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Abstract:

The IceCube Neutrino Observatory detects high-energy cosmic neutrinos by observing
Cherenkov radiation emitted from secondary particles, such as muons, that are produced
in neutrino interactions. A key challenge in detecting cosmic neutrinos is the large
background of cosmic-ray-induced muons from the atmosphere, which has to be reduced
by several orders of magnitude.

Thus, a large sample of background events has to be simulated in order to accurately
estimate the background reduction efficiency. The computationally most expensive part
of the IceCube simulation chain is the propagation of Cherenkov photons.

In this work, a hybrid simulation approach is presented that combines traditional sim-
ulation methods with a machine learning model in the form of a boosted decision tree
classifier. Based on the energy loss information of each event of a given cosmic-ray-
induced muon sample, the classifier predicts the probability for each muon to remain in
the sample after the background reduction process. Events with a low chance of remain-
ing in the sample are excluded from photon propagation and further simulation steps.
This approach ensures that computational resources are better spent on statistically
rare events, which have a high chance of surviving the background reduction process.
Depending on the initial energy range of the muon sample, a computational gain factor
of up to 2.2 ± 0.4 was obtained. As a consequence, more background events can be
simulated within the same amount of time. Therefore, employing such a classifier in
future simulations might reduce the statistical uncertainty of the estimated background
reduction efficiency, without increasing the budget spent on simulation.
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1. Introduction

1. Introduction

The identification of ultra-high-energy cosmic ray sources and understanding the accelera-
tion processes of these particles are fundamental tasks in the field of astroparticle physics.
However, locating potential sources based on measurements of cosmic rays is difficult.
Since cosmic rays are charged particles, they get deflected by magnetic fields along their
way to Earth. Fortunately, there are other messenger particles like neutrinos, which
are produced by hadronic interactions of cosmic rays with the medium at respective
acceleration sites. Due to their physical properties, neutrinos are unlikely to interact
with matter or fields along their way to Earth and point directly back to their sources.
Therefore, the detection of cosmic neutrinos is of great interest in astroparticle physics,
as it provides valuable information on distant astrophysical particle sources [20].

Detecting neutrinos on Earth involves several challenges. Due to the low interaction
probability of neutrinos with matter, huge detectors have to be built to detect cosmic
neutrinos in statistically significant numbers. An example of such a detector is the
IceCube Neutrino Observatory located at the South Pole. It has a volume of about
∼ 1 km3 deep within the ice, instrumented with 5160 digital optical modules (DOMs).
These modules detect Cherenkov light emitted by secondary charged particles like muons,
produced by neutrino interactions with nuclei in the ice. A challenge in detecting such
muons is the large background of cosmic-ray-induced muons from the atmosphere, which
has to be reduced by several orders of magnitude. During data analysis, this is done by
applying event filters to obtain neutrino event samples with a reduced signal-to-noise
ratio. One of those is the medium-energy starting event (MESE) sample [21],[29].

The related background reduction efficiency and its uncertainty can be estimated based
on extensive simulations of the muon background of IceCube. In the current state
of the IceCube simulation, each background muon has to be fully simulated from its
generation up to the signal processing and application of event filters. This includes the
simulation of the Cherenkov photons induced by stochastic energy losses of the muon,
which is one of the computationally most expensive steps of the IceCube simulation
[10],[18],[32]. However, a large number of muons is removed by the event filters in the
end. Therefore, a significant amount of computational resources is spent on photon
propagation unnecessarily.

This thesis aims to present a possible solution to this efficiency problem by introducing a
hybrid simulation approach that combines traditional simulation methods with a machine
learning model in the form of a boosted decision tree (BDT) classifier. Based on the
energy loss information of each muon event of a given simulation sample, the classifier
predicts the probability for each muon to remain in the sample after applying the MESE
event filter. Events with a low chance of remaining in the final sample are excluded from
photon propagation and further simulation steps. With that, computational resources
can be saved. The results presented in this work show that, depending on the initial
energy range of the muon sample, a computational gain factor of up to 2.2 ± 0.4 can
be obtained using the hybrid simulation approach. Therefore, about twice as many
background events can be simulated within the same amount of time. Consequently, the
statistical uncertainty of the estimated background reduction efficiency might be reduced
by this simulation approach, without increasing the budget spent on simulation.
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1. Introduction

In section 2, information on several topics related to this work is provided. A proof of
concept of the hybrid simulation approach can be found in section 3, along with the
results regarding the training and optimization of the BDT classifier. In section 4, a
testing framework for optimized muon simulations as described above is introduced, which
provides full access to the IceCube simulation parameters and was used to determine the
computational gain [19].
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2. Theoretical Background

2. Theoretical Background

This section provides information on different topics that are related to this thesis. Details
on neutrinos and how to detect them can be found in section 2.1, which is mainly based on
[20],[21]. Further information on the IceCube simulation is given in section 2.2, primarily
referring to [32]. In section 2.3, a brief overview of machine learning, boosted decision
trees, and tools to evaluate the performance of classification models is provided, mostly
based on [35],[42],[43].

2.1. Neutrino Astronomy

In the field of astroparticle physics, different messenger particles are detected on Earth to
gather information on astrophysical objects. These particles include cosmic rays, which
are ionized nuclei, predominantly composed of protons (∼ 90 %), alpha particles (∼ 9 %),
and heavier nuclei. Cosmic rays are accelerated to relativistic energies of up to 1020 eV
(ultra-high-energy cosmic rays, UHECRs). The fraction of UHECRs is quite small, but
understanding how they reach such extreme energies is particularly interesting and a
fundamental question in cosmic ray physics [20].

Figure 1: Schematic path of different particles from their astrophysical source to Earth.
This image was adapted from [22].
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2. Theoretical Background

Potential sources of cosmic rays are, among others, supernova remnants (SNR), active
galactic nuclei (AGNs), and gamma-ray bursts (GRBs). Still, the origin and acceleration
mechanisms of cosmic rays are not yet fully understood. Since cosmic rays are charged
particles, they are deflected by magnetic fields along their path to Earth. This makes
the direct identification of their sources quite difficult. However, cosmic rays produce
secondary particles when they interact with the medium at their acceleration sites,
including highly energetic photons (γ-rays) and neutrinos. Both are neutral particles
travelling along straight paths from their sources to Earth (see Figure 1). In contrast
to γ-rays, neutrinos are very unlikely to be absorbed along their way to Earth due
to their physical properties. This makes them particularly interesting for studying
distant astrophysical particle sources. Furthermore, they can only be produced through
hadronic processes. Therefore, observing them provides independent information on the
contribution of hadronic and electromagnetic processes to the γ-ray flux from the galactic
plane [20]. Further details on neutrinos and their detection on Earth are presented below.

2.1.1. Neutrinos

Neutrinos are elementary particles of the Standard Model of particle physics. Having
a spin of 1/2, they belong to the particle class of fermions. There are three different
neutrino flavors, resulting in the electron neutrino νe, the muon neutrino νµ, and the
tau neutrino ντ . The corresponding charged leptons are the electron e−, the muon µ−,
and the tauon τ−. Together, they form the three lepton pairs of the Standard Model.
Neutrinos can couple to the charged W ± and the neutral Z0 gauge bosons, resulting in
charged and neutral current interaction vertices (see Figure 2) [20].

νl l−

W −

νl νl

Z0

Figure 2: Examples of interaction vertices for neutrinos of flavour l. Left: Charged
current interaction. Right: Neutral current interaction.

Since neutrinos are leptons with no electrical charge, they only interact via the weak
interaction. Due to their low cross section, their interaction probability with matter is
quite small. Therefore, they can travel from their astrophysical source to Earth without
being deflected or absorbed. On the other hand, this makes detecting neutrinos quite
challenging (see section 2.1.2) [20].

The standard production scenario of high-energy neutrinos at astrophysical sources
like AGNs is the decay of charged pions. When UHECRs interact with the background
radiation at the acceleration site, neutrons n and positively charged pions π+ are produced
[20]:

p + γ Ð→ n + π+ (2.1)
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2. Theoretical Background

The pions decay into positively charged muons µ+ and muon neutrinos νµ. Since muons
are also unstable, they further decay into positrons e+, electron neutrinos νe, and muon
antineutrinos ν̄µ [20]:

n + π+ Ð→ n + µ+ + νµ Ð→ n + e+ + νe + ν̄µ + νµ (2.2)

This results in a neutrino flux composition of about ϕ0(νe) ∶ ϕ0(νµ) ∶ ϕ0(ντ) = 1 ∶ 2 ∶ 0 at
the source [20].

In the Standard Model, neutrinos are assumed to be massless. However, it was observed
that neutrinos can change their flavor while they propagate. This effect is called neutrino
oscillation and can be described by introducing a nonzero neutrino rest mass [20]. Recent
measurements by the KATRIN experiment put an upper limit of mν < 0.45 eV (90 % CL)
to the neutrino mass [23]. Due to neutrino oscillations, the neutrino flux composition
at Earth, originating from the standard case of charged pion decay, is approximately
ϕ0(νe) ∶ ϕ0(νµ) ∶ ϕ0(ντ) ≈ 1 ∶ 1 ∶ 1. The flux composition is expected to differ from the
generic 1 ∶ 1 ∶ 1 case, depending on the production mechanism at the source (see [20] for
more details). Therefore, being able to differentiate neutrinos by their flavor in detectors
is important to obtain information in this regard.

2.1.2. IceCube Neutrino Observatory

Due to the weak interaction of neutrinos with matter, huge detectors have to be built to
detect statistically significant numbers of cosmic neutrinos [21]. One example of such a
detector is the IceCube Neutrino Observatory located at the South Pole, which has a
detector volume of about ∼ 1 km3 (see Figure 3). IceCube consists of 86 cables called
strings, that were deployed deep into the ice. Each of the strings is equipped with 60
Digital Optical Modules (DOMs), evenly distributed along the strings at a depth of
1450 m − 2450 m [20],[21]. Each DOM consists of a glass sphere containing a 10-inch
photomultiplier tube (PMT) and some electronics for signal processing [21]. PMTs are
light detection devices that convert incident photons into an analogue voltage signal
based on the photoelectric effect [39].

The detection principle of IceCube relies on the measurement of Cherenkov radiation.
This kind of light is emitted if charged particles propagate through a medium faster than
the speed of light in the medium [21]. The setup described above enables the indirect
detection of neutrinos by measuring the Cherenkov light emitted from secondary charged
particles produced in neutrino interactions with the ice. Depending on the neutrino flavor
and the particle interaction, different light patterns can be observed in the detector [21].
High-energy neutrinos typically interact via deep inelastic scattering with nucleons of the
ice. In more detail, the incoming neutrino interacts with quarks of a target nucleus via
the exchange of a W ± or Z0 boson. In both cases, the hit nucleus is split into fragments,
typically resulting in a hadronic particle shower. Secondary charged particles of such
a shower emit Cherenkov light in a spherical pattern referred to as "cascade" (see left
plot of Figure 4) [21]. As illustrated in Figure 2, a charged lepton is produced in charged
current interactions, carrying about 80 % of the initial neutrino energy [20]. In the case
of a produced electron, the hadronic cascade of nuclear fragments is superimposed by
the electromagnetic cascade induced by the rapid scattering of the electron in ice [21].
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2. Theoretical Background

Figure 3: Schematic view of the IceCube Neutrino Observatory. A detector volume
of ∼1 km3 was instrumented with 5160 Digital Optical Modules (DOMs). A
total of 86 strings with 60 DOMs per string was deployed into the ice at a
depth of 1450 m − 2450 m. This image was adapted from [24].

A similar light pattern is observed for the charged current interaction of a ντ . Since the
resulting τ decays quite fast, this also leads to a particle cascade [21]. Depending on the
energy of the τ , the position of the ντ and the τ decay can be spatially distinct, showing
a "double bang signature" of two separate cascades [20]. A very different kind of light
pattern is observed for the charged current interaction of a νµ, resulting in the production
of a µ. The muon is a long-lived particle that can travel relatively long distances through
the detector before it decays [21]. The resulting light pattern is referred to as "track"
(see right plot of Figure 4). Muons lose their energy by ionization, bremsstrahlung, pair
production, and photo-nuclear interactions [21]. Above ∼ 1 TeV, the Cherenkov light
emission of muons in ice is dominated by charged particles produced in stochastic energy
losses along the track, including bremsstrahlung, pair production, and photo-nuclear
interactions [36]. These stochastic energy losses play an important role in this thesis, as
explained in the ongoing sections.

Generally, the neutrino energy can be estimated from the detected amount of Cherenkov
photons. This estimate is more accurate for cascades. There, the measured number of
photons is proportional to the neutrino energy transferred to the cascade, which can be
completely contained in the detector volume [21].
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2. Theoretical Background

Figure 4: Signals of neutrino events as observed by the IceCube detector. White dots
correspond to DOMs without a signal. The colour encodes the arrival time
of the light signal (red - early, purple - late), while the size of the coloured
DOMs indicates the number of detected photons. Left: Cascade-like event
as observed for interactions of νe and ντ . Left: Track-like event as observed
for interactions of νµ. This image was adapted from [21].

For tracks, this is not necessarily the case, which makes the energy reconstruction of νµ

less precise. On the other hand, the direction of the initial neutrino can be reconstructed
more accurately for νµ, due to the related light pattern [21].

Since its completion of construction in 2011, the IceCube Neutrino Observatory has made
several discoveries. Some of the most prominent ones are listed below. In 2013 of a
flux of cosmic neutrinos with energies in the range of 30 TeV − 1.2 PeV was observed [25].
Furthermore, two AGNs were identified as point sources of astrophysical neutrinos: TXS
0506+056 in 2018 and NGC 1068 in 2022 [26],[27]. Another recent achievement was the
discovery of a diffuse neutrino flux from the galactic plane in 2023 [28].
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2.1.3. Background Events of the IceCube Neutrino Observatory

The IceCube Neutrino Observatory naturally has a large background of neutrinos and
muons produced in extensive air showers that are induced by cosmic rays hitting the
Earth’s atmosphere (see Figure 5). Track-like events as generated by muons induced
by cosmic neutrinos, also occur for atmospheric muons and muons originating from
interactions of atmospheric neutrinos with the ice [21]. The recorded event rate of
IceCube is about ∼ 3 kHz, which is dominated by atmospheric muons [37]. Only one
event in a million is a neutrino, resulting in a neutrino event rate of about ∼ 105/year
[37]. A majority of these are atmospheric neutrinos, resulting in an actual signal of a
few hundred astrophysical neutrinos per year [37]. From data analysis, only about 10
neutrinos per year are identified as astrophysical neutrinos with high confidence [37].
This shows the importance of an efficient background reduction for IceCube, which can be
achieved in different ways. One possible approach is to use the Earth as a natural shield
against atmospheric muons. This limits the observation of cosmic neutrinos to up-going
events from the Northern sky. The remaining background of atmospheric neutrinos
can be distinguished from the signal based on the measured energy spectrum, since the
atmospheric neutrino flux is expected to be relatively small above ∼ 300 TeV [21].

For all sky observations, a different method can be used to distinguish cosmic neutrinos
from the background. In this method, one tries to identify high-energy neutrinos that
interacted inside the detector volume. These events are called high-energy starting events
(HESE) [21].

Figure 5: Illustration of the background of the IceCube Neutrino Observatory. Blue
dashed arrows indicate neutrinos, which are either produced in the atmo-
sphere (background) or by astrophysical sources (signal). Solid blue lines
denote muons. The atmospheric muon background is suppressed for up-going
events since the Earth acts as a shield. This image was adapted from [21].
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2. Theoretical Background

The HESE event sample is generated by introducing a veto region that is excluded from a
fiducial volume within the detector (see Figure 6). If an event induces a signal in the veto
region with a signal strength above a certain threshold, it is excluded from the HESE
sample. By selecting only high-energy events with an initial interaction vertex observed
inside the fiducial volume, the atmospheric muon background can be suppressed for the
whole sky, since an atmospheric muon would also induce a significant signal in the veto
region [21],[30]. Furthermore, the background of atmospheric neutrinos is reduced for
the southern sky, since these events are generally accompanied by atmospheric muons
from the same air shower (self-veto effect) [29],[46]. Further details on the HESE sample
can be found in [30].

Figure 6: Schematic view of the IceCube veto region used to define the HESE event
sample. Top: Top view of the IceCube detector array, indicating the strings
completely belonging to the veto region (red) and the strings including at
least one non-veto DOM (blue). Bottom: Corresponding side view, indicat-
ing the DOMs of the veto region (red), and the DOMs of the fiducial volume
(blue). This image was adapted from [30].
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2. Theoretical Background

An extension of the HESE sample to lower energies is the sample of medium-energy
starting events (MESE). Compared to the HESE sample, further event selections based on
consecutive selection levels are applied to generate the MESE sample. This also includes
an event classification into cascades and tracks using a neural network. Overall, this
leads to an increase in the event statistics towards lower energies (∼ 1 TeV). The rate of
atmospheric muons at the final event selection level of the MESE sample is reduced by ten
orders of magnitude compared to the initial sample, improving the signal-to-noise ratio
[29],[31].1 Based on simulations, one can determine the ratio of background events that
are left in the MESE sample and background events that were excluded. The resulting
background reduction efficiency and its associated uncertainty are crucial parameters to
quantify how effectively background events are filtered out during data processing. A
large number of background events have to be simulated to accurately estimate these
quantities. More details on the IceCube simulation are provided in the following section.

2.2. IceCube Simulation

Neutrino detection and background processes in IceCube can be modeled using Monte
Carlo simulations, which are essential for interpreting the measured signal of the IceCube
detector and event reconstruction. As illustrated in Figure 7, the IceCube simulation can
be understood as a consecutive execution (simulation chain) of different simulation steps.
This includes all processes from the simulation of different particles arriving on Earth,
including whole cosmic ray induced air showers, up to the simulation of the detector
electronics. Furthermore, all levels of data processing used in the analysis of real data
can be applied equivalently to the simulated data [32].

The code of the IceCube simulation is implemented within the simulation framework
IceTray, which is mainly based on C++ and Python [17]. IceTray provides a modular
structure, enabling the construction of large simulation chains by linking consecutive
simulation steps through the input and output files of their corresponding scripts. In this
thesis, this modular system was used to define a simulation chain specifically designed
for testing optimized muon simulations (see section 4.1). The corresponding simulation
steps are described below.

