Northern Tracks [41], as up-going events for IceCube come from the North.
This Northern track sample was already used in various analyses [39, 19, 42]. The
events go through a chain of various cuts and reconstruction algorithms. In a final
level, the high-quality tracks with a zenith angle θ > 85◦ are processed by a Boosted
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Decision Tree (BDT) to distinguish between mis-reconstructed atmospheric muons
and the signal. Each event is therefore labeled with a BDT score how likely it is to be
a neutrino. On that BDT score, the events are cut such that a data sample with a
neutrino purity of 99.7% remains [41].

3.5.1.2 Event Selection - ARCA

An event selection similar to IceCube’s Northern tracks is intended to be used for
the ARCA detector. So far, KM3NeT does not have a standard event selection for
up-going events.

ARCA21

For ARCA21 diffuse analyses, a BDT that selects high-quality tracks and rejects
atmospheric muons has been trained [43]. The BDT score ranges from −1 to 1, where
high BDT scores represent a high probability to be a neutrino track (cf. Figure 3.2).
The BDT cut has to be optimized for the specific analysis.

Figure 3.2: Plot created by [43], showing the BDT score distribution of the MC simulated
atmospheric muons and neutrinos and data for ARCA21. The number of atmospheric
muons (blue) decreases for higher BDT values, whereas the number of neutrinos (orange
and green) increases with higher BDT values.

Before applying a BDT cut, some Pre-Cuts are applied. The pre-cuts are Euncorrected
reco >

0 (uncorrected Energy), likelihood > 40 (track-hypothesis likelihood), dirz > −0.1
(z-axis direction, referring to cos(ϕ)), ltrack > 100 m (track length), log(β0) < −1.5
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(angular error). The pre-cuts reject events that do not have physical values in their
reconstructed variables. Additionally, they are first quality cuts for well-reconstructed
events, as well as for selecting only up-going events.
From the previous all-sky analysis in KM3NeT there are also some recommendations
for first level cuts additionally to cutting data at a specific BDT-score: likelihood > 50
(track-hypothesis likelihood), Tracklength_IT2 > 100 m (distance of the vertex and
last emitted photon), Tracklength_IT3 > 100 m (distance of first emitted photon and
last), NDOMS >= 5 (number of triggered DOMS), log(Ereco) > 2.7 (reconstructed
Energy), and θ > 85◦ (zenith angle). They can be optimized within the individual
analysis, but within this thesis, they are just applied as suggested. Still, the BDT-cut
has to be determined for the specific analysis. This is discussed in section 4.2 and
section 5.2.

ARCA115

The ARCA115 event selection applies first some Preselection cuts to select only
physical values of the reconstructed variables and to reject the majority of atmospheric
muons. Cuts applied to guarantee physical values in the reconstruction variables are
likelihood > 0, tracklength > 0, and β0 > 0. To account only for up-going events,
the preselection dirz > 0 is applied. An energy cut at Eν > 300 GeV is applied to
account only for high-energetic neutrino events. Additionally, preselection quality cuts
are applied, NDOMS >= 2, and the distance between the Cherenkov hits closest and
furthest from the interaction vertex has to be larger than 200 m.
After preselection, a BDT cut can be applied. For that, a BDT is trained to select
well-reconstructed tracks [44]. The muon track reconstruction quality should have an
error of less than one degree. The higher the BDT cut, the more atmospheric muons
are rejected by selecting only tracks of such high quality and only up-going events. The
BDT score distribution for the BDT score 0.63 < BDT < 1 is shown in Figure 3.3.
The selection of a BDT cut is again chosen for the individual analysis. The BDT cut
selection for the ARCA115 event selection is discussed in section 4.2.

3.5.2 Atmospheric Muon Handling

Even after applying cuts, there are mis-reconstructed atmospheric muons left within
the dataset. To handle the muon contamination, they are fitted as a flux component
within the analysis.
A simple solution is fitting a normalization to the simulated atmospheric muon events.
The main problem with that method is that after the event selection, there is only a
small number of simulated atmospheric muons left. An example is shown in Figure 3.4,
where the muon histogram for ARCA21 after the event selection is shown. The MC
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Figure 3.3: BDT score distribution of the ARCA115 MC simulation, weighted for different
flux models. This plot shows only the BDT distribution for BDT > 0.63, referring to a
purity of 80%.

statistic per bin is therefore not sufficient to account for the muon distribution per
bin. This is shown in the plot, as bins with a high muon event number are next to
a bin without any muon contribution. In reality, one would expect a rather smooth
transition between the single bins.
The simplest approach to accounting for atmospheric muons in the reconstructed data
is to add the muon histogram to the overall expected events. More sophisticated
methods of building a muon template are also available. One commonly used approach
is to create templates from simulated muon events using kernel density estimation
(KDE). In this method, each weighted Monte Carlo (MC) event is treated as a smooth
kernel, i.e., a localized probability density function (PDF), centered at the event’s
position in observable space. This results in a continuous estimate of the event density.
The expected event counts for the template are obtained by integrating this density
over the volume of each analysis bin. Each MC event, therefore, contributes fractionally
to multiple bins, according to how much its kernel overlaps with the bin boundaries.
In this procedure, the total number of events in the histogram must be conserved.
One method that is planned to be explored in the future involves building atmospheric
muon templates using normalizing flows. These are generative models based on neural
networks that learn a fully normalized probability density function in a potentially high-
dimensional observable space. This space may include zenith, energy, and BDT score,
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Figure 3.4: This plot shows the atmospheric muon distribution over a zenith and energy
binning for the ARCA21 detector after an event selection. The colours account for the
weighted number of atmospheric muons contained in the simulation.

for example. The resulting density is integrated over the analysis bin to obtain the
expected number of events, in a process similar to that used for KDE-based templates.
The advantage of this method is that it can capture more complex correlations between
observables. These methods can be used to create a smoother muon template.

3.5.3 Detector Systematics

There are various detector systematics that can be considered. Within this thesis, only
detector-related systematic uncertainties for the ARCA detector were implemented
in pyFF. KM3NeT provides Monte Carlo simulations in which selected systematic
parameters are varied. Currently, datasets with modified water absorption lengths and
modified PMT quantum efficiencies are available.
The absorption length is the mean distance that a Cherenkov photon travels in
seawater before it is absorbed. An increase in the absorption length leads to a higher
photon survival probability, meaning that more photons reach the optical modules.
Consequently, the detected light yield and therefore the detection efficiency increase.
This effect becomes more pronounced the greater the distance between the photon
emission point and the PMTs.
PMT quantum efficiency describes the probability that a photon incident on the PMT
photocathode will produce a photoelectron. An increase in quantum efficiency leads
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directly to a higher number of detected photoelectrons for a given number of incident
photons. The effects of the absorption length and quantum efficiency are statistically
correlated because both parameters primarily influence the total light yield detected.
This thesis includes both systematic uncertainty parameters within the ARCA analysis.
To achieve this, analysis histograms with varied systematic parameters can be calculated
using MC simulation datasets with changed uncertainty parameters. By injecting flux
parameters, an Asimov dataset is obtained that determines the number of events per
bin and per second. One disadvantage of this method is that the flux parameters have
to be fixed before knowing the best-fit parameters.
The event numbers per bin for every MC dataset can be plotted depending on the
variation of the systematic parameter, as shown in Figure 3.5. This is done for every
analysis bin. The plot for one example bin shows the varied quantum efficiency. 100%
quantum efficiency refers to the MC dataset without a systematic parameter variation.
It is shown that the number of neutrino events decreases with lower PMT quantum
efficiency. This is expected, as the neutrinos can be better detected when the signal
strength increases. Additionally, the number of neutrino events increases linearly with
the quantum efficiency. Therefore, a linear fit is performed, also accounting for the
uncertainties of the event numbers per bin. With that, the gradient ∇ in every analysis
bin is determined.
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Figure 3.5: Example fit of the varied quantum efficiency of ARCA21 in one bin. The
event numbers per bin and second are plotted for each simulation of the varied quantum
efficiency (QE90, QE100, QE110), where the baseline MC simulation QE100 is subtracted.
The linear fit (blue line) is forced to go through QE100 and accounts for uncertainties in
the histogram (red error bars).
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3 Analysis Method

These gradients can be used to account for systematic uncertainties in the analysis
histogram µ0. To the analysis histogram, a factor is added, consisting of a new analysis
fit parameter α, for every uncertainty parameter, and the gradient:

µ = µ0 + (α · ∇ + y) (3.10)

With that, the analysis histogram including systematics µ is obtained. Additionally, it
can account for the y-intercept y in the gradient fit, but within this analysis, these
values are set to y = 0. This is chosen, as the analysis fit should recover the MC
dataset without systematics, when injecting α = 0.