MuonGun:

MuonGun is the IceCube implementation of the simulation tool MUPAGE [33]. As one
of the available software modules for particle generation (see red box in Figure 7), it can
be used to generate and parametrize a flux of muons under the ice [32]. More specifically,
muons are injected on a cylinder surface surrounding the IceCube detector array. The
spectrum of the muon energy Eµ is modeled by a power law ∝ (Eµ + Eoff)−γ (see
MuonGun/private/MuonGun/EnergyDistribution.cxx in [17]) where Eoff is an adjustable
energy offset and γ the spectral index. The corresponding energy range and value of γ
defining the muon flux can be freely adjusted along with other parameters regarding the
detector geometry and the surrounding ice [17].

1 Applying the selection cuts to obtain the MESE sample is referred to as applying the MESE event filter
in this thesis.
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2. Theoretical Background

Figure 7: Scheme of different parts of the IceCube simulation chain. Generation,
propagation, and interaction of different particles, as well as the detector
simulation, are performed based on different simulation steps. The ones
relevant in the context of this thesis are explained in the text. This image
was adapted from [32].

CORSIKA:

Another software module for particle generation used in the IceCube simulation is COR-
SIKA, which is a program originally developed at the Karlsruhe Institute of Technology
(KIT) [34]. It is used for simulations of cosmic ray induced air showers. This involves
the propagation and decay of various particles and their hadronic and electromagnetic
interactions with nuclei of the atmosphere [32].

Polyplopia:

Polyplopia is a module of the IceCube simulation that can be used to create coincident
events, which refers to events that are detected within a certain time window ∆t. In the
context of this thesis, it is used together with MuonGun and CORSIKA. Primary muon
events generated by MuonGun are combined with coincident background events from the
CORSIKA air showers by sampling from a Poisson distribution with respect to the time
window ∆t [32].
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Muon Propagation (PROPOSAL):

The in ice propagation of charged leptons generated by MuonGun and CORSIKA is based
on the PROPOSAL simulation tool [5]. This includes the simulation of stochastic energy
losses, as described in section 2.1.2 in the context of muon tracks in ice. Furthermore,
particle decays are simulated [32].

Photon Propagation (CLSim):

The in ice propagation of Cherenkov photons, induced by charged particles generated in
previous simulation steps, is simulated with a tool called CLSim. In this thesis, CLSim
was used in combination with the SnowStorm module.2 SnowStrom can be used to
continuously perturb the ice model used for photon propagation. This is useful for
studies of the systematic uncertainties of IceCube. In contrast to the aforementioned
simulation steps, photon propagation is run almost exclusively on GPUs [32]. It is one
of the computationally most expensive parts of the IceCube simulation (see average
computation time of photon propagation for muon simulation datasets used in the context
of this thesis [10],[18]).

Detector Simulation:

The modeling of the PMT response and DOM electronics is based on the DOMLauncher
module of the IceCube simulation. The overall detector simulation further includes the
generation of random noise induced thermally and by radioactive decays in the DOM
glass, using the software tool Vuvuzela. Additionally, different detector triggers are
simulated to accurately model the data acquisition [32].

Filter Level 1 and 2:

Data processing steps used in the analysis of real data can be applied equivalently to
the simulated data, after simulating the detector response. In this work, filter level
1 and 2 were used, which are filter stages that process the simulated data, based on
the corresponding IceTray scripts listed in Table 20. This includes the event selections
applied for the MESE sample mentioned in section 2.1.3 [17],[32].

The simulation steps described above represent only a part of the simulation capabilities
available in the IceTray software framework. This demonstrates the versatility of the
IceCube simulation. On the other hand, extensive simulations for estimating quantities like
the background reduction efficiency require a lot of computational resources. According to
the computing report 2025, IceCube spent about ∼ 2.4 Mhours on total GPU computing
during the previous year [40]. Assuming a reasonable cost of ∼ 0.30 cts/GPU-hour
yields an estimated budget of ∼ 7.2 ⋅ 105 $/year dedicated to GPU computation. As
mentioned previously, photon propagation is one of the computationally most expensive
simulation steps and relies mostly on GPU computing. As a consequence, it contributes
significantly to this cost. Therefore, reducing the computational resources required for

2 The photon propagation of the testing framework introduced in section 4.1 is based on SnowStorm.
However, the systematic perturbations were defined by a delta distribution. Therefore, the functionality
of SnowStorm was not used in the context of this thesis effectively.

12



2. Theoretical Background

muon background simulations with respect to photon propagation is a main motivation
of this thesis.

2.3. Machine Learning

In general, machine learning is a scientific discipline focused on developing algorithms
that enable computers to evolve certain behaviours based on (training) data [35]. A
resulting machine learning model can be understood as a mathematical mapping from
an input space X to an output space Y , learned from the data [38]. A subcategory of
machine learning is supervised learning. There, the data consists of pairs of elements
(x ∈ X, y ∈ Y ), and the goal is to develop (train) a predictive model y = F (x). This
is achieved by minimizing the expected value of a loss function L(y, F (x)), which is a
measure of the disagreement between the true and predicted values of the elements in Y
[35]. Two major tasks of supervised learning are regression and classification. A model
that makes predictions on an output space consisting of categorical values is referred to
as a classifier. If the output space consists of continuous values, one speaks of a regressor
[38]. The underlying model can be based on a variety of algorithms. In this thesis,
boosted decision tree (BDT) models were trained for classification and regression tasks.
The corresponding algorithm is referred to as gradient boosting, which is explained in
section 2.3.1 below.

2.3.1. Gradient Boosted Decision Trees

The BDT models trained in this thesis are based on the software of scikit-learn (v.1.5.2)
[1],[8],[9]. According to the references of section 1.11.1.2. in the scikit-learn user guide [41],
the fundamental gradient boosted decision tree algorithms implemented by scikit-learn
are closely related to the work of J.H. Friedman. Therefore, this section aims to convey
a general understanding of the gradient boosting algorithm based on [42],[43]. Before
going into detail on that, the concept of decision trees is introduced.

Decision Trees:

A decision tree is an example of a supervised learning model. It is based on the
partitioning of the input space X into disjoint regions by building a tree-like structure
using consecutive binary decisions. The data regions resulting from the binary decisions
are referred to as nodes. An example of a single binary decision is splitting the elements
x of a one-dimensional input space X into two regions L ⊂X and R ⊂X, which are below
and above a reference value xs ∈X [35]:

x < xs ⇒ x ∈ L (2.3)
x ≥ xs ⇒ x ∈ R (2.4)

Starting with a root node that includes all elements of the input data sample (training
data), the decision tree is grown up to a certain level of consecutive binary decisions
referred to as tree depth. The final nodes of the tree are called leaf nodes or leaves and
define the final partitions of the input space [35].
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A tree is grown until a certain stopping criterion is reached. Examples for stopping
criteria of splitting individual nodes are reaching a maximum tree depth or reaching the
minimum number of samples included in a node. Further details on stopping rules can
be found in [35]. The optimal splitting of a node is learned by the model, based on an
impurity function. An example of such a function is the Gini diversity index [35]:

ϕ(p, q) = 1 − p2 − q2 (2.5)

Assuming a classification problem as an example, where each element of the input data
corresponds to one of the two classes A or B, p and q can be interpreted as posterior
probabilities P (A∣t) and P (B∣t) of a sample to belong to class A or B with respect to
node t. The probability of a sample to belong to the node t is given by P (t) [35]:

P (A∣t) = NA/Nt (2.6)
P (B∣t) = NB/Nt (2.7)

P (t) = Nt/N (2.8)

Here N is the total number of training samples, Nt is the number of samples included in
node t, and NA and NB are the respective numbers of samples of the node belonging to
class A or B. Based on these definitions, a minimal impurity is reached if a node only
contains samples belonging to a single class. Referring to the example from above, the
optimal splitting of a node can be found by maximizing the impurity gain ∆I over all
possible values of xs and all elements of the training sample. The impurity gain with
respect to the parent node t0 can be defined by the following expression [35]:

∆I = I(t0) − I(tL) − I(tR) (2.9)

Here I(t) = P (t)ϕ(p, q∣t) is the weighted node impurity. The overall partitioning of the
input space is optimized by growing the whole tree with an algorithm based on this
mechanism. The prediction y of a trained decision tree classifier for a given input x is
the class with the highest posterior probability with respect to the leaf node into which
the sample is sorted. Further details on decision trees can be found in [35].

Gradient Boosting:

The fundamental gradient boosting algorithm, as presented by J.H. Friedman can be
explained by considering a general supervised learning problem of finding a function
F ∗(x) that maps a set of input variables x = {x1, ..., xn}, also referred to as input vector
in this thesis, to an respective output (target) y. For a given training set {yi, xi}Ni=1 of
known pairs (y, x), this function is generally defined by the minimization of the expected
value Ey,x of a loss function L(y, F (x)) [42]:

F ∗(x) = arg min
F (x)

Ey,xL(y, F (x)) (2.10)

The goal of the gradient boosting algorithm is to construct a larger regression model
consisting of multiple simple functions h(x; a) with parameters a = {a1, a2, ...}, referred
to as "weak"- or "base learners", which are added together in an iterative process [42],[43].
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2. Theoretical Background

With that, the function F ∗(x) is approximated by an additive expansion after M
(boosting) iterations [42]:

F (x) =
M

∑
m=0

βmh(x; am) (2.11)

Starting with an initial guess F0(x), the approximation of F (x) is updated based on the
following rule [42]:

Fm(x) = Fm−1(x) + βmh(x; am) (2.12)

In each iteration m the parameters am are determined by fitting h(x; a) by least squares
to the "pseudo"-residuals ỹim based on the training set {yi, xi}Ni=1 and the parameter ρ
[42]:

am = arg min
a,ρ

N

∑
i=1
(ỹim − ρh(xi; a))2 (2.13)

ỹim = −[
∂L(yi, F (xi))

∂F (xi)
]

F (x)=Fm−1(x)
(2.14)

The "pseudo"-residuals are defined by the negative gradient of the loss function, which
is why the algorithm is referred to as gradient boosting [42],[43]. The obtained weak
learner h(x; am) is then used to find the optimal value of the expansion coefficient βm of
the current boosting iteration m by minimizing the loss function [42]:

βm = arg min
β

N

∑
i=1

L(yi, Fm−1(xi) + βh(xi; am)) (2.15)

The resulting algorithm is quite general. It can be combined with a variety of weak
learners h(x; a) and arbitrary differential loss functions L(y, F (x)) for classification or
regression tasks [42],[43]. One example is given below to further illustrate the concept of
gradient boosting.

Gradient Boosted Decision Tree Regressor:

One possible choice of a weak learner is a decision tree regressor, which partitions the input
space into J disjoint regions {Rjm}Jj=1 and predicts a separate constant value for each of
them given by the mean of the corresponding "pseudo"-residuals ȳjm =meanxi∈Rjm(ỹim)
[42]:

h(x;{Rjm}Jj=1) =
J

∑
j=1

ȳjm ⋅ 1(x ∈ Rjm) (2.16)

The function 1(x ∈ Rjm) yields 1 if x ∈ Rjm else it yields 0. Based on this base learner,
Equation 2.12 can be rewritten with the expansion coefficients γjm of the jth leaf node
at the mth boosting iteration [42],[43]:

Fm(x) = Fm−1(x) + ν ⋅ γjm ⋅ 1(x ∈ Rjm) (2.17)

The parameter 0 < ν ≤ 1 is introduced to control how much each boosting iteration
contributes to the overall model. It is referred to as the learning rate. If the absolute
error is used as a loss function L(y, F (x) = ∣y − F (x)∣, one finds that the expansion
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coefficients are equal to the median of the actual residuals in the jth leaf node at
the mth boosting iteration γjm = medianxi∈Rjm(yi − Fm−1(xi)) [43]. A corresponding
gradient boosted decision tree regression model using this loss function is illustrated in
Figure 8 for different settings of the number of boosting iterations M . For that, the
GradientBoostingRegressor() class of scikit-learn (v1.5.2) was used [44]. The learning rate
was set to ν = 0.1 and the maximum tree depth per boosting iteration was configured
with a value of 2. The model was trained on data generated by adding random noise
to a sine function. One can see that the model converges against this function with a
rising number of boosting iterations. In this example with one-dimensional input data,
training a BDT is visually equivalent to fitting an extensive step function to the data.
The effect of the maximum tree depth can also be observed in Figure 8 by the black
curve corresponding to a single boosting iteration. At the maximum tree depth of 2, the
decision tree can have up to four leaf nodes. Therefore, the black curve shows four "steps"
after adding one of these trees to the overall model.

Figure 8: Results of a trained regression model based on the GradientBoostingRegres-
sor() class of scikit-learn (v1.5.2) [44]. The training data (blue dots) was
generated by adding random noise to a sine function (red dashed line). The
model was trained for three different settings of the number of boosting itera-
tions. Solid lines of different colours show the corresponding approximations
of sin(x).

In the context of this thesis, slightly more advanced BDT models were applied to high-
dimensional input spaces (see section 3) [8],[9]. However, at the core, they are based on
the same algorithm as explained above. Therefore, they share the same parameters, which
were mentioned throughout this section, including the learning rate and the maximum
tree depth. These kinds of external model parameters are referred to as hyperparameters.
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2.3.2. Evaluation of Model Predictions

This section explains the main tools and concepts used to evaluate the model predictions
throughout section 3 and section 4.

Data Splitting and Model Validation Concepts:

In Figure 8, one can see that the trained BDT regressor approximates the underlying
sine function of the training data with rising model complexity. However, the training
data carries additional noise on top of the underlying sine function. Therefore, it is
unavoidable that the BDT learns to model the noise component to some extent during the
training process. A complex BDT might approximate this noise quite well, which results
in a high prediction accuracy with respect to the training data. On the other hand, this
leads to lower prediction accuracy on general data based on the same distribution around
the respective predicted function, but with a different random noise component. This
effect of over-fitting the training data is called overtraining [35]. To estimate the model
performance independent of this effect, it is common practice to split the training data
into a training set, only used for training, and a separate test set, only used for evaluating
the model. A possible measure for the final accuracy of the model after training is the
(test) loss obtained for the test set based on the respective loss function L(y, F (x)) used
during training [35]. In this thesis, the loss is referred to as training loss or test loss,
depending on which dataset is used to calculate it.

Having a fixed split of training and test data might also introduce a bias for the model
evaluation, especially for smaller datasets. A method to estimate the uncertainty of the
used measure for the prediction accuracy, depending on the applied split of training and
test data, is cross-validation. Cross-validation works by splitting the data into k disjoint
subsets (folds). Training is performed based on the fraction (1 − 1/k) of the data, while
testing is based on the remaining 1/k fraction. By repeating the training and testing
process for k realizations of these fractions based on the disjoint folds, one can determine
the average of the prediction accuracy measure and its related uncertainty [35].

In this work, a separate validation set is split from the training data in addition to the
test set. This dataset is used to evaluate the early stopping algorithm of the used BDT
models [8],[9]. The validation loss is calculated after each boosting iteration of the related
gradient boosting algorithm. At first, this loss is minimized, similar to the training loss.
With a rising number of boosting iterations, the BDT model possibly starts to overtrain,
which leads to an increase in the validation loss. Early stopping means that the gradient
boosting algorithm is aborted as soon as a significant increase in the validation loss is
observed during training. This prevents the BDT model from over-fitting to the training
data.

Binary Classification Methods:

The BDT classifier trained and optimized as shown in section 3.2.1 is used to sort
simulated muon events of the IceCube Neutrino Observatory into two classes referred
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to as the positive class and the negative class throughout this work.3 Therefore, the
elements of the input data of the BDT are often called events. The BDT classifier predicts
the probability for a muon event to belong to the positive class. Based on this probability
obtained for each muon event, a binary classification can be performed based on different
methods. In this work, two different methods are used, which are explained below.

The predictions of the BDT classifier result in a certain distribution within the output
space given by the interval [0, 1]. One possible approach for a binary classification is to
define a probability threshold that divides the predicted probability distribution into two
sections. Elements of the input space (muon events) with a corresponding prediction
above this threshold are considered as positive events. This classification can be true or
false depending on whether the event actually belongs to the positive class. The same
holds for elements of the input space with a prediction below the threshold, which are
considered as negative events. Again, the classification can be true or false depending on
whether the event actually belongs to the negative class. This results in four prediction
categories: true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) [35]. The probability threshold is typically set at a fixed value that minimizes the
number of false predictions. Based on the number of events in each category, several
quantities for measuring the performance of the classifier can be defined (see later in this
section).

A second approach to separate elements of the input space into two classes is using a
rejection sampling method. In contrast to the aforementioned fixed-threshold approach,
this method allows for dynamic event classification based directly on the predicted
probabilities. In the context of this thesis, it is defined as follows. Each element i of
the input sample has a predicted probability pi and a corresponding weight wi = 1/pi

assigned to it. If pi is smaller than a minimum accepted probability of pmin = 0.1 % it is
redefined to be equal to this probability (pi = pmin). This is done to avoid overly large
weights for predictions very close to zero. An event i is classified as accepted (positive)
or rejected (negative) by comparing pi to a random number nrand,i within the interval
[0, 1]:

nrand,i < pi ⇒ event i is accepted (positive) (2.18)
nrand,i ≥ pi ⇒ event i is rejected (negative) (2.19)

Consequently, events with a probability pi → 1 are most probably classified as positive,
while events with pi → 0 are most probably classified as negative. The advantage of
this approach is that one does not have to search for an optimal probability threshold
that minimizes the number of false predictions. On the other hand, this approach
reduces transparency regarding whether a given prediction is true or false, due to
the probability-based sampling. The accepted (positive) event sample obtained by this
approach is weighted based on the weights wi. The effective sample size Neff ≤ n
equivalent to an unweighted sample is given by the following formula, where n is the
number of positive events obtained by the rejection sampling [45]:

Neff = (
n

∑
i=1

wi)
2
/(

n

∑
i=1

w2
i ) (2.20)

3 The actual meaning of these classes in the context of this work is explained along with the results
presented in ongoing sections (see Table 3).
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Measures of Classifier Performance:

Related to the prediction categories of the fixed-threshold approach, several quantities
can be defined, which help to measure the classifier’s performance. The value of each of
these quantities depends on the applied probability threshold [35]:

accuracy = TN +TP
N

(2.21)

error rate = FN + FP
N

(2.22)

Rpos =
FP +TP

N
(2.23)

Rneg =
FN +TN

N
(2.24)

FPR = FP
TN + FP

(2.25)

TPR = TP
TP + FN

(2.26)

FNR = FN
TP + FN

(2.27)

These quantities are typically determined with respect to the test set. The total number
of events in the test set is given by N . The variables TP, FP, TN, and FN are the number
of events in the respective prediction category. The accuracy is the fraction of events
with a true prediction independent of the class. The error rate is the inverse of the
accuracy and defines the fraction of events with a false prediction. A high accuracy (low
error rate) is an indicator of a well-performing classifier. The rates Rpos and Rneg are the
fractions of events classified as positive or negative, respectively, independent of whether
the predictions are correct or not. Rneg is used as a metric during the optimization
of the BDT classifier as presented in section 3.2.1. Further information in this regard
can be found at the beginning of section 3.2. The false positive rate FPR and the
true positive rate TPR are used to define the Receiver Operating Characteristic (ROC)
curve (see Figure 9), which is given by plotting TPR against FPR for different values
of the applied probability threshold [35].4 The shape of the ROC curve is a qualitative
measure of the classifier’s performance. The closer the curve is to the upper left corner
of the plot, the better the underlying model. If the predictions of the model are random,
as for a coin toss, the ROC curve is equal to the angle bisector of the plot (see "no skill"
line in Figure 9). In that way, the performance of different models can be compared,
which is useful for optimizing hyperparameters (see section 3.2.1). A quantification can
be achieved by calculating the area under the ROC curve (0 ≤ AUC ≤ 1). The larger this
area is, the better the underlying model [35]. In this thesis, a variation of the ROC curve
is used, where the false negative rate FNR is plotted against FPR, referred to as the
FNR-FPR curve. Since FNR = 1 −TPR, the area under the FNR-FPR curve has to be

4 Note that the values of TP, FP, TN, and FN are often normalized by N and therefore referred to as
normalized rates in this thesis. They should not be confused with the false positive rate FPR, the
true positive rate TPR, or the false neagtive rate FNR.
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minimized for an optimal model, and the curve itself has to converge to the lower left
corner of the plot instead. The "no skill"-line goes from the upper left to the lower right
corner for the FNR-FPR curve.