3.5.4 Differences All-Sky Diffuse and Diffuse Galactic Analysis

The general analysis method is the same for an all-sky and galactic analysis. However,
they differ in the number of modeled fluxes used. In the galactic analysis, the galactic
flux model is added to the analysis, and the diffuse astrophysical flux becomes a
background. The diffuse astrophysical flux is approximately isotropic over the sky.
The only angular dependence is in the zenith angle of the incoming background. That
is why the all-sky analysis can be performed in local coordinates, and the events are
binned in energy and zenith. To be able to identify astronomical objects, like the
galactic plane, the origin with respect to the sky of the incoming neutrinos becomes
important. Consequently, the galactic analysis needs to be performed in equatorial
coordinates. Thus, the galactic analysis uses a three-dimensional binning: energy,
declination, and right ascension.
As the right ascension is the most sensitive angle distribution for the galactic plane,
due to the characteristic shape, a fine binning is important on that axis. In former
IceCube Northern track analyses 180 right ascension bins were used [41]. Introducing
a further binning axis gives rise to the problem of decreasing MC statistics per bin.
To take the MC statistic into account for an analysis, the SAY likelihood is used (c.f.
subsection 3.3.3). With that, the performance of different bin numbers in the analysis
can be compared.
A method to not decrease the MC statistic by introducing a third binning axis in the
galactic analysis is to use oversampling. This is only needed for the galactic fits and is
explained in the next subsection.

3.5.5 Coordinate Systems

Before discussing the topic of oversampling, it is important to explain the fundamental
concept of how the coordinate systems around the neutrino telescopes are chosen.
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3.5 Methods for Diffuse Analysis

Within this thesis, two neutrino detectors are considered: IceCube, located at the
South Pole, and ARCA, located in the Mediterranean Sea. Usually, the direction of
neutrinos measured within the detector is described in the local coordinate system
of the detector, centered on the detector. For that, azimuth ranging from 0 to 2π,
and zenith θ ranging from 0 to π are used. The zenith measures the angular distance
perpendicular to the vertical axis going through the center of Earth and the center of
the local coordinate system. So the horizon is located at θ = π/2. Also, the time of
the incoming event is known. This becomes important as the local coordinate system
is rotating with the Earth.
To associate the direction of neutrino events with the location of astronomical objects,
the equatorial coordinate system is used. This coordinate system is based on the
center of the Earth. The declination δ describes the angular distance perpendicular to
Earth’s equator, ranging from −π/2 to π/2 [45]. So the equator is located at δ = 0
and the South pole at δ = −π/2. The right ascension (RA) α measures the angular
distance in the eastern direction on the equator, ranging from 0 to 2π. The equatorial
coordinate system does not rotate with the Earth and is fixed to the mean equinox of
a standard epoch, usually J2000. As the Earth’s axis undergoes small motions due to
precession and nutation, this is not an exact definition; however, for the lifetime of a
neutrino telescope, these effects are negligible.
The coordinate transfer for a neutrino event from (zenith, azimuth) to (declination,
RA) is time independent for the declination angle. Neutrino events coming from a
certain direction in the local coordinate system always have the same declination angle,
independent of the Earth’s rotation. To get the right ascension angle, the arrival time
of the neutrino is also important. Due to Earth’s rotation, events coming from the
same direction in local coordinates at different times can have different right ascension
angles. The events are then spread over a band parallel to the equator with the same
declination angle. This concept is important when discussing oversampling for the
KM3NeT/ARCA and IceCube detectors.

3.5.6 Oversampling

The number of events simulated in MC is limited. Thus, only a small number of
events in the simulation are simulated, arriving from the direction of the galactic plane.
The simulated events have an arbitrary time stamp and a specific direction in local
coordinates. To identify whether the event comes from the galactic plane, equatorial
coordinates are used. As explained in subsection 3.5.5, the coordinate transfer for the
declination is time independent and for the right ascension is time dependent. To
generate more MC events from the galactic plane, one can use different time stamps
for the same event in local coordinates and oversample over the right ascension axis.
An example of that is shown in Figure 3.6, where for one MC event, different arrival
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3 Analysis Method

times for a detector located approximately at the ARCA position are assumed. The
event arrival direction is then transferred from local to global coordinates.

Figure 3.6: Mollweide projection of the Earth, showing oversampling of one MC event in
right ascension by assuming different arrival times. The declination direction is unaffected.

Therefore, only the right ascension axis can be oversampled. While their right ascension
is randomised, the declination and all other properties of the MC events remain
unchanged. This approach increases the MC statistic per bin in the galactic analysis.
However, the oversampled MC events are not statistically independent. Consequently,
any statistical uncertainties or potential biases present in the original Monte Carlo
sample are propagated across all right ascension bins. In particular, fluctuations or
mismodelling in the Monte Carlo simulation can affect multiple bins simultaneously,
leading to correlated uncertainties that are not accounted for in the analysis.
There are methods to mitigate these limitations. One approach is binning optimization
using end-to-end optimized summary statistics, as described in [46], which allows for a
greater number of observables to be included. In this framework, a neural network
is trained to compress multiple event observables into a low-dimensional summary
statistic optimized for the relevant physics parameters. This enables a greater number
of observables to be included in the analysis while ensuring there is a sufficient number
of MC events per bin. This allows adding the right ascension axis to the observables
without oversampling.
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4 Results Diffuse Galactic Analysis

This chapter presents the current results of the sensitivity studies for the diffuse
galactic analysis, with a joint IceCube and ARCA fit. The goal of the diffuse galactic
analysis is to determine sensitivities for a combined IceCube and ARCA analysis. It
currently includes only the neutrino MC dataset from both detectors, and within this
thesis, only Asimov fits were performed. The sensitivity studies for the galactic fit
within this thesis do not include a muon background or systematic uncertainties. The
analysis was performed with the ARCA21 MC dataset and the ARCA115 MC dataset
described in section 3.2. These were implemented into the NNMFit framework, which
was used for this analysis.

4.1 Proof of Concept in NNMFit

It is particularly important to check that the weighting is correctly applied to the
newly implemented ARCA dataset. To do this, event numbers are calculated using a
certain flux assumption and compared to previous analyses in KM3NeT.
A KM3NeT analysis using the same ARCA21 MC dataset is the galactic ridge analysis
from 2024 [43]. For that, the event numbers for 287 days of detector livetime are
calculated. To these events, the event pre-cuts and up-going selection is applied, but
no BDT cut. Within that work, the cosmic neutrino flux is assumed to be a power law
with a spectral index γ = 2 and a normalization of Φastro = 1.2. So from the cosmic flux,
24.8 neutrino events are expected for ARCA21. For the atmospheric background flux
estimation, the Honda flux model for conventional atmospheric neutrinos and Enberg
model for prompt neutrinos were used. These predict 2504 conventional atmospheric
and 17 prompt neutrino events (cf. Table 4.1).
The cosmic neutrino event number is exactly reproduced in NNMFit with the same
event selection and flux assumption. For the atmospheric modeling, instead of Honda,
MCEq models are used (cf. section 3.1). Small deviations are expected. The MCEq
model predicts 2442.5 atmospheric neutrino events.
For the ARCA115 MC dataset, the same event number checks are performed. For
that, the event numbers obtained in [44] are used. As the ARCA115 detector has no
live time yet, the live time can be set arbitrarily. For ARCA115, also a power-law
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4 Results Diffuse Galactic Analysis

Table 4.1: Neutrino event numbers after pre-selection cuts for ARCA21 (287 days
livetime) and ARCA115 (1 year livetime), assuming an E−2 cosmic spectrum and using
MCEq and Honda for atmospheric modelling.

number of events
ARCA21, 287 days ARCA115, 1 year

atm. neutrinos 2, 521 (Honda) 33, 740 (Honda)
2, 442 (MCEq) 32, 339 (MCEq)

cosmic neutrinos 24.8 85
atm. muons 2.3 · 105 7.8 · 105

spectrum with a spectral index γ = 2 and Φastro = 1.2 is assumed, giving 85 cosmic
neutrinos per year. This is recovered in the NNMFit weighting. The atmospheric
modeling with the Honda model gives around 33, 740 atmospheric neutrinos, which is
approximately the same for the MCEq modeling, giving 32, 339 atmospheric neutrinos
(cf. Table 4.1).
So the weighting for ARCA21 and ARCA115 is correctly implemented. With that,
also the galactic component is implemented, accounting for the galactic neutrino flux
modeled by the CRINGE model (cf. section 2.3).

4.2 BDT Cut Optimization for Diffuse Galactic Analysis

For the IceCube experiment, the northern track selection with a purity in the neutrino
sample of 99.7% is used, so no further optimisations are required. For ARCA, a simple
initial approach used in the galactic sensitivity study is to obtain a sample with > 97%
neutrino purity. Another criterion for selecting the BDT cut is to ensure that no
high-energy atmospheric muons remain in the event sample. However, the BDT cut
must be chosen so that it does not result in too much sensitivity being lost from
the event sample. This is why, in the first step, the relationship between sensitivity,
referring to the signal strength (number of neutrino events remaining in the dataset),
and purity, referring to the effectiveness of the BDT cut (muon contamination in the
dataset), is investigated. Then, the energy distribution of the remaining atmospheric
muons is examined.
The BDT distribution of the different flux components for ARCA21 is shown in
Figure 3.2. Using this BDT, the purity and efficiency of a BDT cut are studied for
ARCA21, as shown in Figure 4.1. Given the requirement for a neutrino sample with
a purity greater than 97%, the efficiency for the number of galactic events remains
constant between 97% and 98% purity. This is why a cut at 98% purity (indicated
by the red dashed line) is chosen. Checking the energy distribution of the remaining
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4.2 BDT Cut Optimization for Diffuse Galactic Analysis

atmospheric muons (cf. Figure 4.2) shows that only two simulated muons remain
in the energy range E > 103 GeV. Therefore, the BDT cut of BDT > 0.67, which
gives a purity of 98%, is chosen for the galactic analysis. The MC dataset after event
selection in ARCA21 therefore contains 19 cosmic neutrinos, 1.4 galactic neutrinos,
827 atmospheric neutrinos, and 13 atmospheric muons within a detector livetime of
287 days.

Figure 4.1: This plot shows the relation between purity and efficiency, for choosing
different BDT cuts in ARCA21. The different colors indicate the different flux components,
where the orange line for the atmospheric neutrino events is behind the red line for all
neutrino events. The red dashed line refers to a purity of 98% in the neutrino sample,
where a BDT cut of BDT > 0.67 is applied.

For the ARCA115 event selection, a specifically trained BDT is used [44]. By iterating
over different BDT scores and calculating the purity and efficiency of the neutrino
sample, it becomes noticeable that the atmospheric muons are not distributed smoothly
over the BDT score. Instead, cutting at a higher BDT score suddenly cuts away several
events. This is shown in the purity and efficiency distribution for ARCA115 Figure 4.3,
where the distribution is not smooth. The red dashed line indicates the 98% purity
mark at a BDT score of BDT = 0.95, which has the same purity as the ARCA21
dataset. The energy distribution of the atmospheric muons remaining after this BDT
cut shows that they all have an energy greater than E > 103 GeV (cf. Figure 4.4).
Cutting at a higher BDT would remove all muons in the dataset. With that, describing
the atmospheric muon background in MC would become difficult. Therefore, it is
preferable to retain this muon contamination in the ARCA115 MC dataset.
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4 Results Diffuse Galactic Analysis

Figure 4.2: Energy distribution of events surviving the ARCA21 BDT cut, giving a
purity of 98% (BDT cut at 0.67). Within the event selection remain about 19 cosmic
neutrino events, 1 galactic event, 827 atmospheric events, and 13 atmospheric muon
events.

Figure 4.3: This plot shows the relation between purity and efficiency, for choosing differ-
ent BDT cuts in ARCA115. The different colours indicate the different flux components.
The red dashed line refers to a purity of 98% in the neutrino sample, where a BDT cut of
BDT > 0.95 is applied.
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After performing the event selection for 1 year of livetime in ARAC115, there are 227
astrophysical, 21 cosmic, 24, 782 atmospheric neutrinos, and 23 atmospheric muons
left in the MC dataset.

Figure 4.4: Energy distribution of events surviving the ARCA115 BDT cut, giving a
purity of 98% (BDT cut at 0.95). The concrete event numbers are shown in the legend
for each flux component.
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4.3 Likelihood Scans using Poisson Likelihood on the Galactic
Normalization

After fixing the event selection, first, LLH-scans for a sensitivity study in MC are
performed. The scans are used to compare the performance of the different detectors.
There is no atmospheric muon handling or systematic treatment included yet. After
performing this sensitivity study, it was noticed that there is a factor of two missing
for the scans shown in this section. However, within this thesis, only statements for
comparing the detectors are made. The absolute significance of the analysis, which is
not correctly implemented, will not be regarded.
The most interesting parameter for a galactic analysis is the galactic normalization.
For the Asimiov dataset, the injected normalization of the CRINGE template is
set to Φgalactic

0 = 1. This parameter of interest is then scanned to determine the
likelihood values. The other free fit parameters in the Asimov dataset are set to
Φastro

0 = 1.77, γastro = 2.44 for the astrophysical flux, and Φconv = 1.0, Φprompt = 0.0
for the atmospheric flux.
The scans in this section are performed with a Poisson likelihood, using the three-
dimensional binning (Energy, Dec, R.A.) = (50, 33, 180). The energy binning is in the
range of 102 GeV < Eν < 107 GeV, and the right ascension binning 0 < R.A. < 2 · π.
The declination binning range differs for KM3NeT −1 < sin(δ) < 0.85, and for IceCube
−1 < cos(δ) < 0.0872.

4.3.1 Joint Likelihood Scans for IceCube and ARCA21

The first sensitivity study addresses the current status of the ARCA detector. As
previously mentioned, the location of the ARCA detector is better situated for galactic
analysis for up-going events. However, the volume of the ARCA21 detector is currently
approximately ten times smaller than that of the IceCube detector. One question is
how sensitive the galactic flux of the ARCA21 detector already is compared to that of
the IceCube detector. As a preliminary test, a likelihood scan was performed using
the current detector lifetimes: IceCube with 11.67 years, and ARCA21 with 287 days,
shown in Figure 4.5.
The sensitivity of IceCube for upgoing events is much higher than for the current
ARCA building phase. The 1σ interval for IceCube is determined to be approximately
∆ΦIC,12.67

galactic ≈ 1.5. The 1σ intervall of ARCA21 can only be estimated to be 30
times wider than the one for IceCube, as it is not contained within the scanned
region. However, it is significantly larger than the IceCube interval. Therefore,
IceCube currently dominates sensitivity on the galactic plane. This is demonstrated
in Figure 4.6, which shows a combined fit of ARCA21 and IceCube with current
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Figure 4.5: Poisson likelihood scan over the galactic normalization in an Asimov test
for ARCA21 and IceCube. The current livetimes of IceCube, 11.67 years, and ARCA21,
287 days, are used. The injected value for the normalization of the galactic model is
Φgalactic = 1. The dashed orange line indicates the 1σ confidence interval for IceCube.
The 1σ intervall for ARCA21 is not within the scanned region.

lifetimes. The figure shows that ARCA21 improves the significance of IceCube to the
galactic plane by only a small amount. Therefore, the current ARCA21 detector has a
negligible impact on joint detector studies of the galactic plane.
The actual sensitivity of ARCA21 in comparison to IceCube, independent of the
livetime, is compared in Figure 4.7. For that, the livetime of both detectors is set to
the same value: 12.67 years. The 1σ confidence interval of IceCube is still smaller than
that of ARCA21, but the detectors become more compatible. Despite being around
ten times smaller, the ARCA21 detector is almost as sensitive to the galactic plane as
the IceCube detector.