Figure 9: Example of a ROC curve (TPR against FPR) of a binary classifier. The red
dot corresponds to a probability threshold of 0.35 applied to the underlying
probability distribution. The orange dotted line marks the expected ROC
curve of a model with random predictions corresponding to a fair coin toss.
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3. Development of a Classifier

The IceCube simulation, as described in section 2.2, is a crucial tool for modelling the
signal and background processes for the IceCube Neutrino Observatory. As was pointed
out in section 2.1.3, the background reduction efficiency is an important parameter that
has to be estimated to quantify how effectively background events, like cosmic-ray induced
muons, are filtered out during data processing. Therefore, large samples of background
muons have to be simulated. In section 2.2 it was also explained that these simulations
are of high computational and, with that, financial cost. In this context, a large amount
of computational resources is consumed by the propagation of Cherenkov photons, which
are induced by the muon energy losses. Therefore, reducing the calculation time that has
to be spent on simulation steps like the photon propagation is advantageous for future
simulations of background muons.

In the current state of the simulation chain, photon propagation is performed for all
muon events that were generated and propagated in previous simulation steps. In later
simulation steps, background reduction is performed by applying multiple filters to those
events. In that way, a large amount of background muons is removed from the final event
sample, although a lot of computational resources were spent in the first place.

In order to contribute to the solution of this efficiency problem, a BDT classifier (see
section 2.3.1), was trained as part of this thesis. As shown below in the current section,
the classifier is able to differentiate between muon events that pass the MESE filter (see
section 2.1.3) and events that are rejected by it, based on the muon energy loss information.
By inserting this model right before the simulation step of photon propagation (see
section 2.2), it is possible to remove events from the simulation chain that would be
discarded with a high chance by the MESE filter in later simulation steps. With this
hybrid simulation approach of combining traditional simulation methods with a machine
learning model, computational resources can be saved.

The following section 3.1 shows a proof of concept for this idea. It shows the evaluation
and results of a BDT regression model that was trained on data generated by a toy
simulation with several input vector and hyperparameter settings. In section 3.2, the
optimization and results of a BDT classification model that was trained on data from
the IceCube simulation are discussed. In section 3.2.2, the resulting efficiency of the
optimized BDT is compared with the results of a recurrent neural network (RNN) model
that was trained for the same purpose [4].
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3.1. Proof of Concept with Data of the ToyCube Simulation Tool

In order to show that a hybrid simulation approach, as proposed in the beginning of
section 3, conceptually works, a BDT regression model of the python library scikit-learn
[1] was trained on data that were generated by the ToyCube simulation tool [2],[4].
Different hyperparameter settings as well as different construction methods of the BDT
input vector were analysed. Details on the generation of training data, training of the
model and the resulting model predictions are presented below.

3.1.1. ToyCube Simulation Tool

Simple access to training data is generally useful for the development of machine learning
models. Therefore, the ToyCube simulation tool was developed in cooperation with a
Bachelor student at ECAP (B. Mayer), in order to simulate the propagation and energy
losses of muons in ice and to estimate the number of induced photons that are detected
in the IceCube veto DOMs (see section 2.1.3). ToyCube was implemented in Python,
specifically using the PROPOSAL library for muon propagation in ice [5]. As section 3.1.2
shows, the stochastic energy losses of the respective muon event serve as input of the
BDT regression model, while the respective number of resulting photons detected in the
veto region of IceCube is used as the respective training target. Figure 10 illustrates
the veto region within the IceCube detector array, as it is defined in the context of this
simulation tool. A detailed review of ToyCube and the development of a RNN regression
model can be found in the Bachelor’s thesis of in B. Mayer [4]. The related source code
to that thesis can be found in the main branch of the ToyCube git repository [2]. The
source code related to this Master’s thesis and the development of the BDT regression
model can be found in the side branch of the same repository [3].5 In the following,
information on how ToyCube generates training data is provided.

Each muon event simulated by ToyCube has a random initial position and initial propa-
gation direction within the IceCube coordinate system. The initial position is defined
by assigning a random position r⃗disc on a disc of radius r = 800 m to each muon of a
given sample. The disc is centered at (x = 0 m, y = 0 m, z = 930 m) and perpendicular to
the z-axis. Each position vector r⃗disc is rotated by a random normalized direction vector
d⃗ as defined by equation (4) of [4]. The initial position is defined as the point in space
to which r⃗disc points after the rotation is applied. The (initial) propagation direction
is defined as −d⃗. Initial positions and propagation directions of a sample of 200 muons
are illustrated in Figure 11 before and after the rotation is applied. Furthermore, each
muon is generated with a random initial energy between 0.1 TeV and 103 TeV. With this
assignment of muon properties, it is possible to simulate the propagation of muons along
random particle tracks through the detector.

5 Whenever ToyCube is mentioned in this work, it refers to the code and implementation given by that
side branch.
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Figure 10: Positions of the IceCube veto DOMs (black dots) and energy losses along
the track of a muon, as defined and generated by ToyCube. Different en-
ergy loss types have different colours. The size of the energy loss dots is
scaled with respect to the deposited energy within the ice.

The actual simulation of muons is based on the aforementioned PROPOSAL python
library, which generally can be used to simulate the propagation of charged leptons and
gamma rays through different media. In the specific case of the ToyCube simulation,
charged muons are propagated through a homogeneous ice sphere, which is defined by
the config_minimal.json file [3]. Four different types of discrete particle interactions
of muons within ice are simulated: ionization, electron pair production, photo-nuclear
interactions and bremsstrahlung. Based on the respective cross section, PROPOSAL is
able to calculate the energy losses along the muon particle track. Each energy loss has
a unique position r⃗loss and amount of deposited energy Eloss assigned to it. Figure 10
shows the particle track of a muon propagating through the IceCube detector array, as
generated by ToyCube.
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Figure 11:

Left plot: Random positions (red
dots) of 200 muons on a disc at z =
930 m before the random rotation is
applied, compared to the positions of
the IceCube veto DOMs (black dots).

Right plot: Initial positions (red
dots) and propagation directions (blue
arrows) of 200 muons as simulated by
ToyCube, compared to the positions
of the IceCube veto DOMs (black
dots).

For a given energy loss and veto DOM, the number of photons induced by the energy
loss and detected by the veto DOM is estimated by using the following formula, which
depends on Eloss and the distance r between r⃗loss and the position of the veto DOM
[4],[6]:

Nph(Eloss, r) = Eloss
300 TeV

⋅ µ(r) = Eloss
300 TeV

⋅ n0A ⋅ e
− r

λp

4πλcr ⋅ tanh ( r
λc
)

(3.1)

The propagation length λp is defined as λp =
√

λaλe/3/1.07, with the absorption length
λa = 98 m and effective scattering length λe = 24 m. The constant λc is defined as
λc = λe/3ζ, with ζ = exp (−λe/λa) [6]. The product of the number of emitted photons
n0 by a point source and the effective photon collection area A of the receiving sensor
was determined by fitting µ(r) to simulation data obtained with Monte-Carlo photon
propagation [4],[7]. The resulting value is given as n0 ⋅A = (6.4 ± 0.5) ⋅ 107 m2 [7].

The total number of photons N tot
ph that are induced by a single muon event and detected by

the respective veto DOMs is calculated in the following way: At first, Nph is calculated for
each loss of a muon event with respect to each veto DOM. This leads to number of losses
times number of veto DOMs values of Nph. In a second step N tot

ph is obtained by summing
over all the resulting values of Nph.

For some muon events, no energy loss is generated during simulation. These events are
excluded from the datasets produced by ToyCube, since the BDT needs at least one
energy loss as input to make a prediction. In order to minimize the size of the resulting
training data files and save computational time during training, a filter condition is
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applied to every energy loss of each simulated muon, based on the number of detected
photons per loss with respect to all veto DOMs Nveto

ph . The filter condition is that all
energy losses which yield Nveto

ph <= 0.01 are excluded from the training data. Since all
the excluded energy losses hardly contribute to the total number of detected photons
N tot

ph , it is assumed that no relevant information is lost by applying this filter. If a muon
event has no energy losses after applying the filter, it is removed from the simulated
dataset completely. Figure 12 shows the same muon track as Figure 10 but after the
filter condition is applied.

In the context of ToyCube, the BDT regression model is supposed to predict N tot
ph for each

muon event, based on the filtered energy losses of the respective muon. By comparing
the predicted number of photons in the IceCube veto region to a threshold, an event
filter can be modeled. If the predicted value is above the threshold the event passes the
filter, if the predicted value is below the threshold it is rejected by the filter. In that way,
a first impression on the performance of a classifier model can be obtained, as discussed
in the following subsections of section 3.1.

Figure 12: Positions of the IceCube veto DOMs (black dots) as defined in ToyCube.
Compared to Figure 10, this plot shows the energy losses along the track
of a muon, after the filter condition mentioned in the text was applied.
Different energy loss types have different colours. The size of the energy
loss dots is scaled with respect to the deposited energy within the ice.
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3.1.2. Implementation of a BDT Regression Model

The BDT regression model that was trained on ToyCube data is defined by the
sklearn.ensemble.HistGradientBoostingRegressor() class of scikit-learn (v1.5.2) [1],[8].6
In general, this model is related to a gradient-boosted decision tree as described in
section 2.3.1. In addition, it preprocesses the input vectors before training. In particular,
it sorts each feature of a given set of input vectors into up to 256 integer-valued bins. For
large datasets (10000 samples and above), this leads to a much faster training algorithm,
since the input consists of a fixed histogram-like structure instead of continuous values.
This is advantageous for the use case of this work, since the amount of background muons
produced in the IceCube simulation is typically larger than 10000 events. This also
applies to the ToyCube simulation tool.

Before the BDT regressor was trained, the training input and target had to be defined. As
described in section 3.1.1, the training data generated by ToyCube provides the following
information for each muon event: The position r⃗loss and deposited energy Eloss of each
energy loss that passes the filter condition Nveto

ph > 0.01 and the number of photons N tot
ph

that are induced by those losses and detected by the IceCube veto DOMs. The latter
is supposed to be predicted by the BDT regressor based on the filtered set of values of
r⃗loss and Eloss as input. Thus, the training target was defined as the respective value of
log10(N tot

ph ) for each sample. The logarithm was applied to restrict the range of the target
values, since N tot

ph covers several orders of magnitude. By definition, the BDT regressor
expects an input vector of the same length for each sample. Since the number of energy
losses can be different for each muon, r⃗loss and Eloss can not be used as input directly.
Instead, the energy losses of each sample were mapped to a fixed number of values to
create input vectors of a suitable length. This was achieved by defining a binning grid
that splits the IceCube detector volume into a fixed number of three-dimensional spatial
bins, with energy losses assigned according to their positions. Different binning grid
versions were tested on ToyCube data. They are explained in more detail below.

The first version is based on two concentric cylinders of different radii (rinner = 380 m,
router = 700 m) that are centered at (x = 0 m, y = 0 m, z = 0 m) within the IceCube coordi-
nate system (see Figure 13). The top and bottom surfaces of both cylinders are oriented
perpendicular to the z-axis. Both cylinders are of the same height, which means both
reach from z = −600 m to z = 600 m. The actual bins are defined by dividing the volume
between the inner and outer cylinder into nseg circular segments. Each of those segments
has the height of the cylinders and an angular range of α = 360°/nseg. The volume of the
inner cylinder is used as an additional bin.

For each muon sample the position r⃗loss of each corresponding energy loss is compared
against the following condition for the ith bin (i ∈ {0, ..., nseg−1}) in cylindrical coordinates
(ρ, ϕ, z):

(−600 m < z < 600 m) ∧ (rinner ≤ ρ < router) ∧ (i ⋅ α ≤ ϕ < (i + 1) ⋅ α) (3.2)

And against the following condition if i = nseg:

(−600 m < z < 600 m) ∧ (ρ < rinner) (3.3)

6 For simplicity the sklearn.ensemble.HistGradientBoostingRegressor() model is referred to as BDT regressor
in this thesis.
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An energy loss is located within the ith bin if the corresponding condition is met. The
information assigned to the ith bin is given by the summed energy Ebini

= ∑lossesi
Eloss

with respect to all energy losses that are located within the respective bin.

The ith component of the corresponding input vector of a muon event is defined as
log10(Ebini

). The logarithm was applied for the same reason as for the training target.
Different variations of the cylindrical binning grid were used to train the BDT regressor.
At first, the number of circular segments was set to nseg = 8, resulting in nbins = 9 bins
in total, but also versions of the cylindrical binning grid with nseg = 16 (nbins = 17) and
nseg = 72 (nbins = 73) were tested (see section 3.1.3). Figure 13 shows the position of the
cylinders with respect to the IceCube veto DOMs in the case of nseg = 8.

Figure 13: IceCube veto DOMs (blue dots) as well as inner cylinder (red) and outer
cylinder (black) of the binning grid, which is used to define input vectors
of a fixed length for the BDT regression model. The black lines at the
outer cylinders’ top and bottom indicate the bins between the cylinders,
in the case of nseg =8. Rotated variations of this plot can be found in
section A.1.1.

The second approach to defining the binning grid is based on a hexagonal bin structure,
which reflects the hexagonal detector geometry of IceCube. As shown in Figure 14, this
grid consists of multiple regular hexagonal prisms (bins) which form a larger hexagonal
prism in total. Each bin reaches from z = −600 m to z = 600 m. With that, the hexagonal
and the cylindrical binning grids are equal in height. To roughly match the grid size
within the xy-plane as well, the side length of the large hexagonal prism is defined by 5
bins with a hexagon radius of rhex = 108 m.7 Additionally, the hexagonal grid is rotated
anticlockwise with respect to the z-axis by 8°.

7 Here rhex is defined in the xy-plane as the radius of the circumcircle of the respective hexagon prism.
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Figure 14: IceCube veto DOMs (blue dots) as well as the hexagonal binning grid
(black), which is used to define input vectors of a fixed length for the
BDT regression model. Rotated variations of this plot can be found in
section A.1.1.

This rotation approximates the tilt of the IceCube string array within the IceCube
coordinate system. Based on the resulting grid of 61 bins, the construction of the BDT
input vector relies on the same concept as for the cylindrical binning approach. The
conditions that must be met for assigning an energy loss to a specific bin were adjusted
to account for the hexagonal geometry. For each muon sample, the distances between the
projection of r⃗loss onto the xy-plane and each bin centre in the xy-plane are calculated
for each energy loss. Then the respective energy loss is assigned to the bin whose centre
is closest in the xy-plane. The corresponding distance in the xy-plane is called dmin.
Each energy loss included in the input vector has to be located within the binning grid.
Therefore the following condition must be fulfilled for r⃗loss(x, y, z) and dmin:

(−600 m < z < 600 m) ∧ (dmin ≤ rhex) (3.4)

For both the cylindrical and the hexagonal binning approach, the region close to the
veto DOMs, where most of the filtered energy losses are expected to be located (compare
Figure 12), is fully covered by the respective binning grid. Therefore, most of the
information on the deposited energy is expected to be preserved in both cases. Having
multiple bins ensures that information on the muon direction and location is encoded in
the respective input vector to a certain extent. However, due to differences in geometry
between the binning approaches, this kind of information is encoded differently depending
on the applied binning method. The next subsection shows the impact of these differences
and of various hyperparameter configurations on the training process and the performance
of the BDT regressor.

28



3. Development of a Classifier

3.1.3. Hyperparameter Optimization of the BDT Regression Model

The BDT regressor, as defined in [8], has various hyperparameters that can be adjusted
to optimize its performance. In the context of this work, parameter scans were performed
with respect to three of those, max_iter (MI ), learning_rate (LR), and max_depth
(MD). All remaining parameters were set to the respective default setting (see Table 17
in the appendix). With MI, the maximum number of boosting iterations applied during
training is adjusted. LR is equivalent to the learning rate ν described in section 2.3.1.
The maximum depth of the decision tree in each boosting iteration is controlled by
MD. Maximum tree depth means the number of decision splits from the root node to
the deepest leaf node of the tree (see decision trees in section 2.3.1). The assigned
values during each parameter scan are listed in Table 1. In each scan, the BDT re-
gressor was trained once for each of the 320 resulting hyperparameter combinations.
As mentioned in section 3.1.2, different binning grid configurations were compared.
This means one parameter scan was performed for each of the following configurations:
cylindrical grid with nbins = 9, nbins = 17, or nbins = 73, and hexagonal grid with nbins = 61.

hyperparameter applied values
max_iter (MI ) [250, 500, 750, 1000]

learning_rate (LR) [1 ⋅ 10−3, 1 ⋅ 10−2, 5 ⋅ 10−2, 1 ⋅ 10−1]
max_depth (MD) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Table 1: Values of MI, LR, and MD involved in each parameter scan.