4.3.2 Joint Likelihood Scans for IceCube and ARCA115

As the ARCA detector is still under construction, a more realistic comparison can
be made between the IceCube detector and the projected first building block of the
ARCA115 detector. It is also interesting to consider how sensitivity would improve
with a future combination of ARCA115 and IceCube. It is assumed that ARCA115
could be built by around 2028. As shown in Figure 4.8, if ARCA115 is operational by
2028, it will have the same sensitivity to the galactic plane as IceCube after five years
of operation. IceCube at that time will have a livetime of a bit more than 20 years.
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Figure 4.6: Poisson likelihood scan over the galactic normalization in an Asimov test for
IceCube and joint IceCube + ARCA21. The current detector livetimes of 11.67 years for
ICeCube and 287 days for ARCA21 are used. The injected value for the normalization
of the galactic model is Φgalactic = 1. The dashed orange and blue lines indicate the 1σ
confidence intervals for IceCube and IceCube + ARCA21.

Also, the effect of a combined fit of IceCube and ARCA115 is shown. It improves the
width of the 1σ confidence interval of the galactic normalization by about 25%. This
is expected, as both detectors have the same sensitivities on the galactic plane in that
study.

4.4 Likelihood Scans using SAY on the Galactic Normalization

The SAY likelihood accounts for uncertainties due to low MC statistics, as discussed
in subsection 3.3.3. To increase the MC statistics, the oversampling method (cf.
subsection 3.5.6) is used in the right ascension axis. The right ascension events
are oversampled three times. The effect of performing a SAY fit with and without
oversampling is shown in Figure 4.9 for IceCube, using the same binning as before:
(Energy, Dec, R.A.) = (50, 33, 180). The injected value for the galactic normalization
in the Asimov dataset is Φgalactic = 1, as shown in the Poisson likelihood scan. The
scan curve of the SAY likelihood scan without oversampling has its minimum at
ΦSAY, no overs.

galactic ≈ 0.75. So it does not recover the injected value. This can occur when
the SAY likelihood is used with insufficient MC statistics per bin. It is shown that by
increasing the MC statistics per bin by oversampling, the bias in the likelihood scan is
smaller. The width of the one sigma interval of the scan using oversampling compared
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Figure 4.7: Poissonian likelihood scan over the galactic normalization in an Asimov test
for ARCA21 and IceCube. The same livetime for both detectors, 11.67 years, is used.
The injected value for the normalization of the galactic model is Φgalactic = 1. The dashed
orange and blue lines indicate the 1σ confidence intervals for IceCube and ARCA21.

to the scan using the Poisson becomes larger, as the SAY also accounts for larger
uncertainties due to the MC statistic. Another feature of the SAY likelihood is seen,
that the likelihood scan with SAY and no oversampling has a smaller 1σ confidence
interval than the other two scans shown in the plot.
Using the SAY likelihood for the ARCA21 galactic fits to account for MC statistics
shows that the previous binning had too many bins. The injected galactic normalisation
value cannot be recovered, even with oversampling. This is because the IceCube MC
dataset contains ∼ 13 · 106 MC events. In comparison to that, the ARCA21 MC
dataset contains ∼ 3 · 106 MC events, which is about a quarter of the simulated
events in IceCube. So a reasonable approach for ARCA21 is to use only a quarter
of the bins, as in the IceCube analysis. For that, the number of energy bins and
the number of declination bins are halved. However, the right ascension bins can be
oversampled, so a reduction on this binning axis is not necessary. The binning used
for the galactic normalization likelihood scan with ARCA21 using SAY likelihood is
then (Energy, Dec, R.A.) = (25, 16, 180).
The likelihood scans for the ARCA21 detector are shown in Figure 4.10. To scale them
up, the likelihood scans are performed using the same livetime as for the IceCube
detector, 11.67 years. The plot shows the difference between using oversampling and
no oversampling when using the SAY likelihood for ARCA21. As expected, the Poisson
likelihood scan is less sensitive to the galactic flux with reduced binning. The behaviour
of the SY likelihood compared to Poisson is similar to the IceCube scan, where the
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Figure 4.8: Poissonian likelihood scan over the galactic normalization in an Asimov
test for ARCA115 and IceCube. For ARCA115, a livetime of 5 years, and for IceCube, a
livetime of 20 years is used. The injected value for the normalization of the galactic model
is Φgalactic = 1. The dashed orange and blue lines indicate the 1σ confidence intervals
for IceCube and ARCA21. The green likelihood curve shows the joint fit of IceCube and
ARCA115.

injected galactic normalisation can only be recovered by including oversampling. The
SAY one sigma interval is smaller for the Poisson scan compared to the SAY scan with
oversampling.
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Figure 4.9: Asimov Likelihood scans for IceCube, where the injected value for the
galactic normalization is Φgalactic = 1. The IceCube livetime of 11.67 years is used. The
green scan shows the Poisson likelihood. The blue scan uses the SAY likelihood without
oversampling. There, the minimum of the scan does not recover the injected value. The
blue scan uses the SAY likelihood with oversampling for the right ascension axis.
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Figure 4.10: Asimov Likelihood scans for ARCA21, where the injected value for the
galactic normalization is Φgalactic = 1. The livetime is scaled to the IceCube livetime of
11.67 years. The green scan uses the Poisson likelihood. The blue scan uses the SAY
likelihood without oversampling. There, the minimum of the scan does not recover the
injected value. The blue scan uses the SAY likelihood with oversampling for the right
ascension axis.
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After performing the joint galactic sensitivity study in the NNMFit framework, a
modernised and open-source framework is tested: pyFF. To evaluate the functionalities
of pyFF, especially for the ARCA implementation, an all-sky diffuse analysis is
performed.
This chapter shows the current status of the all-sky diffuse analysis for ARCA21. This
analysis aims to demonstrate the feasibility of implementing an ARCA analysis with
background and systematic handling within the PyFF framework. The KM3NeT
Collaboration has already performed a Bayesian diffuse all-sky analysis with the
ARCA21 detector [47]. This analysis is already unblinded. Additionally, a frequentist
analysis is currently set up, using the same data selection [48]. Thus, the diffuse
all-sky analysis within this thesis using pyFF is compared to results obtained from the
KM3NeT collaboration.
This thesis only considers ARCA21 MC datasets for its analysis, so all fits are performed
using Asimov data. This analysis considers the atmospheric muon background (cf.
section 5.3). With that, a new approach to event selection is used, which differs from
that used in the galactic flux analysis and will be explained in section 5.2. Additionally,
detector systematics are implemented, and a new systematics handling method is
tested, which differs from those used in other KM3NeT diffuse all-sky analyses.
The entire analysis process is integrated into a single workflow using Snakemake [49].
Snakemake is a workflow management tool that is particularly useful for working with
high-performance computing clusters. This makes the entire analysis reproducible and
steerable with just two configuration files.