For the training, a dataset of 87563 muon samples was generated with the ToyCube
simulation tool. Before the parameter scans were performed, a fraction of 10 % of this
dataset was separated as a test set. Since scikit-learn provides an early stopping algorithm
for the BDT regressor, the remaining 90 % subset was randomly split into a 90 % training
set and a 10 % validation set. The training/validation split was performed individually
for each training run. The default loss function that is applied for the BDT regressor is
the ’squared_error ’. In scikit-learn (version 1.5.2 ), this function is defined as [8]8:

L(ytrue, ypred) = −
1

2 ⋅ nsamples
⋅

nsamples

∑
i=0
(ytrue,i − ypred,i)2 (3.5)

Applied to this work ytrue,i denotes the true value of log10(N tot
ph ) of sample i, as calculated

by ToyCube. The respective prediction of that value from the BDT regressor is ypred,i.
The variable nsamples is the number of samples in the respective dataset. With default
settings, early stopping is triggered after a certain boosting iteration, if the calculated
validation loss after none of the 10 latest boosting iterations has improved compared to a
reference value. The reference value is the 11th-last validation loss plus a tolerance of
1 ⋅ 10−7. A general explanation of the terms training set, test set, validation set, and early
stopping can be found in section 2.3.2.

8 In any figure of section 3.1.3 that shows the training, validation, or test loss, the respective loss corresponds
to this function multiplied by −2.
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After the training process, each hyperparameter scan was evaluated based on the training,
validation, and test loss. The corresponding results of the parameter scan with respect
to the cylindrical binning approach (nbins = 9) are illustrated in Figure 15 and Figure 16.
Figure 15 shows the training and validation loss over the boosting iteration at MI = 1000
for certain combinations of MD and LR. In Figure 16 the test loss Ltest is plotted over
MD for all combinations of MI and LR. The impact of different hyperparameter settings
on the training, validation, and test loss is described below.

The training and validation loss curves are almost identical for any given hyperparameter
setting (see Figure 15). Therefore, overfitting to the training data was not observed for
any of the chosen settings. No peaks or any abrupt changes were observed in the training
and validation loss curves. Early stopping is mostly triggered at higher learning rates
(LR ∈ {0.05, 0.1}) combined with values of MD ≥ 4 and MI > 250. This can be seen in
Figure 16 where corresponding loss curves stop before MI = 1000 is reached. With rising
MD, early stopping is triggered at earlier boosting iterations. Still, the final loss is similar
(compare solid curves of the lower subplots of Figure 15). This implies that a BDT model
consisting of many shallow decision trees behaves similarly to a BDT model consisting of
a few deep decision trees.

Figure 15: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration (MI = 1000) for the cylindrical binning with nbins = 9.
Each subplot shows two pairs of curves and corresponds to a certain value
of MD. Each pair of curves corresponds to a certain value of LR: LR = 0.1
(solid curves), LR = 0.01 (dashed curves).
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This also shows that adding more or using deeper decision trees does not have an impact
on the final loss if the internal structure of the BDT model reaches a certain level of
complexity. Figure 15 also shows that models with a lower learning rate (dashed loss
curves) need more boosting iterations to reach the same loss as models initialized with a
higher learning rate (solid loss curves). This is because the learning rate controls how
much each decision tree contributes to the overall BDT model. A lower learning rate
results in a smaller contribution to the BDT model of each tree. This leads to a smaller
shrinkage of the loss per boosting iteration. At the same time, the used values of MI set
an upper limit to the number of boosting iterations. Therefore, the final training and
validation loss is generally lower for models with higher learning rates.

This is also confirmed by the results of the test loss in Figure 16, since the red data curves
corresponding to LR = 0.1 generally show the lowest test loss. Comparing the different
subplots of Figure 16 shows that an increase of MI only leads to a visible difference in
the test loss, if learning rate and maximum depth are set to values of about LR = 0.001
and MD < 5. This is because otherwise early stopping tends to be triggered during
training, and with that the maximum boosting iteration given by MI is never reached.
Therefore, at higher values of LR and MD, the test loss does not depend on MI anymore.
Furthermore a saturation of the test loss at Ltest ≈ 0.32 is observed for LR ≥ 0.05, if MD
is increased beyond a value of about 10.

Figure 16: Calculated loss for the test set against MD for the cylindrical binning with
nbins = 9. Each subplot shows a set of four curves and corresponds to
a certain maximum boosting iteration MI. Each curve within a subplot
corresponds to a certain value of the learning rate LR.
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This observation is related to the fact that, after a certain point, adding more or deeper
trees to the BDT model does not significantly impact the final training and validation
loss. This also applies to the test loss, which leads to the aforementioned saturation
effect.

In summary, the best results for the test loss in the case of cylindrical binning with
nbins = 9 were observed with a value of Ltest ≈ 0.32, for learning rates of LR ≥ 0.05, and
maximum depths of MD > 10. Additionally, a maximum boosting iteration of MI ≥ 500
seems to be a good choice. This ensures that boosting iterations are applied during
training until early stopping is triggered and not until MI is reached. With that, a broad
range of hyperparameter settings was found that yield approximately equal results for
the test loss.

For the parameter scans corresponding to the other three binning grid versions, the
general behaviour of the losses with respect to MI, LR, and MD was similar. Equivalent
plots to Figure 15 and Figure 16, can be found in section A.1.2 of the appendix. A
difference that was observed between the scans is that the value of MD above which the
test loss saturates, shifts to larger values for increasing values of nbins. This shows that
for larger input vectors, a more complex internal BDT structure is needed to reach the
same test loss. Figure 17 illustrates that, by showing a plot of the test loss over MD
for the different versions of the binning grid. To ensure comparability, the plot shows
the results corresponding to the values of MI = 1000 and LR = 0.1. With that, the test
loss reaches a saturated state at higher values of MD, independent of the binning grid
version.

Figure 17: Calculated loss for the test set against MD at MI = 1000, LR = 0.1. Each
curve corresponds to a different binning grid version: cylindrical with
nbins = 9 (orange squares), nbins = 17 (blue dots), nbins = 73 (black crosses),
and hexagonal with nbins = 73 (red diamonds).
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Increasing the number of bins for the cylindrical binning approach from nbins = 9 to
nbins = 17 or nbins = 73 did not lead to a significant improvement in the test loss at
values of MD > 10, where the saturation is observed. A difference was recognized for the
hexagonal binning (red curve in Figure 17). Above a maximum depth of MD = 5, the
test loss of the hexagonal binning is lower than for the cylindrical binning approaches.
The lowest value of the test loss across all scans was observed for the hyperparameters
MI = 1000, LR = 0.1, and MD = 20, in combination with the hexagonal binning, with a
value of Ltest ≈ 0.21.

Therefore, the hyperparameter setting MI = 1000, LR = 0.1, and MD = 20 was chosen to
further compare the different binning approaches with respect to the predictions on the
test set. Figure 18 shows two different plots for each binning approach. In the left column,
the predictions ypred are plotted over the respective true value ytrue of log10(N tot

ph ) as
calculated by ToyCube. A black dashed line marks the angle bisector, where ypred = ytrue.
The residuals (ypred − ytrue) with respect to that line are an indicator of how accurate the
predictions of the respective model are. The median and 68 % confidence interval of the
residuals were calculated based on all samples of the test set. The respective values for
each binning approach are listed in Table 2. The 68 % confidence interval was determined
by calculating the 16 % and 84 % quantiles. In addition, a bin-wise calculation of the
median and the 68 % confidence interval of the residuals was performed based on 50 bins
along the x-axis (ytrue). The resulting values are shown as orange and red lines in the
plots of the left column. In the right column of Figure 18, the residuals are plotted over
the binned initial muon energy. This means that the corresponding x-axis is divided into
10 energy bins. The median and 68 % confidence interval of the residuals were calculated
per energy bin and are shown as blue data points.

binning approach cyl., nbins = 9 cyl., nbins = 17 cyl., nbins = 73 hex., nbins = 61
median ± σ −0.02+0.50

−0.51 −0.01+0.50
−0.51 0.01+0.49

−0.52 0.01+0.41
−0.40

Table 2: Median and 68 % confidence interval of the residuals (ypred−ytrue) based on the
test set. Each value corresponds to a certain binning approach.

The values given in Table 2 show that the overall median of the residuals is quite close
to 0 for all binning approaches. The hexagonal binning approach shows the smallest 1σ
spread of the residuals around the respective median, which is consistent with the fact
that it also achieves the lowest test loss. Based on Table 2, the predictions do not seem
to be significantly skewed to larger or smaller values compared to the true values on
average. The per bin calculation of the median and confidence interval in the left subplots
of Figure 18 confirms these observations for the range of about ytrue = −0.5 to ytrue = 3.
Below ytrue = −0.5, which corresponds to events with a low number of photons N tot

ph in
the veto region, the predictions are skewed to comparably higher values. Independent
of the binning approach, the model seems to overestimate ypred in that range. Above
ytrue = 3 there seems to be an underestimation of ypred instead. The reason for this
underestimation might be that there are fewer training samples above ytrue = 3 compared
to other regions along the x-axis. Therefore, many events above ytrue = 3 might end up
in the same branch of the decision tree and have similar predictions across the range of
ytrue > 3. The origin of the overestimation below ytrue = −0.5 is discussed below.
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Figure 18: Hyperparameters: MI = 1000, LR = 0.1, MD = 20. Left: Predictions
ypred against respective true values ytrue of log10(N tot

ph ) based on the test set
(blue data points). The red lines show the 68 % confidence interval of the
residuals with respect to the black dashed line. The orange line shows the
corresponding median of the residuals. Median and confidence interval were
calculated per bin based on 50 bins along the x-axis. Right: Residuals
against binned initial muon energy. Top to bottom: Plots with respect to
cylindrical grid with 9, 17 and 73 bins and hexagonal grid with 61 bins.

34



3. Development of a Classifier

Based on Equation 3.1, low values of N tot
ph arise if a muon propagates at a large distance

to the veto region, or if it has a low energy deposition within the veto region, or if both
cases apply. All those cases yield input vectors where most of the entries are 0 or close
to 0. These kinds of input vectors seem to be problematic during training and most
probably are the origin of the overestimation of ypred below values of ytrue = −0.5. The
subplots in the right column of Figure 18 are consistent with that consideration. The
only energy bin that shows a significant shift of the median of the residuals to positive
values across all binning approaches is the leftmost energy bin. This shows that there is
an overlap between events with a low number of photons in the veto region and events
with a low initial energy. If a muon has a low initial energy, it tends to decay after a
relatively low number of energy losses. Therefore, the overall energy deposition within
the veto region is smaller for those events. This leads to input vectors where most of the
entries are zero or close to zero. The subplots in the right column of Figure 18 also show
that the hexagonal binning approach exhibits the smallest 1σ spread of the residuals
around the median, across different initial muon energies.

Besides the analysis of different binning approaches, training a regression model on
ToyCube data can be used to get a first impression of the classification of muon events.
As described at the beginning of section 3, a classification model is supposed to be
implemented that divides muon events into two classes: The positive class, which
corresponds to events that pass a certain event filter and are fully simulated, and the
negative class, which corresponds to events that are rejected by that filter and therefore
excluded at an early stage of the IceCube simulation.9 In the context of the regression
model, an event filter (compare section 2.1.3) can be mimicked by introducing a photon
threshold with respect to the number of photons N tot

ph detected in the IceCube veto region.
If a muon event produces N tot

ph ≤ 5 photons, it is classified as a positive event. Events
with N tot

ph > 5 are classified as negative events. As Figure 18 shows, the regression model
does not make perfect predictions. This leads to four prediction categories: true negative
(TN), false positive (FP), false negative (FN), and true positive (TP) as introduced in
section 2.3.2. The meaning of these categories is explained in Table 3.

Figure 19 shows the left subplot of Figure 18 for the hexagonal binning approach. Solid
green lines and labels of the prediction categories were added to illustrate how events are
classified within the prediction space of the regression model. The four binning versions
were compared with respect to the event classification by applying the photon threshold,
as shown in Figure 19. The resulting classification rates of the prediction categories,
normalized with respect to the total number of events N in the test set, can be seen in
Figure 20. Furthermore the corresponding values of accuracy, error rate, Rpos, and Rneg
as defined in section 2.3.2 are listed in Table 4.

Independent of the binning approach, an accuracy of > 89 % was observed. This proves
the concept of a BDT classification model, as it is proposed at the beginning of section 3.
With ratios of FP = 5.24 % and FN = 3.12 %, the most accurate classification results were
found for the hexagonal binning approach. This is consistent with the prior observations
of the hexagonal binning approach showing the smallest 1σ spread of the residuals and
the lowest test loss.

9 In this work "fully simulated" means a simulation up to filter level two stage within the IceCube data
analysis.
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prediction category meaning
True Negative (TN) Events with a correct prediction of being rejected by the event

filter. These events are excluded at an early stage of the
IceCube simulation. The more TN events, the more
computational resources are saved.

False Positive (FP) Events with a wrong prediction of passing the event filter.
These events are fully simulated, although they should have
been excluded at an early stage of the IceCube simulation.9 A
high amount of FP events leads to unnecessary event
processing.

False Negative (FN) Events with a wrong prediction of being rejected by the event
filter. These events are excluded at an early stage of the
IceCube simulation, although they should have been fully
simulated.9 A high amount of FN events leads to a loss of
valid background muon simulations. This may distort the
estimation of the muon background reduction efficiency.

True Positive (TP) Events with a correct prediction of passing the event filter.
These events are fully simulated and proceed to later stages of
the simulation and analysis.9

Table 3: Explanation of the prediction categories used for muon event classification.

Figure 19: Classification of the muon events into prediction categories, based on the
left subplot of Figure 18 for the hexagonal binning as an example. The cate-
gories are true negative (TN), false positive (FP), false negative (FN), and
true positive (TP). The solid green lines mark the classification threshold of
N tot

ph = 5 photons.
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Figure 20: Classification rates normalized with respect to the total number of events in
the test set. Prediction categories: true negative (TN), false positive (FP),
false negative (FN), and true positive (TP). Each subplot corresponds to a
certain binning grid version.

binning approach cyl., nbins = 9 cyl., nbins = 17 cyl., nbins = 73 hex., nbins = 61
accuracy [%] 89.19 89.38 89.77 91.64
error rate [%] 10.81 10.62 10.23 8.36

Rpos [%] 40.68 40.25 41.56 42.24
Rneg [%] 59.32 59.75 58.44 57.76

Table 4: Values of accuracy, error rate, Rpos, and Rneg as defined in section 2.3.2,
corresponding to the ratios of the prediction categories shown in Figure 20.
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In section 3.1, the ToyCube simulation tool was introduced, which was designed to
simulate muon tracks within the ice and estimate the number of photons in the IceCube
veto region. Based on this toy simulation, a training dataset was generated, which
was used to train a BDT regression model [8]. Hyperparameter scans were performed,
varying the maximum number of boosting iterations MI, the learning rate LR, and
the maximum depth of the decision trees MD. These scans were repeated for different
methods of constructing the BDT input vector, each based on a spatial binning of the
muon energy losses. In all scans, a saturation effect of the test loss was observed for a
broad range of hyperparameter settings. Independent of the binning method, a saturated
test loss was observed for the configuration MI = 1000, LR = 0.1, and MD = 20. Using this
hyperparameter setting, the binning methods were compared in terms of test loss, the
1σ spread of the residuals (ypred − ytrue), and the results of a binary event classification.
The best results were found for the hexagonal binning. Therefore, it was selected for the
further development of a BDT classification model, which was trained on data from the
IceCube simulation. In the following section, the optimization of this classification model
is discussed in more detail.
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3.2. Training with IceCube Simulation Data

The main goal of this thesis is to develop a machine learning model that can differentiate
between muon events that pass the MESE event filter and events that are rejected by it,
at an early stage of the IceCube simulation. The previous section 3.1.3 showed that a
BDT regression model was successfully trained on data from a toy simulation. It predicts
the number of photons detected in the IceCube veto region based on the muon energy
losses. By applying a threshold to the predicted number of photons in the veto region,
an event filter was simulated. With that, a classification of muon events with an error
rate of 8.36 % was achieved.

In the next stage of development, a BDT model was trained on data generated by
the IceCube simulation. In particular, parts of the muongun 22552 dataset were pro-
vided, including the energy losses and MESE filter decisions of each muon [7],[10].10

In the IceCube simulation, event filter decisions are represented by a binary value of
0 (negative class, event did not pass the filter) or 1 (positive class, event passed the
filter). Therefore, the BDT regression model was replaced by a BDT classification model,
which predicts a value between 0 and 1 as output. This output can be interpreted as
the probability of a sample to belong to the positive class. The underlying software is
the sklearn.ensemble.HistGradientBoostingClassifier() class of scikit-learn (v1.5.2) [1],[9].
This is the classifier version of the regression model described in section 3.1.2. Both share
the fast histogram-based training algorithm and similar hyperparameters. The default
parameter settings of the classification model can be found in Table 18 of section A.1.3
of the appendix. The training input of the classifier is constructed in the same way as
for the regression model, based on the hexagonal binning grid. The training output is
given by the respective MESE filter outcome (0 or 1).

In section 3.2.1, different steps of the optimization process of the BDT classifier are
described in chronological order. Previously, the test set loss was used as the main
metric to measure improvements in the model predictions. For the optimization process
described in section 3.2.1, a different kind of metric was used. Before going into detail on
the optimization of the classifier, this metric and some related plots, which appear later
within section 3.2, are introduced below.

For each muon event of a given dataset, the classifier predicts the probability of passing
the MESE event filter. This leads to a certain distribution of the predicted probabilities
for events that belong to the positive class (blue distribution in central plot of Figure 21)
and events that belong to the negative class (orange distribution). For a perfect model,
one would expect two delta peaks at zero and one, respectively. Since the classifier makes
imperfect decisions, these distributions are spread out.

10The muon energy losses extracted from the IceCube simulation data include the following loss types:
electron pair production, photo-nuclear interaction, bremsstrahlung, and production of delta electrons
via ionization.
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Figure 21: Example plots. Left: Classification rates of the prediction categories (see
Table 3) normalized with respect to the total number of events of some test
set. Center: Distribution of the predicted probabilities by the BDT classi-
fier for actually positive (blue) and actually negative (orange) events. The
black dashed line marks the probability threshold used for classification.
Right: FNR-FPR curve, as explained in section 2.3.2. The red dot marks
the location of the probability threshold along the curve corresponding to
the black dashed line of the central plot.