5.1 Proof of Concept in PyFF

The implementation of the ARCA21 MC dataset in the PyFF framework is generally
the same as for the NNMFit framework. So the comparison of the correct weighting of
the neutrino events is performed as described in section 4.1.
For this analysis, in general, 12 energy bins are used in the energy range 103 GeV <
Eν < 106 GeV. This is also used in the KM3NeT frequentist all-sky diffuse analyses
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and ensures comparability. Within that analysis, no zenith bins are used. However,
within pyFF, in principle, a zenith binning can be used.
For the diffuse all-sky analysis, the signal parameters are the astrophysical normaliza-
tion, Φastro, and the spectral index γastro. Therefore, when performing Asimov scans,
these are the parameters of interest. When performing one-dimensional likelihood
scans, the likelihood curve of the astrophysical normalization is of interest as it shows
the uncertainty of the existence of an astrophysical neutrino flux. When performing
two-dimensional scans, both the astrophysical normalization and the spectral index
are of interest. These likelihood contours also demonstrate the correlation between the
two parameters. The ARCA21 Bayesian unblinded analysis obtained best-fit values
for the signal parameters: Φastro = 3.5, and γastro = 3.3 [47]. Within this analysis,
the background parameters are set to Φconv = 1.0, Φprompt = 0.0, and Φmuons = 1.0.
These best-fit results are chosen in the Asimov dataset for first tests in PyFF, if not
otherwise mentioned, for testing the analysis by performing Asimov fits. The neutrino
histogram with these expected parameters and 4 zenith bins is shown in Figure 5.1 for
the ARCA21 livetime of 287 days. The histogram shows that most neutrino events a
contained in the lower energy bins, and the number of neutrino events increases with
cos(ϕ) for energies Eν > 103.75 GeV.
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Figure 5.1: The expected neutrino event distribution in ARCA21, binned into 12 energy
bins in the range 103 GeV < Eν < 106 GeV and 4 zenith bins, for −1 < cos(ϕ) < 0.
The colorbar shows the number of expected neutrino events per bin. The injected flux
parameters are Φastro = 3.5, γastro = 3.3, Φconv = 1.0, and Φprompt = 0.0.
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5.2 Event Selection for the All-Sky Diffuse Analysis

The event selection described in subsubsection 3.5.1.2 for the first level cuts is applied
for the all-sky diffuse analysis. Only the BDT cut has to be chosen individually
for that analysis. For the all-sky analysis, a new, more quantitative approach for
optimizing the BDT than presented for the galactic analysis in section 4.2 is applied.
This method becomes only applicable as the likelihood scans with atmospheric muon
models are now included in pyFF. Within that, the BDT cut for maximal sensitivity
on the astrophysical neutrino flux is optimized. The optimization is performed with
the included neutrino and atmospheric muon flux models, as the main reason for the
BDT cut is the muon background rejection.
For the BDT cut optimization, two methods are tested. One simple method is to choose
different BDT cuts, apply them to the MC dataset, and perform Asimov scans with each
BDT cut dataset. All these likelihood scans are shown in Figure A.1 in Appendix A.
The scanned parameter is the normalization of the astrophysical neutrino flux, as this
parameter indicates the sensitivity on the astrophysical neutrino flux. The astrophysical
flux normalization for the multiple scans is set to Φastro = 1, and the spectral index to
γastro = 2.37. It is important to note that within the BDT cut optimization, the prompt
and conventional norms are still fitted separately. Additionally, the muon weighting
within these likelihood scans is not correctly implemented. As a measurement for
maximal sensitivity in this method, the 1σ confidence interval on the log-likelihood
curve of the astrophysical normalization is used. The smaller the interval in the
likelihood scan of the astrophysical normalization, the higher the sensitivity is reached
by applying the BDT cut.
The second method uses a computationally faster approach, using Fisher information.
The Fisher information matrix is calculated by

Fij = E

[
∂logL

∂θi

∂logL
∂θj

]
(5.1)

The lower limit of the covariance matrix of the fit parameters can be calculated using
the Cramér-Rao bound: covθ ≥ F −1. The variance on the diagonal of that matrix for
every parameter gives an estimate of the variance of the likelihood curve width for that
parameter. For that, the likelihood curve is assumed to be a quadratic function. With
that approach, the widths of different likelihood functions can be compared without
performing likelihood scans.
The agreement of both methods is shown in Figure 5.2. As both approaches use the
same dataset, the atmospheric muon weighting is implemented incorrectly for both.
Therefore, the approaches remain comparable. The uncertainty of the astrophysical
normalization using Fisher information is plotted in blue for different BDT cuts.
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The 1σ confidence interval of the astrophysical normalization for different BDT cuts
is plotted in red. The overall tendency of the optimal BDT cut agrees in both
methods. The minimum, referring to the optimal BDT cut, is for both methods
between 0.5 < BDT < 0.6. Only for higher BDT cuts do the tendencies of both
methods diverge. But as the agreement of the minimum, which is the interesting point
for the BDT optimization, agrees well, the Fisher Information method can be used for
the optimization in the future. The advantage is the computational efficiency.
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Figure 5.2: BDT cut optimization for ARCA21 with two methods: Likelihood scans
and Fisher Information. The blue curve shows the measurement of the uncertainty on the
astrophysical normalization using Fisher information. The red curve shows the one sigma
interval measured for different BDT cuts.

For the following analysis, a BDT cut of BDT > 0.5 is chosen. This is based on
the wrong atmospheric muon flux weighting. However, the method using Fisher
information is validated. So the BDT cut optimization with correctly implemented
atmospheric muons can be checked computationally efficiently by using the Fisher
information method shown in Figure 5.3). This plot shows that the sensitivity is
highest for 0.4 < BDT < 0.6. So a BDT cut BDT > 0.5 is still reasonable, also with
correctly implemented atmospheric muon weights.
The analysis of the Asimov dataset included event numbers obtained using the best-fit
parameters from the KM3NeT Bayesian analysis and the described event selection.
These numbers are 360 astrophysical neutrino events, 732 conventional atmospheric
and 6 prompt neutrino events, and 11 atmospheric muon events. The event distribution
over the energy axis for the analysis binning is shown in Figure 5.4.
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Figure 5.3: BDT cut optimization for ARCA21 by using the Fisher Information. The
Fisher information is used to estimate the uncertainty on the astrophysical normalization;
therefore, the minimum in the blue curve represents the BDT cut with the highest
sensitivity for the analysis. Within this plot, the correct atmospheric muon weighting is
implemented.

5.3 Likelihood Scans with Atmospheric Muon Background for
ARCA21

As explained in subsection 3.5.2, the atmospheric muon background implemented
for ARCA21 is simply the addition of the muon histogram to the expected event
histogram, with an additional muon normalization, Φmuons. The muon histogram
added in this thesis is shown in Figure 3.4. The event selection described in section 5.2
is applied. As a first proof of concept for adding the atmospheric muon background,
the one-dimensional Asimov likelihood scans of the astrophysical normalization are
compared, fitting neutrinos only, and additionally including the muon normalization.
It is expected that the likelihood curve including only a neutrino model will be slightly
above the curve including an atmospheric muon model as well. This is because the
total number of background events increases, while the number of signal events remains
the same.
The Asimov likelihood scan is shown in Figure 5.5. The likelihood curve, including
only neutrinos, is only in a small region for Φastro < 1, visibly above the likelihood
curve including the atmospheric muon model. The difference of the two likelihood
curves is shown in green. Even if a difference is not directly visible, the likelihood
contour of the scan, including only neutrinos, is smaller than for the included muons.

49



5 Results All-Sky Diffuse Analysis

103 104 105 106

Energy log10(Ereco)

10 2

10 1

100

101

102

Nu
m

be
r e

ve
nt

s
ARCA21 - 287 days

astrophysical events
conventional atmospheric evets
prompt events
atmospheric muon events

Figure 5.4: Energy distribution of an ARCA21, 287 days, Asimov dataset for different flux
components of the all-sky diffuse analysis. This analysis includes astrophysical neutrino
events, atmospheric neutrino events (both prompt and conventional), and atmospheric
muon events. They are binned into 12 bins in the energy range 103 GeV < Eν < 106 GeV.
The flux parameters in this Asimov dataset are set to Φastro = 3.5, γastro = 3.3, Φprompt = 1,
Φconv = 1, and Φmuons = 1.

Especially for the likelihood scan close to Φastro = 0, the difference between the scans
increases. The spike in the green curve is due to a failed fit.

5.4 Combining Prompt and Conventional Atmospheric Flux

Important to note in Figure 5.5 is the non-parabolic shape of the likelihood curve for
Φastro < 3.5, the injected astrophysical normalization. For that, Figure 5.6 shows the
best-fit values of the prompt normalization in each scan point.
The prompt-normalization is fitted in this region to unphysically high values, up to
Φprompt ≈ 40. This is due to a similar power-law description of the astrophysical
neutrino flux and the prompt neutrino flux. In the region of a low fixed astrophys-
ical normalization in the likelihood scan, the fitter compensates for that by setting
the prompt normalization to higher values. These high prompt normalizations are
unphysical, as there is currently no experimental evidence of a prompt flux [12]. The
current upper limit on the prompt normalization is set by [50] to Φprompt = 2.59 at
90% confidence. However, this significantly reduces sensitivity to the astrophysical
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Figure 5.5: Asimov Poisson likelihood scan, comparing the uncertainties on the astro-
physical normalization for the fit only with neutrinos and the fit including the simulated
atmospheric muons for ARCA21, 287 days livetime. The injected flux parameters are
Φastro = 3.5, γastro = 3.3, Φmuons = 1.0, Φconv = 1.0, and Φprompt = 0.0. The green line
shows the difference between the likelihood scan with only neutrinos and one that includes
muons. The peak is an outlier because the fit failed.

neutrino flux. Therefore, within this analysis, a single normalization is applied to the
conventional and prompt fluxes. This only scales the combined atmospheric models.
Another method, which is not used in this thesis, to suppress high fit values on the
prompt norm, would be to set a prior on that parameter.
A scan including this combined normalization is shown in Figure 5.7. The slope of
the likelihood curve combining prompt and conventional atmospheric flux increases
to much higher log-likelihood for Φastro < 3.5, than the curve fitting prompt and
conventional separately. That is the reason for fitting one combined normalization
parameter Φconv+prompt for the conventional and prompt flux components in the further
analysis.

5.5 Likelihood Scans with Detector Systematics for ARCA21

The implementation of the detector systematics for ARCA21 is performed as described
in subsection 3.5.3. There are two systematic parameters considered for the ARCA
detector: absorption length and quantum efficiency. For the absorption length, there are
three datasets with varied absorption lengths. One with 90%, 95%, and 110% absorption
length of the standard MC dataset. For the quantum efficiency, there exist only two
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Figure 5.6: Asimov Poisson likelihood scan, for ARCA21, 287 days, including atmospheric
muons, and fitting the prompt and conventional norm separately. The injected flux
parameters are Φastro = 3.5, γastro = 3.3, Φmuons = 1.0, and Φconv+prompt = 1.0. The
green line shows the best-fit values of the prompt normalization in each scan point.

varied datasets: 90%, and 110% quantum efficiency of the standard MC implementation.
The gradient for each bin is calculated as shown in the example Figure A.2 for the
absorption length and Figure A.3 for the quantum efficiency for a specific binning.
With that, the systematic parameters can be obtained within the fitting process.
The functionality of the detector systematics is checked by two-dimensional Asimov
likelihood scans on the signal parameters: astrophysical normalization and spectral
index.
It is expected that by introducing the systematic parameters abs for absorption
length and QE for quantum efficiency into the Asimov fit, the sensitivity to the
signal parameters decreases. Introducing more fit parameters results in more degrees
of freedom for the fit, and the variance during the fit process increases. This is
tested by performing the likelihood scan with and without systematic parameters
(c.f. Figure 5.8). Both scans are performed with a zenith binning of 6 zenith bins
and include the atmospheric muon model. The systematic parameters in the Asimov
dataset are set to abs = 0 and QE = 0. This represents no change in the systematics
from the original MC dataset. For the systematic parameters, some Gaussian priors are
set in the Fit. The Gaussian mean µ of the systematic parameters is set to µ = 0, the
Gaussian variance σ2 is set to σ2 = 2, and the bounds [a, b] of the Gaussian functions
are set to [0, 10].
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Figure 5.7: Asimov Poisson likelihood scan, for ARCA21, 287 days, comparing the
likelihood scans, fitting the prompt and conventional combined or separately. The injected
flux parameters are Φastro = 3.5, γastro = 3.3, Φmuons = 1.0, and Φconv+prompt = 1.0.

The likelihood scans in Figure 5.8 show that the implementation of systematic para-
meters works as expected. The contour on the signal parameters without systematic
parameters added to the fit is closed up to the 99% confidence contour. In comparison
to that, the 2σ contour in the likelihood scan, including abs and QE systematic
parameters, is not closed. This means higher uncertainties on the best-fit of the
astrophysical normalization when detector systematics are included.

5.6 Snakemake Workflow for ARCA21 All-Sky Diffuse Analysis

All of the analysis steps described in the previous sections are included in one Snakemake
workflow. The data analysis is handled, starting from the DST files to obtaining a
plot with the likelihood scan. A schematic of the workflow is shown in Figure 5.9.
The entire analysis process can be managed with just two configuration files. The
snakemake-config file handles the input files needed for the workflow, the event selection
used, and the likelihood scans performed. The other configuration file, pyFF-config,
handles the analysis parameters required by pyFF. This file defines the models used
for the analysis, the injected parameters for Asimov tests, the analysis binning, and
the priors used to fit parameters.
The KM3NeT collaboration saves reconstructed atmospheric muon and neutrino Monte
Carlo (MC) simulations in DST files in the .root format. All the analysis-relevant
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Figure 5.8: Poisson likelihood contours for Asimov all-sky diffuse analysis. In plot (a),
the atmospheric muon model is included, and no detector systematics. In plot (b), the
detector systematic parameters abs, and QE are added in the fit. For both fits, a zenith
binning of 6 zenith bins is used. The confidence contours are shown for the 1σ (orange),
the 2σ (red), and the 99% (pink) confidence contour.

variables are then retrieved and saved into a pandas data frame. The first cuts,
including the pre- and first-level cuts, can then be applied. For neutrino weighting,
MCEq splines are created. These splines and the neutrino data frames are then
used in the atmospheric flux weighting step. Additionally, the baseline weights
needed for pyFF are calculated. The only difference in the last step is the process
for the atmospheric muon events. In order to scale the atmospheric muons in the
analysis by an arbitrary livetime, the baseline weights also have to be calculated:
wmuons

baseline = wmuon · tDAQ-livetime/tlivetime/ntot.
Additionally, the BDT cut optimization can be included in the Snakemake workflow
to obtain the sensitivity-optimized BDT cut value. This value can then be used as an
input parameter for the final event selection. The final event selection is applied when
creating the dictionary needed as input for PyFF. This data frame contains only the
variables required for the likelihood scan.
To perform likelihood scans including systematic parameters, the gradients from the
varied systematic datasets are also needed. The systematic datasets are processed
through a similar chain as the neutrino MC files, but without BDT optimization. The
event selection of the baseline dataset is automatically also applied to the systematic
datasets. The analysis histograms are created from the weighted systematic datasets,
and the gradient fits are performed. These gradient fits are saved and used as input
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Input Data (DST, .ROOT)

Convert to DataFrames (.parquet)

Apply First-Level Cuts

Add Atmospheric Flux Weights
Add Baseline Weights
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Create PyFF DataFrame
for LLH Scan

LLH Scan with PyFF
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Create MCEq Spines

Evaluate
Systematic Datasets

Figure 5.9: Schematic overview of the Snakemake workflow used in the ARCA21 all-
sky diffuse analysis. The pipeline converts input DST data into usable dataframes,
applies initial cuts, includes MCEq spines and atmospheric flux weights, performs BDT
optimization, constructs the PyFF dataframe for the likelihood evaluation, incorporates
systematic variations, runs the LLH scan, and finally produces the resulting plots.
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for the likelihood scans. For each different choice of binning and input parameters in
the PyFF config, the gradients are recalculated.
These inputs allow for likelihood scans using pyFF, where the scanned regions are
determined by the snakemake config. The results of the likelihood scans are input into
the plotting script, which produces scans including likelihood contours.
The advantage of this workflow is that it makes the entire analysis chain traceable
and reproducible. Additionally, steering is made convenient, as only two configuration
files are needed for the full analysis. This analysis chain can easily be adapted for
use in other analyses. It can be used either in combination with different ARCA
configurations or for analyses on the galactic plane.