Figure 22: Example plot. Normalized rates of the prediction categories FN and FP
(see Table 3), as well as Rpos, Rneg, and accuracy (see section 2.3.2) plot-
ted against the probability threshold used for classification. The test set
fractions of actually positive and actually negative events are shown as
horizontal dotted lines. All rates are normalized with respect to the total
number of events of the corresponding test set.
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A classification is done by applying a probability threshold to the distributions (black
dashed line in central plot of Figure 21) as explained for the general case in section 2.3.2.
In the context of this section, all events on the left side of the threshold are excluded
from the simulation (negative events), while all events on the right side of the threshold
are simulated (positive events). This results in the four prediction categories as described
in Table 3 (see left plot of Figure 21). While FP events only reduce the efficiency of
the optimized simulation approach, FN events eventually lead to a wrong estimation
of the muon background reduction efficiency. Therefore, the metric applied during the
BDT optimization process is based on a FN limit. The idea is to find a probability
threshold where the FN rate does not exceed a certain value, while keeping the rate
of negative events Rneg (see Equation 2.24) as high as possible. This ensures that as
many computational resources as possible are saved, while limiting the distortion of
the estimated background reduction efficiency. During the BDT optimization process,
improvements of the model performance are measured by comparing the results of Rneg
for different model parameter settings, at fixed FN limits of 0.5 %, 1.0 % and 5.0 % with
respect to a test dataset. Scanning FN, FP, Rneg, Rpos, and the accuracy with respect to
the applied probability threshold (see Figure 22) helps to visualize the impact of certain
parameter settings on the model performance. A measure of how accurate the predictions
of the BDT model are, independent of the applied probability threshold, is the area under
the curve (AUC) of the FNR-FPR curve (see section 2.3.2) shown in the right plot of
Figure 21. The smaller the AUC value, the more accurate are the model predictions.

3.2.1. Optimization of the BDT Classifier

At the beginning of the optimization of the BDT classifier, a hyperparameter scan similar
to section 3.1.3 was carried out. The hyperparameters of max_iter (MI ), learing_rate
(LR), and max_depth (MD) are defined equivalently as for the scikit-learn regression
model used previously. The values applied during the scan are identical to the ones listed
in Table 1. Additionally, MD = ∞ (unlimited decision tree depth) was added to the
scanned values. Apart from that, the default loss function of the classifier is no longer
given by Equation 3.5, but the log loss function. For the true values ytrue ∈ {0, 1} and
classifier predictions within the interval ypred ∈ [0, 1] of a sample with size nsamples, this
function is defined as [11]:

L(ytrue, ypred) =
1

nsamples
⋅

nsamples

∑
i=0

−(ytrue,i ⋅ ln(ypred,i) + (1 − ytrue,i) ⋅ ln(1 − ypred,i)) (3.6)

For the training, a dataset of ∼ 4 ⋅ 105 muon samples was used, based on events of the
muongun dataset 22552 [10]. The fractions of training, validation, and test set were defined
in the same way as described for the regression model in section 3.1.3. Furthermore,
the early stopping algorithm of the classifier works the same way as mentioned for the
regressor in section 3.1.3. The resulting values of the test set loss for the hyperparameter
scan are shown in Figure 23. For this scan, the hexagonal binning grid was configured as
previously, with nbins,xy = 61 bins along the xy-plane.
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Figure 23: Calculated loss for the test set against MD for the hexagonal binning with
nbins,xy =61. Each subplot shows a set of four curves and corresponds to
a certain maximum boosting iteration MI. Each curve within a subplot
corresponds to a certain value of the learning rate LR.

The overall behaviour of the test loss with respect to the chosen hyperparameters is
consistent with the observations made for the regression model. This was expected since
both the regression model and the classification model are based on similar algorithms
in scikit-learn [8],[9]. Therefore, also for the classifier the parameter setting MI = 1000,
LR = 0.1, and MD = 20 seemed reasonable. Additionally, it was observed that setting
MD = ∞, results in slightly lower values of the test loss for almost every parameter
configuration, except for LR = 0.001 combined with MI ∈ {500, 750}. The lowest test
loss was observed for the configuration MI = 1000, LR = 0.1, and MD = ∞. Therefore,
this setting was fixed at the beginning of the optimization process. While MI = 1000,
LR = 0.1 were changed again at some point (see later in this section), MD was not
changed anymore during the subsequent BDT optimization process.
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Optimization of the Hexagonal Binning along the xy-Plane:

The number of bins along the xy-plane was set to nbins,xy = 61 before. To check
if increasing or decreasing this number has a positive effect on the value of Rneg,
the classifier was trained at four different hexagonal binning grid configurations with
nbins,xy ∈ {19, 37, 127, 271}. The hexagon radius of each bin was set to the respective value
of rhex ∈ {195 m, 140 m, 75 m, 52 m} instead of rhex = 108 m, to ensure that the resulting
grid is approximately equal in size to the one shown in Figure 14. A dataset of equal
size to the one used in the previous hyperparameter scan was used for training. Each
resulting model was evaluated based on its predictions on the corresponding test set
data. Figure 24 shows the corresponding FNR-FPR curves. One can see that a lower
number of bins leads to a recognizable increase in the AUC, while a higher number
of bins leads to a hardly visible decrease in the AUC. Each row of Figure 25 shows
the resulting distributions of the predicted probabilities in the left subplot and the
corresponding probability threshold scan in the right subplot. There are visible changes
in the distributions and curves for different settings of nbins,xy. Although these effects are
relatively small, a positive impact on Rneg can be observed in Table 5, when nbins,xy is
increased to 271 bins. The corresponding rates of the prediction categories, as well as the
values of Rneg, accuracy, error rate, and probability threshold, are listed there for fixed
values of FN and different settings of nbins,xy. The positive impact of more bins is further
visualized in Figure 26, where zoomed-in plots of FN and Rneg against the probability
threshold are compared. The 1 % FN limit and the thresholds at which each FN curve
intersects the limit are visualized by dashed lines. While the intersection thresholds are
almost identical for each setting of nbins,xy, the corresponding value of Rneg gets slightly
higher at these thresholds with increasing bin number.

Figure 24: False negative rate (FNR) against false positive rate (FPR) with respect to
the test set, for different settings of nbins,xy. The respective area under the
curve (AUC) is given in the legend.
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Figure 25: Each row corresponds to a different setting of nbins. Left: Distribution of
the predicted probabilities by the BDT classifier for actually positive (blue)
and actually negative (orange) events. Right: Probability threshold scans
as explained for Figure 22.

44



3. Development of a Classifier

nbins = 19 Rneg [%] TN [%] FP [%] TP [%] accuracy [%] error rate [%] threshold
FN = 0.50 % 40.82 40.32 37.32 21.85 62.18 37.82 0.065
FN = 1.00 % 46.86 45.86 31.79 21.35 67.21 32.79 0.115
FN = 5.00 % 67.23 62.23 15.41 17.35 79.59 20.41 0.284

nbins = 37
FN = 0.50 % 42.75 42.26 35.39 21.85 64.11 35.89 0.068
FN = 1.00 % 48.10 47.11 30.54 21.35 68.46 31.54 0.105
FN = 5.00 % 70.15 65.15 12.50 17.36 82.51 17.49 0.286

nbins = 61
FN = 0.50 % 44.11 43.61 34.04 21.85 65.46 34.54 0.070
FN = 1.00 % 49.81 48.81 28.84 21.35 70.16 29.84 0.109
FN = 5.00 % 71.26 66.26 11.39 17.35 83.61 16.39 0.291
nbins = 127

FN = 0.50 % 43.93 43.43 34.22 21.85 65.29 34.71 0.076
FN = 1.00 % 48.99 47.99 29.65 21.35 69.35 30.65 0.107
FN = 5.00 % 71.67 66.67 10.97 17.35 84.03 15.97 0.290
nbins = 271

FN = 0.50 % 44.65 44.15 33.49 21.85 66.02 33.98 0.074
FN = 1.00 % 50.44 49.44 28.21 21.35 70.80 29.20 0.105
FN = 5.00 % 71.92 66.93 10.72 17.36 84.28 15.72 0.298

Table 5: Rates of the prediction categories as well as Rneg, accuracy, error rate, and
probability threshold for fixed FN limits and different settings of nbins,xy. The
rates were normalized with the total number of samples Ntest = 40312 in the
test set.
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Figure 26: Probability threshold scans of FN (left) and Rneg (right). Each curve corre-
sponds to a certain setting of nbins. The green dashed horizontal line on the
left marks the 1 % FN limit. The vertical dashed lines show the probability
thresholds at which the respective FN curve reaches the FN limit.

The number of bins is fixed at nbins,xy = 271 for subsequent optimization results, since
the best results of Rneg across all FN limits were observed for this setting. Increasing
the number of bins even further seemed unreasonable, due to the increase in memory
requirements during computation and data storage, and the comparatively small expected
improvement of Rneg.

Adjustment of Class Weights:

The plots of the left column of Figure 25 show that events of the negative class (orange
distributions) have more accurate predictions than events of the positive class (blue
distributions). This is probably because there is an imbalance in the number of events
belonging to these classes. For the muongun 22552 dataset, about 78 % of the events are
rejected by the MESE filter, while the remaining 22 % pass the filter. This underrepre-
sentation of the positive event class seems to have an impact on the training. Therefore,
several class weight settings were applied during training in order to counteract this
imbalance. For the scikit-learn default setting, a class weight of one is applied to each
class. Besides that, the class_weight parameter can be set to "balanced", which applies
weights indirectly proportional to the number of events in the respective class. Another
option is to specify the weight setting directly. Figure 27 shows the predicted probability
distributions and threshold scans for default weights, balanced weights, and an example
of a positively skewed weight setting. Positively skewed means that a weight of one was
applied to the negative class and a weight of ten to the positive class.

One can see that the class weight has a strong effect on the resulting distributions,
which are shifted to the right for the balanced and the positively skewed weight settings.
Consequently, this shift also has an impact on the probability threshold scans. Since
the distributions are shifted to the right for both event classes, this does not result in a
significant improvement of Rneg.
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Figure 27: Each row corresponds to a different setting of the class weight. Top to
bottom: default weights, balanced weights, positively skewed weights.
Left: Distribution of the predicted probabilities by the BDT classifier
for actually positive (blue) and actually negative (orange) events. Right:
Probability threshold scans as explained for Figure 22.

Figure 28 illustrates this by showing vertical dashed lines at the thresholds where the
respective FN curves reach the FN = 1 % limit. A shift of the distribution of the positive
class to the right leads to a shift of these thresholds to the right. Since the distribution
of the negative class is also shifted, the change of the thresholds has only a minor impact
on Rneg. This behaviour was observed independent of how the FN limit was set. Table 6
shows the previously introduced rates for different FN limits and class weight settings. For
balanced weights, Rneg has slightly lower values, but the difference to default weights is
marginal. For the positively skewed weight setting, the results of Rneg get comparatively
worse. Since it was preferred to have an unbiased learning process with respect to the
sample classes, balanced weights were applied for ongoing optimization steps.

47



3. Development of a Classifier

Figure 28: Probability threshold scans of FN (left) and Rneg (right). Each curve
corresponds to a certain setting of the class weights. The green dashed
horizontal line on the left marks the 1 % FN limit. The vertical dashed lines
show the probability thresholds at which the respective FN curve reaches
the FN limit.

default weights Rneg [%] TN [%] FP [%] TP [%] accuracy [%] error rate [%] threshold
FN = 0.50 % 44.65 44.15 33.49 21.85 66.02 33.98 0.074
FN = 1.00 % 50.44 49.44 28.21 21.35 70.80 29.20 0.105
FN = 5.00 % 71.92 66.93 10.72 17.36 84.28 15.72 0.298

balanced weights
FN = 0.50 % 44.62 44.12 33.53 21.85 65.98 34.02 0.200
FN = 1.00 % 50.37 49.37 28.28 21.35 70.72 29.28 0.270
FN = 5.00 % 71.82 66.82 10.82 17.35 84.18 15.82 0.575

pos. skewed weights
FN = 0.50 % 44.04 43.54 34.10 21.85 65.40 34.60 0.401
FN = 1.00 % 50.05 49.05 28.60 21.35 70.40 29.60 0.509
FN = 5.00 % 71.09 66.09 11.56 17.35 83.44 16.56 0.779

Table 6: Rates of the prediction categories as well as Rneg, accuracy, error rate,
and probability threshold for fixed FN limits and different settings of the
class weight. The rates were normalized with the total number of samples
Ntest = 40312 in the test set.
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Number of Training Samples and Optimization of the internal BDT Structure:

As mentioned earlier in this section, a dataset of ∼ 4 ⋅ 105 muon samples was used for
training. The actual training set involved Ntrain ≈ 3.3 ⋅105 samples, because the validation
and test sets were split from the total dataset. In order to find out if increasing the
number of training samples leads to higher values of Rneg, the classifier was trained on a
training set of Ntrain ≈ 6.5 ⋅ 105 samples. It was observed that due to the larger training
set, more boosting iterations were applied during training. Therefore, the maximum
number of boosting iterations was increased from MI = 1000 to MI = 2000 for the larger
training set, to ensure that the training proceeds until early stopping is triggered. The
upper two rows of Figure 29 show the corresponding predicted probability distributions
and threshold scans for a training with Ntrain ≈ 3.3 ⋅ 105 and Ntrain ≈ 6.5 ⋅ 105. One
can see that the distribution of the positive class (blue) is slightly shifted towards one,
and the distribution of the negative class (orange) is slightly shifted towards zero for
Ntrain ≈ 6.5 ⋅ 105. This leads to a small improvement of Rneg across all three FN limits,
as the values listed in Table 7 show.

Additionally, the internal BDT structure was optimized based on the training set with
Ntrain ≈ 6.5 ⋅ 105 samples, by adjusting two further hyperparameters. The first one is
called max_leaf_nodes (MLN ). For each boosting iteration, this parameter sets the
maximum number of leaves of the added decision tree. The second parameter is called
min_samples_leaf (MSL) and sets the minimum number of samples that can be assigned
per leaf [9]. Together with the maximum tree depth (MD), which was introduced in
section 3.1.3, these are the main parameters to control the internal structure of the BDT
(see also section 2.3.1). The maximum depth was fixed to MD = ∞ (unlimited depth), as
mentioned earlier in this section, while the other two parameters were configured using
their default values of MLN = 31 and MSL = 20. Scanning all possible combinations
of MD, MLN, and MSL to optimize the internal BDT structure did not seem feasible.
Instead, the parameter space was restricted by setting MD =MLN = ∞. In that way, the
depth and number of leaf nodes of the decision tree of each boosting iteration are only
constrained by the MSL parameter. As a consequence, the complexity of the internal
BDT structure can be varied using only MSL, which simplifies the hyperparameter
scan. To ensure reproducibility of the BDT model, it is necessary to calculate the ratio
RMSL = Ntrain/MSL. If a reproduced model has to be trained on a dataset of size Nnew

train
in the future, MSLnew has to be adjusted so that Rnew

MSL = RMSL. Otherwise, the internal
BDT structure will differ from the original model.

Figure 30 shows the results of a parameter scan of MSL based on the datatset with
Ntrain ≈ 6.5 ⋅ 105. The highest Rneg score for FN = 5.00 % as well as the second highest
scores for FN = 0.50 % and FN = 1.00 % were achieved at MSL = 1000, which corresponds
to RMSL ≈ 653. At higher values of MSL, Rneg decreases. This is probably due to the
decision trees becoming too shallow. Consequently, the BDT is unable to process the
information provided by the training input precisely enough. At lower values of MSL, a
decrease of Rneg was observed as well. This is most probably related to overfitting to the
training data, due to overly complex decision trees.

The corresponding evaluation plots after the optimization of MSL are shown in the
bottom row of Figure 29. The peaks of the predicted probability distributions are further
shifted towards zero for the negative class and one for the positive class, compared to
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before the optimization. The FN and FP curves of the probability threshold scan tend to
reach smaller values overall. The resulting Rneg scores were increased by the optimized
MSL setting across all FN limits (see Table 7). The decrease of the AUC in the FNR-
FPR curves of Figure 31 further proves that using Ntrain ≈ 6.5 ⋅ 105 combined with the
parameter settings of MD = MLN = ∞ and MSL = 1000 is a valid choice for improving
the performance of the classifier. Therefore, these settings were applied during further
model optimizations.

Figure 29: Left: Distribution of the predicted probabilities by the BDT classifier
for actually positive (blue) and actually negative (orange) events. Right:
Probability threshold scans as explained for Figure 22. Top to bottom:
Ntrain ≈ 3.3 ⋅ 105, Ntrain ≈ 6.5 ⋅ 105, Ntrain ≈ 6.5 ⋅ 105 with optimized BDT
structure at MSL = 1000.
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Figure 30: Rneg score against the MSL hyperparameter for different FN limits.

Figure 31: False negative rate (FNR) against false positive rate (FPR) with respect to
the test set, for different settings of Ntrain and the optimized MSL setting.
The respective area under the curve (AUC) is given in the legend.
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Ntrain ≈ 3.3 ⋅ 105 Rneg [%] TN [%] FP [%] TP [%] accuracy [%] error rate [%] threshold
FN = 0.50 % 44.62 44.12 33.53 21.85 65.98 34.02 0.200
FN = 1.00 % 50.37 49.37 28.28 21.35 70.72 29.28 0.270
FN = 5.00 % 71.82 66.82 10.82 17.35 84.18 15.82 0.575

Ntrain ≈ 6.5 ⋅ 105

FN = 0.50 % 45.27 44.77 33.08 21.65 66.43 33.57 0.183
FN = 1.00 % 51.68 50.68 27.17 21.15 71.83 28.17 0.265
FN = 5.00 % 72.63 67.63 10.12 17.16 84.79 15.21 0.588

Ntrain ≈ 6.5 ⋅ 105,
MSL = 1000
FN = 0.50 % 47.76 47.26 30.59 21.65 68.92 31.08 0.164
FN = 1.00 % 53.64 52.64 25.20 21.15 73.80 26.20 0.250
FN = 5.00 % 73.57 68.57 9.28 17.15 85.72 14.28 0.596

Table 7: Rates of the prediction categories as well as Rneg, accuracy, error rate, and
probability threshold for fixed FN limits and different settings of the num-
ber of training samples Ntrain and the internal BDT structure. The rates
were normalized with the total number of samples Ntest in the test set
(Ntest = 40312 for Ntrain ≈ 3.3 ⋅ 105, Ntest = 80584 for Ntrain ≈ 6.5 ⋅ 105).

Optimization of the Training Input:

The evaluation of the regression model in section 3.1.3 showed that the way information
is encoded in the input vector has a major impact on the performance of the BDT model.
Therefore, several adjustments were made to the input vector to provide more information
on the muon events during training. After optimizing the number of bins nbins,xy along
the xy-plane earlier in this section, the input vector of each muon was fixed to have 271
entries. As explained in section 3.1.2, each entry represents the summed muon energy
losses within a certain hexagonal bin of the binning grid. Each of these bins reaches
from −600 m to 600 m along the z-axis. To provide more information on the location
of the energy losses along this axis, a subdivision of the bins along z was introduced.
The number of bins along the z-axis is called nbins,z. Furthermore, six additional muon
quantities were extracted from the IceCube simulation data and appended to the input
vector (see Table 8). This resulted in a new input vector with (271 ⋅ nbins,z + 6) entries.
The new binning grid with equidistant bins along the z-axis is illustrated in Figure 33
for nbins,z = 2 as an example. The BDT model was trained based on the new input
vector for the settings of nbins,z ∈ {2, 4, 8}. In Figure 32 the results are compared to the
model trained with the old input vector (without binning in z (nbins,z = 1) and without
added properties). Using the new input vector leads to sharper peaks of the predicted
probability distributions at zero and one for the respective event class. The probability
threshold scans also show an overall flattening of the FN and FP curves, resulting in a
higher accuracy of the model across a broad range of thresholds.
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added property explanation
initial energy
[log10(GeV)]

Energy of the muon at the beginning of its simulated track
within the ice. Since this value potentially covers multiple
orders of magnitude, the logarithm is applied.

initial zenith [rad] Initial zenith angle ∈ [0, π] of the muon. Together with the
initial azimuth angle, this angle defines the propagation
direction of the muon within the ice.

initial azimuth [rad] Initial azimuth angle ∈ [0, 2π[ of the muon.
initial θ [rad] The initial position of the muon within the IceCube

coordinate system can be described in spherical coordinates,
where θ ∈ [0, π] is the angle between the position vector and
the z-axis. In the MuonGun generator of the IceCube
simulation, muons are injected on a two-dimensional cylinder
surface (see section 2.2). Therefore, initial θ and initial ϕ are
sufficient to encode all information on the muon initial
position.

initial ϕ [rad] The initial position of the muon within the IceCube
coordinate system can be described in spherical coordinates,
where ϕ ∈ [0, 2π[ is the angle between the projection of the
position vector on the xy-plane and the x-axis.

total deposited
energy [log10(GeV)]

Total deposited energy of the muon via energy losses within
the binning grid. Since this value potentially covers multiple
orders of magnitude, the logarithm is applied.

Table 8: Explanation of the muon quantities that were appended as additional entries to
the training input vector.

These effects were observed independent of whether two, four, or 8 bins were used along
the z-axis. Table 9 shows that the Rneg score is strongly improved by applying the new
input vector with nbins,z = 2. Increasing nbins,z to four or eight did not lead to a further
improvement. Instead, a tendency to slightly lower values of Rneg was found compared to
nbins,z = 2. A consistent behaviour was observed for the AUC values in Figure 34, which
show the lowest values for nbins,z = 2 and nbins,z = 4. Overall, using the new input vector
with a setting of nbins,z = 2 was considered the best choice for maximizing the Rneg score
at given FN limits. Therefore, this setting was applied for subsequent optimization steps.
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Figure 32: Left: Distribution of the predicted probabilities by the BDT classifier
for actually positive (blue) and actually negative (orange) events. Right:
Probability threshold scans as explained for Figure 22. Each row corre-
sponds to a different version of the BDT input vector.
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Figure 33: New version of the hexagonal binning grid with nbins,xy = 271 and nbins,z = 2.
This leads to 542 bins in total. The blue dots visualize the DOMs of the
IceCube detector. Rotated variations of this plot can be found in sec-
tion A.1.3 of the appendix.

Figure 34: False negative rate (FNR) against false positive rate (FPR) with respect to
the test set, for different versions of the BDT input vector. The respective
area under the curve (AUC) is given in the legend.
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old input vector,
nbins,z = 1 Rneg [%] TN [%] FP [%] TP [%] accuracy [%] error rate [%] threshold

FN = 0.50 % 47.76 47.26 30.59 21.65 68.92 31.08 0.164
FN = 1.00 % 53.64 52.64 25.20 21.15 73.80 26.20 0.250
FN = 5.00 % 73.57 68.57 9.28 17.15 85.72 14.28 0.596

new input vector,
nbins,z = 2

FN = 0.50 % 61.02 60.52 17.33 21.65 82.18 17.82 0.144
FN = 1.00 % 66.65 65.65 12.20 21.15 86.80 13.20 0.281
FN = 5.00 % 79.32 74.32 3.52 17.15 91.47 8.53 0.788

new input vector,
nbins,z = 4

FN = 0.50 % 60.60 60.10 17.75 21.65 81.76 18.24 0.137
FN = 1.00 % 66.25 65.25 12.60 21.15 86.41 13.59 0.265
FN = 5.00 % 79.34 74.34 3.50 17.15 91.50 8.50 0.784

new input vector,
nbins,z = 8

FN = 0.50 % 59.41 58.91 18.94 21.65 80.57 19.43 0.133
FN = 1.00 % 65.51 64.52 13.33 21.15 85.67 14.33 0.264
FN = 5.00 % 79.27 74.27 3.58 17.15 91.42 8.58 0.779

Table 9: Rates of the prediction categories as well as Rneg, accuracy, error rate, and
probability threshold for fixed FN limits and different versions of the BDT
input vector. The rates were normalized with the total number of samples
Ntest = 80584 in the test set.

56



3. Development of a Classifier

Final Parameter Scan of LR and MSL:

At the end of the optimization process, two further scans of the previously introduced
hyperparameters LR and MSL were performed. This was done to check if the changes in
the input vector had any impact on the optimal setting for those parameters. The values
involved in the scans are listed in Table 10. Since both parameters have an influence on
how many boosting iterations are applied during the training, the maximum boosting
iteration was increased to higher values than MI = 2000 for some of the combinations (see
Table 19 in section A.1.3 of the appendix). This was done to ensure that the training
proceeds until the early stopping algorithm is triggered, and not until the maximum
boosting iteration is reached. Otherwise, a comparison between the scanned parameter
combinations might become unfair.

hyperparameter applied values
learning_rate (LR),

(first scan) [1 ⋅ 10−2, 2.5 ⋅ 10−2, 5 ⋅ 10−2, 1 ⋅ 10−1, 2 ⋅ 10−1]

min_samples_leaf (MSL),
(first scan)

[5, 50, 100, 250, 500, 750, 1000, 1250, 1500,
1750, 2000, 5000, 10000]

learning_rate (LR),
(second scan) [1 ⋅ 10−3, 2.5 ⋅ 10−3, 5 ⋅ 10−3, 7.5 ⋅ 10−3]

min_samples_leaf (MSL),
(second scan) [750]

Table 10: Values of LR and MSL involved in the final hyperparameter scans.

Figure 35 shows the results of the first parameter scan, where Rneg is plotted against
MSL for different combinations of the learning rate and FN limit. As for Figure 30, a
decrease of Rneg was observed at higher and at relatively low values of MSL. As explained
previously, this is most probably due to the decision trees becoming too shallow or overly
complex. At FN = 5.00 % the learning rate does not seem to have any visible effect
on the Rneg score, while the highest value was found at (MSL = 750, LR = 0.01) with
Rneg ≈ 79.40 %. At FN = 0.50 % and FN = 1.00 %, a learning rate of LR = 0.2 tends to
reduce the Rneg score for most of the MSL settings. At the other learning rates, the
resulting score shows small variations, but overall, changing the learning rate has a minor
effect. The highest scores were observed at (MSL = 750, LR = 0.1) with Rneg ≈ 61.43 %
for FN = 0.50 % and (MSL = 500, LR = 0.01) with Rneg ≈ 67.09 % for FN = 1.00 %.
Overall, MSL = 750 was considered as the optimal setting, which corresponds to a ratio
of RMSL = Ntrain/MSL ≈ 870.

To reevaluate if there is an optimal learning rate at MSL = 750, a second scan was
conducted, which involved lower learning rates (see Table 10) than the first scan. The
combined results of the first and second scan at MSL = 750 are shown in Figure 36, where
Rneg is plotted against the learning rate for different FN limits. The second scan confirms
that at lower learning rates Rneg seems to fluctuate around a certain value but shows no
clear maximum. The highest scores of the second scan were observed at LR = 1 ⋅ 10−3

with Rneg ≈ 61.43 % (FN = 0.50 %), LR = 7.5 ⋅10−3 with Rneg ≈ 67.14 % (FN = 1.00 %), and
LR = 7.5 ⋅ 10−3 with Rneg ≈ 79.41 % (FN = 5.00 %). Therefore, the final optimized BDT
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model was configured with MSL = 750 and LR = 7.5 ⋅ 10−3. Differences in the evaluation
plots of the predicted probability distributions, probability threshold scans and FNR-FPR
curves of the model before and after the final hyperparameter optimization were barely
visible. The corresponding plots can be found in section A.1.3 of the appendix. However,
a small numerical improvement of Rneg and other rates was observed for all three FN
limits (see Table 11).

Figure 35: Rneg score against the MSL hyperparameter for different learning rates and
FN limits.

Figure 36: Rneg score against the LR hyperparameter at MSL=750 for different FN
limits.
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before final
parameter

optimization
Rneg [%] TN [%] FP [%] TP [%] accuracy [%] error rate [%] threshold

FN = 0.50 % 61.02 60.52 17.33 21.65 82.18 17.82 0.144
FN = 1.00 % 66.65 65.65 12.20 21.15 86.80 13.20 0.281
FN = 5.00 % 79.32 74.32 3.52 17.15 91.47 8.53 0.788
after final
parameter

optimization
FN = 0.50 % 61.16 60.66 17.19 21.65 82.31 17.69 0.138
FN = 1.00 % 67.14 65.15 11.70 21.15 87.30 12.70 0.282
FN = 5.00 % 79.41 74.41 3.44 17.15 91.56 8.44 0.788

Table 11: Rates of the prediction categories as well as Rneg, accuracy, error rate, and
probability threshold for fixed FN limits, before and after the final optimiza-
tion of LR and MSL. The rates were normalized with the total number of
samples Ntest = 80584 in the test set.

Parameters of the final optimized Classifier and Cross-Validation:

The final parameters of the optimized BDT classification model are given in Table 13.
A cross-validation, as explained in section 2.3.2, was performed to check how robust
the final classifier is against changes in the test set data. The corresponding mean and
standard deviation of the Rneg score and probability thresholds at different FN limits
were calculated based on 10 different test/training set folds and are listed in Table 12.
The observed standard deviations are relatively small, proving the stability of the final
model. The cross-validation is also a measure for the uncertainty caused by the inter-
nal random_state of the classifier. This parameter was configured with None, which
means that the resulting BDT models are not deterministic across multiple training
runs with identical hyperparameters [9]. However, the cross-validation indicated that
the uncertainty induced by that for the Rneg score is acceptably small. In the following
section, the final BDT model is compared with the RNN that was trained by B. Mayer [4].

FN limit [%] Rneg [%] threshold
FN = 0.50 % 61.11 ± 0.29 0.143 ± 0.005
FN = 1.00 % 66.71 ± 0.15 0.273 ± 0.006
FN = 5.00 % 79.33 ± 0.08 0.790 ± 0.003

Table 12: Results of the Rneg score and probability thresholds for the final BDT clas-
sification model at different FN limits. The mean and standard deviation
values are based on 10 test/training set folds of a cross-validation (see
section 2.3.2).
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binning grid parameter setting
type hexagonal

height [−600 m, 600 m[
tilt along z-axis 8°

rhex 52 m
nbins,xy 271
nbins,z 2

hyperparameter setting
loss ’log_loss’

learning_rate (LR) 0.0075
max_iter (MI ) 5000

max_leaf_nodes (MLN ) None
max_depth (MD) None

min_samples_leaf (MSL) 750, (RMSL = 870)
l2_regularization 0.0

max_features 1.0
max_bins 255

categorical_features ’warn’
monotonic_cst None
interaction_cst None

warm_start False
early_stopping ’auto’

scoring ’loss’
validation_fraction 0.1
n_iter_no_change 10

tol 1e-07
verbose 0

random_state None
class_weight ’balanced’

dataset number of samples
training set 652728

validation set 72525
test set 80584

Table 13: Optimized binning grid and hyperparameter settings for the BDT classi-
fication model, corresponding to the scikit-learn model given in [9]. The
respective number of muon samples used for training, validation of early
stopping, and evaluation of the final BDT model is listed at the bottom of
the table.

60



3. Development of a Classifier

3.2.2. Comparison between BDT and RNN

Besides the BDT classifier, a recurrent neural network (RNN) was trained on the muongun
22552 dataset by B. Mayer [4]. Both models were trained for the same purpose. Thus,
their predictions can be directly compared to each other. Figure 37 shows the results
of the best performing RNN model that were taken from figure 27 of [4]. The plots
visualize the rates of the prediction categories at two different probability thresholds, the
predicted probability distributions, and the FNR-FPR curve. Equivalent plots of the final
optimized BDT model are shown in Figure 38. The illustrated probability thresholds
were chosen to match the amount of FN events given by the RNN results. One can see
that the predicted probability distributions of the RNN have sharper peaks at zero and
one. This leads to a smaller area under the FNR-FPR curve of AUC = 0.02 compared
to AUC = 0.035 for the BDT. At FN = 2.70 % the BDT shows a 3.53 % increase in FP
events. At FN = 1.40 % it shows a 5.03 % increase in FP events compared to the RNN.
Overall, the recurrent neural network achieves better results than the BDT, which is
expected since it is a more complex machine learning model. However, this also leads to
differences in computational resource requirements between the models.

Training the RNN model took up to four hours using two “NVIDIA A100 Tensor Core-
GPUs”, depending on the number of training samples [4]. In comparison, training the
BDT model with the parameters given in Table 13 took about one hour using ten “Intel
Xeon Gold 6326 @2.9 GHz”-CPUs. This shows that, in general, less powerful devices
are needed to train the BDT in less time. The prediction time per muon sample for the
RNN was determined by first calculating the mean prediction time of a batch of 1024
muons, based on a total dataset of 403928 muons. Afterwards, the resulting mean value
and standard deviation of the prediction time per batch were divided by 1024 [4]. This
resulted in a prediction time per muon of (9 ± 1) ⋅ 10−3 ms on a “NVIDIA A100 Tensor
Core-GPU” and 1.3± 0.1 ms on a “AMD EPYC 7662 @2.0 GHz”-CPU [4]. In the context
of this thesis, a framework was developed to make model predictions on the provided
muongun 22552 dataset using the BDT or RNN model. The corresponding code can be
found in an ECAP internal git repository [12]. There, the prediction time measurement
as described above was implemented in a comparable way for both models, based on
scripts and data provided by B.Mayer [13]. By using this framework with one “Intel
Xeon E3-1240 v6 @3.7 GHz”-CPU, the prediction time per muon was determined to be
1.3 ± 0.1 ms for the BDT and 21.5 ± 0.3 ms for the RNN. In summary, the BDT model
makes less accurate predictions but also requires less computational resources for training
and predictions.
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Figure 37: Results of the final optimized RNN classification model. The plots were
taken from figure 27 of [4].

Figure 38: Results of the final optimized BDT classification model. The probability
threshold of each row was chosen to match the FN rate of the plots shown
in Figure 37.
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3.2.3. Investigation of the Classification Bias with Respect to Muon Properties

Using a classification model can be problematic if it introduces a bias towards certain
samples. In the context of this work, such a bias could appear as incorrect model
predictions of muon events with specific physical properties. For example, the BDT
model might only produce FN events for muons with a certain initial energy or propagation
direction. In that way, a specific category of muons would be missing for the calculation
of the background reduction efficiency. This kind of misinterpretation of the underlying
physics of the IceCube detector would have critical implications for data analysis. A bias
for muon events of the FP prediction category would be less crucial. However, identifying
the corresponding FP events would be important for improving the classification accuracy
in future model developments.

Investigations into the existence of such a bias in the final BDT model of section 3.2.1
were done by analysing the distributions of muon events with respect to different physical
quantities. These include the initial muon energy, initial muon direction given by
(cos(zenith), azimuth), initial muon position in cylindrical coordinates (r, ϕ, z), and the
total deposited energy within the binning grid. All these properties are directly or
indirectly encoded in the training input (see Table 8). Figure 39 shows the corresponding
distributions of events belonging to the positive class (blue histograms), the negative
class (orange histograms), and the FP prediction category (dashed black histograms).
Figure 40 shows the same distributions for the FN prediction category. The probability
thresholds used to define the prediction categories were chosen to be ∼ 0.79 for the FP
event distributions and ∼ 0.29 for the FN event distributions. This was done to focus on
the prediction outliers of the negative and positive event classes of the used test set.

It was observed that the events of the muongun dataset 22552, which pass the MESE
event filter, tend to be generated more frequently on the lateral surface of the muongun
injection cylinder and propagate along a direction that is closer to the horizon (larger
zenith angle) compared to the events that are rejected by the MESE filter. Furthermore,
they show a larger average amount of deposited energy within the binning grid. In
Figure 39, one can see that the distributions of FP events are relatively similar to the
distributions of the positive event class. This indicates that the FP outliers tend to
have similar physical properties as events that typically are considered to belong to the
positive class, based on the quantities provided in the training input. Accordingly, the
model is capable of correctly interpreting the underlying physics, but some information
appears to be missing that is necessary for the model to classify FP outliers correctly.
The distributions of FP events are not constrained within a small parameter range, but
spread out broadly, similar to the distributions of the positive class. Therefore, no clear
indications of a bias were observed.

The FN distributions in Figure 40, show a comparable behaviour for most of the analyzed
quantities, meaning that they tend to be similar to the distributions of the negative
class. An exception was observed with respect to the total deposited energy within the
binning grid. There, the distribution of the FN outliers is similar to the distribution
of the positive class. Thus, FN outliers tend to have physical properties that partially
correspond to the positive or the negative event class. The BDT model appears to have
problems classifying these events correctly. Therefore, the FN outliers are likely biased
towards events showing this behaviour. Apart from that, the azimuth and ϕ distributions
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of the FN events exhibit relatively strong over- and underfluctuations for some bins.
This is probably a binning artefact, due to a sparsely covered parameter space. At the
corresponding probability threshold of ∼ 0.29, there are only about 800 events involved
in the FN distributions. Analyzing the distributions provides only superficial insight into
why the model fails to predict certain muon events correctly. For future investigation, it
might be useful to look at single muons in an event display to obtain more information
in this regard.