5.7 Comparison to KM3NeT All-Sky Diffuse Analyes

After implementing all necessary systematics, a comparison to an already existing
frequentist measurement of the all-sky diffuse flux from the KM3NeT Collaboration
using the same data sample is performed [48]. This analysis is currently performed
on MC simulations only. Their current injected values on the signal parameters are
the published IceCube results for the 9.5 years of IceCube analysis. The IceCube
Collaboration’s best-fit values in this analysis on the diffuse astrophysical flux are
Φastro = 1.44, and γastro = 2.37 [4]. The results for an Asimov fit obtained for ARCA21
by the frequentist approach are shown in Figure 5.10. It shows the 99% confidence
contour, scanning the astrophysical normalization and the spectral index, for injecting
the IceCube best-fit values. The systematic handling differs from the approach used in
pyFF. Within that analysis, three sources of systematic uncertainties are implemented.
The atmospheric muon uncertainty is set to 40% and accounted for in every analysis
bin. Also, for the atmospheric neutrinos, an uncertainty of 45% is accounted for in
every bin. For the cosmic neutrinos, an uncertainty of 20% is assumed, which scales as
a normalization parameter over all bins. The analysis uses an energy binning of 12
bins in the energy range 103 GeV < Eν < 106 GeV.
The same binning and energy range is used in the pyFF analysis, as shown in Figure 5.11.
The 99% confidence contour is shown in pink. On the axis of the astrophysical
normalization, the contour reaches a maximal astrophysical normalization of Φastro ≈
12.4. In comparison to that, the KM3NeT frequentist analysis shows a 99% confidence
contour on the astrophysical normalization to Φastro ≈ 11.5. That means the pyFF
analysis with the same binning is less sensitive to the astrophysical neutrino flux.
Neither 99% confidence likelihood contour is closed. A closed contour would correlate
to exclude the background hypothesis of no astrophysical neutrino flux with that
significance. In the pyFF likelihood scan is also shown that with the injected parameters,
the 1σ likelihood contour is not closed. One difference in the likelihood contours is
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Figure 5.10: Two-dimensional Asimov likelihood scan for ARCA21 on the astrophysical
normalization on the x-axis and the spectral index on the y-axis. The injected signal
parameters on the Asmimov dataset are Φastro = 1.44, and γastro = 2.37. The likelihood
contour of the 99% confidence interval is shown. The plot is taken from [48].

that the pyFF contour is asymmetric on the spectral index axis, whereas the KM3NeT
frequentist shows a symmetric likelihood contour. The asymmetric shape is expected,
as a higher spectral index implies more high-energy astrophysical neutrinos in the
signal region. With that, it is more sensitive to the astrophysical neutrino flux.
For ARCA21, there is already an all-sky diffuse unblinded, which uses a Bayesian
approach. The likelihood scan performed on the data is shown in Figure 5.13 [43]. The
best-fit parameters obtained in that analysis on the signal parameters are Φastro = 3.5,
and γastro = 3.3. The 68% confidence contour is almost closed. In the Bayesian
analysis, uncertainties are accounted for in the water absorption length, the PMT
quantum efficiency, and the atmospheric neutrino flux. For all three of these systematic
parameters, a total uncertainty of 45% is estimated from the MC samples with varied
systematics for ARCA21 [43].
This analysis uses, as the frequentist analysis, only a binning on the energy axis. The
energy ranges from 104 GeV < Eν < 106 GeV, and 8 bins are used. The same binning
and energy range is used for the likelihood scan shown in Figure 5.13. The likelihood
scan in PyFF also indicates less confidence in the astrophysical neutrino flux than
the KM3NeT analysis. The 1σ contour is for no spectral index values closed on the
normalization axis. The differences can be explained by the different approaches to
systematic uncertainty modelling.
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Figure 5.11: Two-dimensional Poisson Asimov likelihood scan for ARCA21 on the
astrophysical normalization with injected signal parameters Φastro = 1.44, and γastro = 2.37.
The likelihood scan shows the 1σ, 2σ, and 99% confidence intervals on the two signal
parameters. The injected value and best-fitted value are the same, as a Poisson likelihood
is used. The two small red circles mark failed likelihood scans in single scan points.

Figure 5.12: Two-dimensional likelihood scan for ARCA21 on the astrophysical nor-
malization on the x-axis and the spectral index on the y-axis. This plot is created by
Vasileios Tsourapis with his unblinded Bayesian all-sky diffuse analysis, fitting on data.
The best-fit parameters obtained in the bis on the signal parameters are Φastro = 3.5, and
γastro = 3.3. The likelihood scan shows the 68%,90%, and 99% confidence intervals on the
two signal parameters.
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Figure 5.13: Two-dimensional Poisson Asimov likelihood scan for ARCA21 on the
astrophysical normalization with injected signal parameters Φastro = 3.5, and γastro = 3.3.
The likelihood scan shows the 1σ, 2σ, and 99% confidence intervals on the two signal
parameters. The injected value and best-fitted value are the same, as a Poisson likelihood
is used. The lopp in the 1σ contour marks failed likelihood scans in the scan points.

In contrast to the KM3NeT analysis, the pyFF analysis could improve in sensitivity by
adding zenith binning. Figure 5.14 ashows several likelihood scans performed on the
Asimov dataset using the Poisson likelihood with different numbers of zenith bins. The
same values used in the KM3NeT frequentist analysis are injected in these fits. This
demonstrates that sensitivity to the astrophysical normalisation increases with the
introduction of zenith bins. All the likelihood contours shown are smaller on that axis
than in Figure 5.11, where no zenith bins are used. However, adding more than three
zenith bins does not significantly improve the sensitivity. The reason for the increasing
significance of adding zenith bins in the pyFF analysis could be the different systematic
handling than in the KM3NeT frequentis analysis. In the pyFF analysis, only two
new fit parameters are introduced for the detector systematics and two additional fit
parameters for the uncertainties on the atmospheric flux. In contrast, the KM3NeT
frequentist analysis adds uncertainty parameters to each analysis bin. In that case, by
increasing the bin numbers, the number of fit parameters also increases. This leads to
more degrees of freedom and larger uncertainties in the fit. So the optimal number of
zenith bins has to be tested in further analyses.
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(a) Binning: (Energy, zenith) = (12, 2)
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(b) Binning: (Energy, zenith) = (12, 3)
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(c) Binning: (Energy, zenith) = (12, 9)

Figure 5.14: Likelihood contours for Poisson Asimov all-sky diffuse analysis, including
atmospheric muons and systematic uncertainties, using different numbers of zenith bins.
The scanned parameters are the signal parameters, astrophysical normalization, and
spectral index. The injected free parameters are: Φastro = 1.44, γastro = 2.37, Φconv = 1.0,
Φprompt = 0.0, Φmuons = 1.0, abs = 0, QE = 0. The confidence contours are shown for the
1σ (orange), the 2σ (red), and the 99% (pink) confidence contour.
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6 Conclusion

This thesis focuses on the first steps towards a joint IceCube-KM3NeT galactic analysis.
In chapter 4, sensitivity studies on the galactic plane are performed. These tests aim
to demonstrate how combining data from two neutrino telescopes improves a galactic
plane analysis of track events only. To achieve this, data from the IceCube detector
at the South Pole and the ARCA detector in the Mediterranean Sea are used. The
location of the detectors is of major importance for analysing track events on the
galactic plane. IceCube is only sensitive to the part of the galactic plane located in
the northern sky, whereas ARCA is sensitive to 90% of the galactic plane, including
the galactic centre.
The ARCA detector is currently under construction, and the latest data-taking period
used the ARCA21 configuration, which had a live time of 287 days. For IceCube, a
live time of 11.67 days can be accounted for. This thesis demonstrates that adding the
ARCA21 MC dataset to the IceCube MC dataset has a negligible impact on the joint
fit sensitivity on the galactic plane. However, as ARCA is still under construction, the
first MC datasets were simulated for the ARCA115 detector configuration by KM3NeT.
Assuming the ARCA115 detector is built in 2028, the sensitivity on the galactic plane
for ARCA115 will be the same as that of the IceCube detector, after five years of
operation.
To enhance collaboration and modernize the software, the open-source program PyFF
will be used for further joint analyses. To verify the framework’s functionality, an all-
sky diffuse analysis for ARCA21 has been set up (c.f. chapter 5). Within that, methods
for handling the atmospheric muon background and systematic errors for the ARCA21
detector are also employed. Within the diffuse all-sky analysis, the atmospheric muon
background can be accounted for by adding the simulated muons to the analysis
histogram. This makes it possible to optimise the event selection by choosing a BDT
cut for the sensitivity of the analysis. Systematic uncertainties can now be added to
the ARCA21 analysis. This is achieved by using various systematic MC datasets. A
gradient is obtained from these, which can be fitted to the analysis histogram. The
whole analysis chain is implemented into one Snakemake workflow. This allows easy
handling of changing the analysis configurations and ensures reproducibility. This
analysis demonstrates the agreement between the pyFF framework and the KM3NeT
frequentist analysis.
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6 Conclusion