In summary, detailed information on the optimization of the BDT classification model
was provided in section 3.2. By performing a cross-validation, it was verified that the

Figure 39: Distributions of muon events with respect to seven different muon quan-
tities. These include the initial muon energy, initial muon direction given
by (cos(zenith), azimuth), initial muon position in cylindrical coordinates
(r, ϕ, z), and the total deposited energy within the binning grid. For each
of the quantities, three distributions are shown, which correspond to events
belonging to the positive class (blue), the negative class (orange), and the
FP prediction category (dashed black), with respect to the test set. The FP
histograms were determined using a probability threshold of ∼ 0.79.
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predictions of the BDT classifier are robust against changes in the test set data. The
BDT was trained on the same muongun dataset from the IceCube simulation as the
RNN developed in [4]. A comparison between the two models showed that the BDT
outperforms the RNN with respect to computational resource requirements, while the
RNN model is more accurate in making predictions. The following section provides
information on a testing framework for optimized muon simulations that was developed
in the context of this work. The computational gain obtained by integrating the BDT
classifier into the IceCube simulation chain within this framework is presented and
discussed.

Figure 40: Distributions of muon events with respect to seven different muon quan-
tities. These include the initial muon energy, initial muon direction given
by (cos(zenith), azimuth), initial muon position in cylindrical coordinates
(r, ϕ, z), and the total deposited energy within the binning grid. For each
of the quantities, three distributions are shown, which correspond to events
belonging to the positive class (blue), the negative class (orange), and the
FN prediction category (dashed black), with respect to the test set. The
FN histograms were determined using a probability threshold of ∼ 0.29.
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4. Optimized Muon Simulations

Official IceCube simulations are managed via the IceProd job submission framework
[14]. However, the development of a hybrid simulation approach, as presented in this
thesis, is still at an early stage. Therefore, it was considered appropriate to develop a
dedicated testing framework for optimized muon simulations, which ensures full access to
the parameters of IceCube muon simulations, but also allows for quick and flexible testing
and debugging. This was achieved by implementing a data-processing workflow using
Snakemake (v9.3.0) [15],[16], based on the official IceCube simulation software provided
by the IceTray software framework [17]. In section 4.1, the setup of the Snakemake
simulation workflow is explained in more detail. The final results of this thesis regarding
the computational gain obtained by fully integrating the BDT classifier into the muon
simulation chain are presented in section 4.2.

4.1. Testing Framework for Optimized Muon Simulations based on
Snakemake

Snakemake is a Python-based tool for creating automated data processing workflows
that enable reproducible and scalable data analyses. The execution of tasks on high-
performance computing (HPC) clusters is natively supported. A Snakemake workflow is
defined as a sequence of rules, which are implemented in a snakefile. These rules can
be understood as modular building blocks of the workflow, which automatically track
dependencies between intermediate input and output data. The main configuration
parameters of a Snakemake workflow, such as file paths, resource settings for HPC-cluster
job submissions, or input parameters of involved scripts, can be defined in a config file
(see Figure 41). The rules implemented in the snakefile are parametrized based on the
corresponding config file (see Figure 42). Arbitrarily complex workflows can be realized
by concatenating different rules with each other and executing several runs of the same
workflow in parallel. More information on how to use Snakemake can be found in the
corresponding documentation [16].

As described in section 2.2, the IceCube simulation is based on a modular structure.
Therefore, Snakemake was considered to be a suitable tool for developing a testing
framework for optimized muon simulations in IceCube. The corresponding workflow was
constructed by defining individual rules for the simulation steps that were explained in
section 2.2. The muongun dataset 23260 from 2024, was used as a template for that [18].
Full access to the original simulation parameters was ensured by integrating the scripts
used in that template into the Snakemake workflow. All input parameters available for
these scripts were transferred to the config file of the workflow. The input parameter
settings were chosen as consistent as possible with the original settings of the muongun
dataset 23260. Details are available in the GitHub repository of the testing framework,
where the entire code, including the config file, can be found [19]. Information on where
to find the used simulation scripts within the IceTray GitHub repository is provided in
section A.2.1 of the appendix.
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Figure 41: Example of a config.yaml file defining the parameters of the snakefile shown
in Figure 42.

Figure 43 shows a scheme of the developed simulation workflow, where the rules corre-
sponding to the simulation steps taken from the dataset 23260 are illustrated as blue
boxes. The BDT classifier was integrated into the workflow by splitting it into two
sub-workflows. The idea is to generate training data based on the conventional muon
simulation and train the BDT on it in sub-workflow A. The trained model is then used
in sub-workflow B to generate muon data based on the optimized muon simulation. Each
sub-workflow includes certain additional rules. In sub-workflow A, two rules were added
after filter level 2, to extract the training data and train the BDT model (red boxes in
Figure 43). The training parameters of the model were fixed according to Table 13. In
sub-workflow B, a rule was added between the step of muon propagation and photon
propagation (green box in Figure 43). This is where the BDT predicts the probability
of passing the MESE filter for each muon event. Muons, which are unlikely to pass the
filter, are excluded from further simulation by applying a rejection sampling method (see
section 2.3.2). For reasons of efficiency, the initial simulation steps up to and including
muon propagation are executed in parallel for both sub-workflows. Furthermore, the
overall workflow supports parallel executions of several simulation runs with the same
parameter settings, meaning that multiple instances of the whole workflow, as shown in
Figure 43, can be submitted as parallel jobs to the HPC-cluster. Additional rules, besides
the ones illustrated in Figure 43, were implemented for evaluation purposes. Since they
do not contribute to the actual muon simulation chain, they are not further discussed, but
can be found in [19]. In the following section, the results of optimized muon simulations
based on the testing framework are presented.
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Figure 42: Example of a snakefile showing one rule based on the parameters of the
config.yaml file of Figure 41.
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Figure 43: Scheme of the simulation workflow, implemented with Snakemake [15],[16].
Each box corresponds to a certain rule. Different colors denote if the respec-
tive rule is present for sub-workflow A (red), sub-workflow B (green), or
both (blue). The blue boxes correspond to simulation steps taken from the
muongun dataset 23260 [18]. The underlying code of the workflow can be
found in [19].
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4.2. Efficiency of Optimized Muon Simulations

The simulation framework introduced in the previous section can be used to evaluate
the efficiency of optimized muon simulations with an integrated the BDT classifier.
Maximum efficiency is achieved when the classifier makes no false predictions, implying
optimal computational resource savings. The classification of muon events within this
framework is not based on a fixed probability threshold, as it was done in section 3.2,
but on a rejection sampling method (see section 2.3.2). Therefore, the computational
gain gcomp was defined to quantify the efficiency of the optimized simulation compared
to the standard simulation without using the BDT classifier:

gcomp ∶= f1 ⋅ f2 =
Nγ

Nopt
γ

⋅
Neff∣pos. events +Nopt

pos,subev

Npos +Npos,subev
(4.1)

This formula is based on two factors f1 and f2. Nγ is the number of photons simulated
during photon propagation of the standard simulation. The equivalent number obtained
for the optimized simulation is called Nopt

γ . The factor f1 is the ratio between these
numbers. Depending on the amount of TP and FP predictions, this factor takes values
of f1 ≥ 1. A high computational gain is reflected by high values of f1, since the
simulation time spent on photon propagation scales with the number of simulated
photons. Considering the case where the amount of FN predictions is relatively large,
shows that f1 is not sufficient to describe the computational gain. In such a case, the
number of events remaining after applying the MESE filter might be much smaller than in
the standard simulation. Thus, more muons would need to be simulated overall to achieve
the same number of events surviving the MESE filter as in the simulation without BDT.
This effect partially compensates for the computational gain achieved by simulating fewer
photons during photon propagation. The factor f2 was introduced to account for this in
the calculation of gcomp. Neff∣pos. events is the effective sample size obtained by evaluating
Equation 2.20 for all events remaining after rejection sampling and applying the MESE
filter. Npos is the number of events remaining after applying the MESE filter in the
standard simulation. In rare cases, a muon event can be split into multiple sub-events
during the simulation of filter level one and filter level two. The MESE filter is also
applied to these sub-events. The number of additional sub-events passing the MESE
filter in case of the standard simulation is given by Npos,subev. The equivalent number
corresponding to the optimized simulation is called Nopt

pos,subev. Overall, this results in a
value of f2 ≤ 1. As a consequence, f1 is scaled down by f2 depending on the accuracy of
the BDT classifier. With that, gcomp provides a reasonable measure of the computational
gain. In relation to Figure 43, the results of Nγ , Npos, and Npos,subev were obtained by
simulating all events that were rejected after applying the BDT in sub-workflow B, in
parallel to the events that remained in the optimized event sample. This is redundant
for an optimized simulation and was done only for evaluation purposes.
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4.2.1. Optimized Muon Simulations at different Muon Energies

In this section, the results of optimized muon simulations at different muon energies are
presented, based on the simulation framework introduced in section 4.1. In the context
of section 3.2.1, the BDT classifier was trained and optimized based on the muongun
dataset 22552 [10]. The muons of this dataset were simulated within an energy range
of 5 ⋅ 103 GeV − 1 ⋅ 104 GeV with a spectral index of γ = 4.5. For reasons of consistency,
optimized simulations were performed using these settings for γ and the initial muon
energy, among other energy ranges. Based on the power law implemented for MuonGun
(see section 2.2), a setting of γ = 4.5 results in a steeply falling energy spectrum with
many events at the lower energy bound. However, the energy ranges used are relatively
small, which counteracts this effect. An overview of all energy ranges for which optimized
simulations were performed, and the corresponding identifiers used to refer to them, is
given in Table 14.

identifier energy range [GeV] Nevents Ntrain

i) 1 ⋅ 102 − 1 ⋅ 103 2.0 ⋅ 106 655163
ii) 1 ⋅ 103 − 1 ⋅ 104 1.2 ⋅ 106 627859
iii) 5 ⋅ 103 − 1 ⋅ 104 8.8 ⋅ 105 536114
iv) 1 ⋅ 104 − 1 ⋅ 105 8.8 ⋅ 105 571847
v) 1 ⋅ 105 − 1 ⋅ 106 8.0 ⋅ 105 604225

Table 14: Different energy ranges, for which optimized simulations were performed,
and their identifiers. A spectral index of γ = 4.5 was used for all of them. In
the respective execution of subworkflow A, the BDT classifier was trained on
a dataset including Ntrain events. The initial number of events simulated by
muongun in subworkflow A was set to the respective value of Nevents.

The total number of muon events Nevents simulated in run iii) was set to 8.8 ⋅ 105. The
resulting number of events involved in the BDT training was Ntrain ≈ 5.4 ⋅ 105. The
difference in event number occurs due to several reasons, besides the split of the training
set and the early stopping validation set. During photon propagation, a filter is applied
that removes all muon events from the simulation that produce a number of Monte Carlo
photo electrons (MCPE) below a certain threshold. During the detector simulation,
another filter is applied, which removes all events that do not trigger the detector. After
the simulation of filter level 2, some of the muon events end up being split into multiple
sub-events. All of the sub-events are considered as individual training samples. Therefore,
Ntrain ≠ Nevents is observed. The extent of this discrepancy depends on the energy range
of the simulated muons. In section 3.2.1, using a training set with Ntrain ≈ 6.5 ⋅ 105

samples showed reasonable results. Therefore, Nevents was set accordingly, to obtain a
value of Ntrain of the same order of magnitude whenever the BDT was trained during an
execution of the simulation framework (see Table 14).
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Discrepancy in Training Data:

Figure 44 shows a comparison of different loss curves. The parameter settings of the
underlying BDT models were set according to Table 13. The leftmost plot shows the
training and validation loss curves obtained in the context of section 3.2.1, where the
BDT model was trained on muongun dataset 22552 [10]. A validation loss of Lval ≈ 0.24
was achieved after 2250 boosting iterations. The central plot shows the loss curves
corresponding to the BDT that was trained in sub-workflow A during simulation iii).
There, a higher validation loss of Lval ≈ 0.44 was achieved after 839 boosting iterations.
Since the BDT parameters applied during training were identical, the inequality of the
loss curves implies that there are differences in the muon data of dataset 22552, compared
to the data generated in sub-workflow A based on the parameter settings of dataset 23260
[18]. Although the muon energy range and spectral index were set to identical values, a
discrepancy was found in the ratio of the number of events in the positive (passing MESE
filter) and the negative (rejected by MESE filter) event classes. For dataset 22552 this
ratio is about ∼ 22 %, while for the data generated in sub-workflow A, this ratio is about
∼ 5.4 %. Therefore, it was assumed that the increase in the validation loss is related to
the comparably strong underrepresentation of the positive event class in the training set.
To verify this assumption, another simulation at the energy range of iii) was conducted,
where the ratio of events in the positive and negative classes was artificially adjusted
to be ∼ 22 %. This was done by simulating more training data and randomly removing
some of the events belonging to the negative event class. The resulting loss curve can
be seen in the rightmost plot of Figure 44. A small decrease of the final validation loss
to Lval ≈ 0.41 after 2773 boosting iterations was observed compared to the loss of the
central plot. Still, the loss shown in the leftmost plot is much smaller. This leads to the
conclusion that there must be further differences between the training data of dataset
22552 and the data generated in sub-workflow A. Some further insights in this regard are
discussed in section 4.2.2.

Figure 44: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration obtained by training the BDT classifier on different
datasets. Left: Muongun dataset 22552 [10]. Center: Data generated by
the simulation framework introduced in section 4.1. Right: Data generated
by the simulation framework with an artificially adjusted ratio of event
classes in the training set.
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Evaluation of Optimized Muon Simulations:

The results of sub-workflow B of simulation iii) are illustrated in Figure 45. The
classification rates of the prediction categories (see Table 3) are shown based on two
different normalizations. Furthermore, the distributions of the predicted probabilities
with respect to the positive (blue) and negative (orange) event classes are presented.
Additionally, the distributions of the predicted probabilities according to the classification
after rejection sampling are shown. The black distribution involves all events that are
excluded from the optimized dataset, while the green distribution corresponds to all
events that are fully simulated. The plots are based on all events generated in sub-
workflow B except for the sub-events added during the filter simulation. This is because
no BDT prediction exists for these sub-events. Using rejection sampling instead of a fixed
probability threshold for event classification generally works. On the other hand, it also
reduces transparency regarding which events are sampled into the optimized dataset and
which are not. Compared to the plots of section 3.2.2, one can see that the distributions
of the negative and positive event classes are less sharp around zero and one. This is a
consequence of the increase in the final loss that occurred during training. This is also
reflected in the error rate of 24.46 %, which exceeds the values given in Table 11. Thus,
the BDT predictions of the simulation framework are less accurate compared to the final
results of section 3.2.1 and section 3.2.2.

The corresponding prediction results obtained by artificially adjusting the ratio of event
classes in the training set are presented in Figure 46. A small decrease in the FN and
FP rate was observed, consistent with the small decrease in the loss, leading to an error
rate of 23.66 %. The resulting distributions are shifted closer towards zero and one
compared to Figure 45. Still, the predictions are not as good as observed in section 3.2.1
and section 3.2.2 for the optimized BDT model that was trained on dataset 22552 [10].
Another investigation was carried out by making predictions on the data generated in
sub-workflow B using the BDT model that was trained on dataset 22552 (see Figure 47).
It was found that while the predictions of the positive event class are more accurate, the
predictions of the negative class are worse compared to Figure 46, leading to an increase
of FP and a decrease of FN events. This resulted in a relative increase of the error rate to
31.18 %. The probability distribution of the negative class shows a small second peak at
one, besides the expected peak at zero. This misinterpretation of events further indicates
that there is a systematic difference between dataset 22552 and the data generated by
the simulation framework. The plots showing the loss curves and prediction results of
the other energy ranges of Table 14, can be found in section A.2.2 of the appendix.
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Figure 45: Results of the optimized muon simulations of sub-workflow B for muons
within the energy range of 5 ⋅ 103 GeV − 1 ⋅ 104 GeV (spectral index γ = 4.5).
Sub-events are excluded from the plots as explained in this section. Top
row: Classification rates of the prediction categories (see Table 3) normal-
ized with respect to the total number of events generated in sub-workflow
B (left) and with respect to the total number of positive or negative pre-
dictions (right). Bottom row: Distribution of the predicted probabilities
by the BDT classifier for actually positive (blue) and actually negative
(orange) events before rejection sampling (left). Distribution of predicted
probabilities for fully simulated (green) and excluded (black) events accord-
ing to rejection sampling (right). Within the left or right column of the
figure, the colour of each distribution indicates the associated prediction
categories.
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Figure 46: Results of the optimized muon simulations of sub-workflow B for muons
within the energy range of 5 ⋅ 103 GeV − 1 ⋅ 104 GeV (spectral index γ = 4.5)).
The ratio of the event classes in the training set was artificially adjusted
to be ∼22 %. Sub-events are excluded from the plots as explained in this
section. Top row: Classification rates of the prediction categories (see
Table 3) normalized with respect to the total number of events generated
in sub-workflow B (left) and with respect to the total number of positive or
negative predictions (right). Bottom row: Distribution of the predicted
probabilities by the BDT classifier for actually positive (blue) and actually
negative (orange) events before rejection sampling (left). Distribution of
predicted probabilities for fully simulated (green) and excluded (black)
events according to rejection sampling (right). Within the left or right
column of the figure, the colour of each distribution indicates the associated
prediction categories.
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Figure 47: Results of the optimized muon simulations of sub-workflow B for muons
within the energy range of 5 ⋅ 103 GeV − 1 ⋅ 104 GeV (spectral index γ = 4.5).
The predictions are based on the final BDT model trained in section 3.2.1.
Sub-events are excluded from the plots as explained in this section. Top
row: Classification rates of the prediction categories (see Table 3) normal-
ized with respect to the total number of events generated in sub-workflow
B (left) and with respect to the total number of positive or negative pre-
dictions (right). Bottom row: Distribution of the predicted probabilities
by the BDT classifier for actually positive (blue) and actually negative
(orange) events before rejection sampling (left). Distribution of predicted
probabilities for fully simulated (green) and excluded (black) events accord-
ing to rejection sampling (right). Within the left or right column of the
figure, the colour of each distribution indicates the associated prediction
categories.
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For simulation ii) and iv), error rates of 21.25 % and 24.49 % were observed. With
∼ 1.8 % (ii)) and ∼ 3.2 % (iv)) instead of ∼ 5.4 %, the ratios of training samples in the
different event classes were smaller than for simulation iii). Given the classification
results, the trained BDT still showed predictions of similar quality as for simulation
iii). Simulation i) and v) showed a further decrease of the ratios of the event classes
to ∼ 0.13 % and ∼ 0.10 %. This strong underrepresentation of the positive event class is
probably one of the reasons why the training at the corresponding energy ranges did
not work properly. The resulting BDT predictions are close to a balanced 50 %/50 %
classification of events into the true and false prediction categories. Another problem at
lower energies of 1 ⋅ 102 GeV − 1 ⋅ 103 GeV might be that the BDT input vectors tend to
have more entries that are zero or close to zero, since less energy deposition within the
binning grid is expected. In section 3.1.3, this was identified to be a general problem.
Overall, this leads to the conclusion that the BDT hyperparameters and the parameters
of the binning grid have to be optimized individually for the respective energy range. In
this regard, section 3.2.1 provides a detailed insight into which parameter adjustments
have the highest impact. Furthermore, it might be necessary to artificially adjust the
event class ratio in the training set for certain energy ranges, as it was done for simulation
iii). Depending on the extent of the underrepresentation of the positive event class, this
might not be reasonable. Computational resources required to generate suitable training
sets could outweigh the resource savings achieved by the optimized simulation approach.