Once the principle of the ARCA21 diffuse all-sky analysis has been verified, it can
be improved and optimised to increase sensitivity. One possible improvement is to
refine the handling of the atmospheric muon background. It is useful to model a
smooth muon distribution within the analysis binning. For this purpose, a kernel
density estimate (KDE) can be used, which can be constructed using normalised flows.
Another improvement could be made in the handling of the detector systematics.
Currently, the detector systematic handling has the issue that a certain neutrino flux
must be injected to obtain the required gradients for the analysis fit. This can be
overcome by using hypersurfaces that interpolate between varied systematic datasets.
To improve sensitivity in the likelihood scan, the analysis binning can be optimised.
For comparisons with KM3NeT results, only energy binning is used. However, zenith
binning could also enhance the sensitivity of the analysis. This would need to be tested
with respect to the MC statistics per bin. To verify the choice of binning, fits can
be performed on small data samples to check the agreement between the data and
the MC. Additionally, the sensitivity of the analysis to the astrophysical neutrino flux
can be enhanced by including future and past ARCA configurations. The Snakemake
pipeline makes it feasible to process the MC of various detector configurations. In
pyFF, joint fits across different configurations of the same detector or entirely different
detectors can also be performed.
With these improved analysis methods, the next goal is to unblind the analysis. This
will demonstrate the sensitivity of the pyFF analysis method to data. It can then
be compared to the best-fit results obtained by the unblinded all-sky diffuse analysis.
This final verification step would open up the use of the pyFF framework for galactic
analyses. The next step is therefore to implement a joint analysis for IceCube and
ARCA, including background and systematic handling. Such analyses can be verified
with the ARCA21 version. However, joint analyses will become increasingly important
for future detector configurations. Compared to the ARCA21 configuration analyzed
within this thesis, the volume of the current ARCA51 detector has already more
than doubled. In addition to the full ARCA230 detector, plans are in place for the
IceCube-Gen2 detector. This detector is planned to be an 8 km3 array in the Antarctic
ice [51]. Combining the full ARCA and the IceCube-Gen2 detectors could open up
new fields of neutrino astronomy.
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A Appendix - All-Sky Diffuse Analysis

Figure A.1: Poisson Asimov likelihood scans, for different BDT cuts between BDT = 0
and BDT = 1. The scanned parameter is the normalization of the astrophysical neutrino
flux. The injected values in the Asimov dataset are Φastro = 1 (indicated as the red dashed
line), and γastro = 2.37 on the signal parameters. The blue dashed line marks the limits
of the 1σ confidence interval. This is not contained in the scanned area of all likelihood
scans. Important to note is that the muon weighting within these likelihood scans is not
correctly implemented, and the prompt and conventional norms are fitted separately.
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Figure A.2: Fits of the varied absorption length of ARCA21 in every bin of the binning
(Energy, zenith) = (12, 4). Bin (0, 0) refers to the bin with the lowest energy and smallest
cos(zenith), whereas bin (11, 3) refers to the highest values on both binning axes. The event
numbers per bin and second are plotted for each simulation of the varied absorption length
(abs90, abs95, abs100, abs110), where the baseline MC simulation abs100 is subtracted.
The linear fit (blue line) is forced to go through abs100 and accounts for uncertainties in
the histogram (red error bars).
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Figure A.3: Fits of the varied quantum efficiency of ARCA21 in every bin of the binning
(Energy, zenith) = (12, 4). Bin (0, 0) refers to the bin with the lowest energy and smallest
cos(zenith), whereas bin (11, 3) refers to the highest values on both binning axes. The
event numbers per bin and second are plotted for each simulation of the varied quantum
efficiency (QE90, QE100, QE110), where the baseline MC simulation QE100 is subtracted.
The linear fit (blue line) is forced to go through QE100 and accounts for uncertainties in
the histogram (red error bars).
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B Appendix - Gingerbread Tasting

In Germany, especially before Christmas, people often ask which type of gingerbread
they should buy. Gingerbread is a very popular baked good at Christmas time in
Germany. The tradition of baking honey-sweetened bread dates back several hundred
years ii. In principle, it was made all across the country. However, local variations
emerged. In Aachen, the Aachener Printen became popular in the 19th century.
Meanwhile, in Nuremberg, special gingerbread bakeries were mentioned in the history
books as early as the 14th century iii. The question of which version is the best remains,
however.
Therefore, the people at ECAP tasted in the season 2024 different versions of Aachener
Printen and Nürnberger Elisenlebkuchen. After trying a piece of each type of ginger-
bread, they could rate it in four categories: taste, texture, optical appearance, and
how Christmassy it made them feel. In each category, the scoring was from one to
five Christmas trees. The descriptions for the scores were: one Christmas tree means
poor, two means bad, three means OK, four means good, and five means great. The
Aachener Printen that were tested were traditional hard Printen, soft Printen and
dessert Printen. The gingerbread tested was all Nürnberger Elisenlebkuchen from
different bakeries: Düll, Beck, Woitinek, Witte and Aldi. The tasting was not a blind
study, all participants knew which type of gingerbread they were tasting, and the
number of participants varied between 11 and 15 for the different types of gingerbread.
This also does not match the objectives of a representative study, it only shows the
preferences of the people who participated in the tasting.
The gingerbread tasting results are shown in Figure B.1. The different gingerbreads
are listed on the y-axis, where the coloured lines indicate the mean values of the
rating results in each category. The color-shaded areas indicate the uncertainties on
that. To also reflect on an overall result, the black line shows the mean values of the
different category ratings for each gingerbread. The colored squares show the best and
worst-rated gingerbread in every category.
On this basis, the Christmassy feeling and the dessert’s appearance do not have
to correlate: the Printen dessert has the worst Christmassy feeling, but the best
appearance. Aldi’s gingerbread had the worst overall result, with the lowest score in
three categories. It is the only gingerbread baked in an industrial bakery. All the others
are from smaller, local bakeries. Woitinek’s gingerbread won in three categories and

iifrom https://de.wikipedia.org/wiki/Aachener_Printen
iiifrom https://de.wikipedia.org/wiki/N%3%Brnberger_Lebkuchen
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B Appendix - Gingerbread Tasting
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Figure B.1: This plot shows the results of the 2024 non-representative gingerbread survey
at ECAP. The different gingerbreads listed on the y-axis were scored in units of Christmas
trees by 11 to 15 participants on four categories: taste, texture, optical appearance, and
Christmassy feeling. The colored lines indicate the mean value of the tasting result for
each category, and the coloured areas the uncertainties. The overall result in black shows
the mean of the ratings in the different categories.

therefore had the best overall result. In general, Printen have fewer Christmas trees
in their overall results than gingerbread from small bakeries. However, a much larger
variance of the Printen score is observed in comparison to that of the gingerbread.
This may be because the testers are more familiar with the local gingerbread than the
Printen. To investigate this further, it would be interesting to ask the participants
where they are from.
Additionally, it would be interesting to see if the quality of the gingerbread changes
over time. A survey is therefore planned for the next gingerbread season. With more
participants, a better statistical result can also be obtained.
However, this should not stop you from just tasting all variants of gingerbread on your
own - there are even more variants to try! Build your own opinion, and enjoy!
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