Table 15 and Table 16 show the fractions fMCPE and ftrig of muon events that were
rejected by the MCPE filter during photon propagation and by the trigger filter during
detector simulation of sub-workflow B for different energy ranges. The fractions were
calculated with respect to the dataset obtained by the optimized simulation (fopt

... ) and
with respect to the dataset obtained by the standard simulation. By comparing these
numbers, one can see that at energy ranges where the BDT showed reasonable results, a
large part of the events that would be removed by the MCPE filter and the trigger filter
are already rejected by the BDT.

Furthermore, Table 15 and Table 16 show the resulting mean computational gain for all
simulation runs that were discussed above. It was calculated by averaging over multiple
parallel runs of sub-workflow B. The uncertainty was determined via a Gaussian error
propagation based on the standard deviations of the quantities of Equation 4.1. The
mean values and standard deviations of these quantities are also given in the tables. For
the energy ranges of simulation ii), iii) and iv), a computational gain of about gcomp ≈ 2
was achieved. The highest computational gain of gcomp = 2.2 ± 0.4 was obtained at the
energy range of iii) with the additional adjustment of the event class ratio in the training
set. The computational gain obtained for simulation i) and v) did not show a significant
improvement compared to conventional simulations. This was expected from the poor
results observed for the corresponding BDT predictions. As discussed above, the BDT
predictions within the simulation framework are not optimal. Further investigations into
suitable parameter settings for the BDT at different energy ranges were beyond the scope
of this work, but will be necessary in the future. However, at energy ranges already
showing acceptable results, the optimized muon simulations require only about half the
computational resources of the conventional muon simulations. This demonstrates the
potential of using a hybrid simulation approach for muon background simulations in
IceCube.
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energy range iii)

iii),
adjusted ratio

of
event classes

iii),
BDT trained

on
dataset 22552

number of
parallel runs

sub-workflow B
4 4 4

Nevents per run of
sub-workflow B 2.2 ⋅ 105 5.5 ⋅ 104 5.5 ⋅ 104

fopt
MCPE [%] 2.3 2.0 0.8

fMCPE [%] 16.7 16.8 16.8

fopt
trig [%] 2.2 1.8 0.7

ftrig [%] 17.4 17.6 17.4
⟨Neff∣pos. events⟩ 3605 ± 336 1030 ± 187 1100 ± 340

⟨Npos⟩ 7930 ± 63 1931 ± 32 2004 ± 23

⟨Nopt
pos,subev⟩ 88 ± 7 28 ± 4 26 ± 5

⟨Npos,subev⟩ 131 ± 9 40 ± 5 31 ± 5

⟨Nopt
γ ⟩ (1.68 ± 0.01) ⋅ 1012 (4.10 ± 0.06) ⋅ 1011 (5.20 ± 0.05) ⋅ 1011

⟨Nγ⟩ (6.810 ± 0.004) ⋅ 1012 (1.692 ± 0.005) ⋅ 1012 (1.704 ± 0.002) ⋅ 1012

⟨gcomp⟩ 1.9 ± 0.2 2.2 ± 0.4 1.8 ± 0.5

Table 15: Mean values and standard deviations of the quantities of Equation 4.1,
based on multiple parallel runs of sub-workflow B (see first row) at differ-
ent energy ranges. The energy ranges are represented by their indentifier
corresponding to Table 14. The respective number of events Nevents per
run is given in the second row. The resulting mean computational gain
gcomp is given with an uncertainty based on a Gaussian error propagation.
The qunatities fMCPE and ftrig are the fractions of muon events that were
rejected by the MCPE filter during photon propagation and by the trigger
filter during detector simulation of sub-workflow B. They are normalized
with respect to the optimized dataset (fopt

... ) as well as to the dataset ob-
tained in the standard simulation.
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energy range i) ii) iv) v)
number of

parallel runs
sub-workflow B

4 4 5 4

Nevents per run of
sub-workflow B 5.0 ⋅ 104 3.0 ⋅ 104 2.2 ⋅ 104 5.0 ⋅ 104

fopt
MCPE [%] 27.8 11.5 6.1 10.4

fMCPE [%] 26.0 21.0 14.4 8.0

fopt
trig [%] 38.3 12.1 3.9 10.7

ftrig [%] 38.7 22.4 15.3 9.7
⟨Neff∣pos. events⟩ 8 ± 2 134 ± 24 230 ± 70 17 ± 4

⟨Npos⟩ 19 ± 1 296 ± 13 504 ± 8 44 ± 3

⟨Nopt
pos,subev⟩ 1 ± 1 4 ± 3 4 ± 2 0 ± 0

⟨Npos,subev⟩ 2 ± 1 6 ± 1 8 ± 2 1 ± 1

⟨Nopt
γ ⟩ (9.52 ± 0.03) ⋅ 1010 (8.59 ± 0.04) ⋅ 1010 (3.08 ± 0.05) ⋅ 1011 (1.20 ± 0.01) ⋅ 1013

⟨Nγ⟩ (2.60 ± 0.02) ⋅ 1011 (3.50 ± 0.02) ⋅ 1011 (1.38 ± 0.01) ⋅ 1012 (2.97 ± 0.01) ⋅ 1013

⟨gcomp⟩ 1.1 ± 0.3 1.9 ± 0.3 2.0 ± 0.6 1.0 ± 0.3

Table 16: Part two of Table 15. Mean values and standard deviations of the quantities
of Equation 4.1, based on multiple parallel runs of sub-workflow B (see
first row) at different energy ranges. The energy ranges are represented
by their indentifier corresponding to Table 14. The respective number of
events Nevents per run is given in the second row. The resulting mean com-
putational gain gcomp is given with an uncertainty based on a Gaussian
error propagation. The qunatities fMCPE and ftrig are the fractions of muon
events that were rejected by the MCPE filter during photon propagation
and by the trigger filter during detector simulation of sub-workflow B. They
are normalized with respect to the optimized dataset (fopt

... ) as well as to the
dataset obtained in the standard simulation.
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4. Optimized Muon Simulations

4.2.2. Investigation of Event Distributions with Respect to Muon Properties

As a final investigation, the event distributions with respect to different muon properties
were analysed, analogue to section 3.2.3. The best results of the computational gain
were achieved for the energy range of 5 ⋅ 103 GeV − 1 ⋅ 104 GeV. Therefore, the plots
provided in this section are based on prediction results illustrated in Figure 45 (without
the adjusted ratio of event classes). Figure 48 shows the corresponding distributions
of events belonging to the positive class (blue histograms), the negative class (orange
histograms), and the FP prediction category (dashed black histograms). Figure 49 shows
the same distributions for the FN prediction category. In section 3.2.3 the probability
thresholds were chosen so that only the prediction outliers were included in the FP and
FN histograms. Since the optimized simulations are based on rejection sampling, the
histograms include not only prediction outliers. However, due to the probabilistic nature
of the rejection sampling process, the contribution of events which are no outliers is
suppressed.

Comparing the distributions provided this section to the corresponding distributions of
section 3.2.3, gives some insights on why the BDT predictions on the data generated
with the simulation framework in section 4.2.1 appear to be less accurate compared
to predictions on dataset 22552 [10]. One observation is, that the distributions of the
positive and negative event classes of this section are more similar to each other compared
to the corresponding distributions of section 3.2.3. This effect is most dominant for the
initial energy, the initial cos(zenith), the r-component of the initial position and the
z-component of the initial position. This implies that the muon events generated by the
simulation framework are more similar to each other regarding their physical properties,
despite having different MESE filter outcomes. This might be the main reason why
the BDT has problems to learn the differences between the muon event classes during
training, resulting in an increased loss and worse predictions.

The same script (see Table 20 in the appendix) with similar parameter settings was used
for executing muongun in dataset 22552 and in the simulation framework. This indicates
that the internal code of the muongun script was possibly changed since dataset 22552
was produced. To make a more confident statement on that, more detailed investigations
in this regard are required. This was not part of this work, but might be interesting for
future studies.

The distributions of FP and FN events seem to follow the distributions of the positive
event class. This is an expected behaviour for the FP events but not for the FN events,
which should be more similar to the distributions of the negative event class. This is
another indicator for the BDT not being able to properly learn the differences between
the event classes. Apart from that, the distributions of FP and FN events are not
constrained within a small parameter range, but spread out broadly. Therefore, no clear
indications of a bias with respect to certain event properties were observed. As mentioned
in section 3.2.3 it might be useful to look at single muons in an event display to obtain
more information on why certain events end up in the FP or FN prediction category.
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4. Optimized Muon Simulations

Figure 48: Distributions of muon events with respect to seven different muon quan-
tities. These include the initial muon energy, initial muon direction given
by (cos(zenith), azimuth), initial muon position in cylindrical coordinates
(r, ϕ, z), and the total deposited energy within the binning grid. For each of
the quantities, three distributions are shown, which correspond to events be-
longing to the positive class (blue), the negative class (orange), and the FN
prediction category (dashed black). The FP histograms were determined
with respect to the rejection sampling applied in sub-workflow B.
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4. Optimized Muon Simulations

Figure 49: Distributions of muon events with respect to seven different muon quan-
tities. These include the initial muon energy, initial muon direction given
by (cos(zenith), azimuth), initial muon position in cylindrical coordinates
(r, ϕ, z), and the total deposited energy within the binning grid. For each of
the quantities, three distributions are shown, which correspond to events be-
longing to the positive class (blue), the negative class (orange), and the FN
prediction category (dashed black). The FN histograms were determined
with respect to the rejection sampling applied in sub-workflow B.
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5. Conclusion and Outlook

5. Conclusion and Outlook

Detecting astrophysical neutrinos with the IceCube Neutrino Observatory presents
several challenges, including a large background of atmospheric muons. During data
analysis, multiple event filters have to be applied to suppress this background. The
resulting background reduction efficiency and its associated uncertainty are estimated from
extensive muon simulations, which involve the computationally expensive propagation of
Cherenkov photons in ice. By applying the event filters to the simulated data, a large
number of muons is removed at the end of the simulation chain. Consequently, a lot of
computational resources are unnecessarily spent on photon propagation. In this thesis, a
hybrid simulation approach was presented that combines conventional muon simulations
with a boosted decision tree that predicts the MESE event filter outcome based on the
muon energy loss information. To save computational resources, the full simulation,
including photon propagation, is carried out only for muon events predicted to pass the
MESE filter. By training a BDT regression model on muon data of a toy simulation, it
was shown that this kind of simulation approach generally works. In a second step, a
BDT classifier was trained on muon data of the IceCube simulation [10]. After optimizing
various hyperparameters, the BDT classifier achieved a prediction accuracy close to that
of a recurrent neural network trained on the same task [4]. Finally, a dedicated testing
framework for optimized muon simulations was developed [19], providing full access to
the IceCube simulation parameters used for a recently generated muon dataset [18]. The
BDT was integrated into this framework, including the training process. A computational
gain gcomp was defined that acts as a measure of the resource savings achieved by using
the hybrid simulation approach. Depending on the initial energy range of the simulated
muons, a computational gain of up to 2.2± 0.4 was observed. This implies that optimized
muon simulations require only about half the computational resources of conventional
muon simulations. Therefore, about twice as many background muons can be simulated
within the same amount of time. This leads to the conclusion that employing a hybrid
simulation approach as proposed by this thesis might reduce the statistical uncertainty
of the estimated background reduction efficiency, without increasing the budget spent on
simulations of the muon background.

The BDT as trained within the simulation framework showed an error rate of 20 %− 25 %
in the best cases. Therefore, further investigations are required to reduce the number of
wrong event classifications. This also shows that the maximum achievable computational
gain is potentially higher than the factor obtained in this work. Future studies should
include an individual optimization of the BDT hyperparameters for different muon energy
ranges. Further insights are needed on the physical characteristics of falsely classified
events to understand why these predictions are observed. A first step in gathering
information on that would be to analyse individual muon events in an event display.
Furthermore, it would be interesting to integrate other classifiers, such as the RNN
developed by B. Mayer [4], into the simulation framework and analyse the resulting
computational gain. Since the simulation framework provides full access to the parameters
of the involved scripts from IceTray [17], various simulation configurations can be tested
in future analyses of optimized muon simulations.
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A. Appendix

A.1. Appendix - Development of a Classifier

A.1.1. Appendix - section 3.1.2

Figure 50: Top view of Figure 13.

Figure 51: Side view of Figure 13.
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Figure 52: Top view of Figure 14.

Figure 53: Side view of Figure 14.

89



A.1.2. Appendix - section 3.1.3

hyperparameter default setting
loss ’squared_error ’

quantile None
learning_rate 0.1

max_iter 100
max_leaf_nodes 31

max_depth None
min_samples_leaf 20
l2_regularization 0.0

max_features 1.0
max_bins 255

categorical_features ’warn’
monotonic_cst None
interaction_cst None

warm_start False
early_stopping ’auto’

scoring ’loss’
validation_fraction 0.1
n_iter_no_change 10

tol 1e-07
verbose 0

random_state None

Table 17: Default hyperparameter settings of the regression model as given by [8].
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Figure 54: Training loss (blue curves) and validation loss (orange curves) over the
boosting iteration (MI = 1000) for the cylindrical binning with nbins = 17.
Each subplot shows two pairs of curves and corresponds to a certain value
of MD. Each pair of curves corresponds to a certain value of LR: LR = 0.1
(solid curves), LR = 0.01 (dashed curves).

Figure 55: Calculated loss for the test set over MD for the cylindrical binning with
nbins = 17. Each subplot shows a set of four curves and corresponds to
a certain maximum boosting iteration MI. Each curve within a subplot
corresponds to a certain value of the learning rate LR.
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Figure 56: Training loss (blue curves) and validation loss (orange curves) over the
boosting iteration (MI = 1000) for the cylindrical binning with nbins = 73.
Each subplot shows two pairs of curves and corresponds to a certain value
of MD. Each pair of curves corresponds to a certain value of LR: LR = 0.1
(solid curves), LR = 0.01 (dashed curves).

Figure 57: Calculated loss for the test set over MD for the cylindrical binning with
nbins = 73. Each subplot shows a set of four curves and corresponds to
a certain maximum boosting iteration MI. Each curve within a subplot
corresponds to a certain value of the learning rate LR.
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Figure 58: Training loss (blue curves) and validation loss (orange curves) over the
boosting iteration (MI = 1000) for the hexagonal binning with nbins = 61.
Each subplot shows two pairs of curves and corresponds to a certain value
of MD. Each pair of curves corresponds to a certain value of LR: LR = 0.1
(solid curves), LR = 0.01 (dashed curves).

Figure 59: Calculated loss for the test set over MD for the hexagonal binning with
nbins = 61. Each subplot shows a set of four curves and corresponds to
a certain maximum boosting iteration MI. Each curve within a subplot
corresponds to a certain value of the learning rate LR.
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A.1.3. Appendix - section 3.2 and section 3.2.1

hyperparameter default setting
loss ’log_loss’

learning_rate 0.1
max_iter 100

max_leaf_nodes 31
max_depth None

min_samples_leaf 20
l2_regularization 0.0

max_features 1.0
max_bins 255

categorical_features ’warn’
monotonic_cst None
interaction_cst None

warm_start False
early_stopping ’auto’

scoring ’loss’
validation_fraction 0.1
n_iter_no_change 10

tol 1e-07
verbose 0

random_state None
class_weight None

Table 18: Default hyperparameter settings of the classification model as given by [9].

MI combinations of LR and MSL

2000
all combinations of:

LR ∈ {2.5 ⋅ 10−2, 5 ⋅ 10−2, 1 ⋅ 10−1, 2 ⋅ 10−1},
MSL ∈ {250, 500, 750, 1000, 1250, 1500, 1750, 2000}

6000
all combinations of:

LR ∈ {2.5 ⋅ 10−2, 5 ⋅ 10−2, 1 ⋅ 10−1, 2 ⋅ 10−1},
MSL ∈ {5, 50, 100, 5000, 10000}

8000
all combinations of:

LR ∈ {1 ⋅ 10−2},
MSL ∈ {5, 50, 100, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 5000}

200000

all combinations of:
LR ∈ {1 ⋅ 10−3, 2.5 ⋅ 10−3, 5 ⋅ 10−3, 7.5 ⋅ 10−3},

MSL ∈ {750},
and at (LR = 1 ⋅ 10−2, MSL = 10000)

Table 19: Settings of the maximum boosting iteration MI for the final hyperparameter
scans of LR and MSL.
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Figure 60: Top view of Figure 33.

Figure 61: Side view of Figure 33.
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Figure 62: Left: Distribution of the predicted probabilities by the BDT classifier
for actually positive (blue) and actually negative (orange) events. Right:
Probability threshold scans as explained for Figure 22. The top and bottom
row correspond to the BDT classification model before and after the final
hyperparameter scan of LR and MSL.

Figure 63: False negative rate (FNR) against false positive rate (FPR) with respect
to the test set, for the BDT classification model before and after the final
hyperparameter scan of LR and MSL. The respective area under the curve
(AUC) is given in the legend.
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A.2. Appendix - Optimized Muon Simulations

A.2.1. Appendix - section 4.1

simulation step associated script
Muongun /simprod-scripts/resources/scripts/muongun.py
CORSIKA /simprod-scripts/resources/scripts/corsika.py
Polyplopia /simprod-scripts/resources/scripts/SnowSuite/2-Polyplopia.py

Muon Propagation /simprod-scripts/resources/scripts/SnowSuite/2-Propagate.py
Photon Propagation /simprod-scripts/resources/scripts/SnowSuite/3-Snowstorm.py
Detector Simulation /simprod-scripts/resources/scripts/detector.py

Filter Level 1 /filterscripts/resources/scripts/SimulationFiltering.py
Filter Level 2 /filterscripts/resources/scripts/offlineL2/process.py

environment shell /cvmfs/icecube.opensciencegrid.org/py3-v4.4.1/icetray-env icetray/v1.14.0

Table 20: Location of the scripts within the IceTray GitHub repository [17], that were
used for the execution of the respective simulation steps in the testing frame-
work for optimized muon simulations [19]. All scripts were executed within
the same IceTray environment shell provided at the bottom of the table.
The input parameter configurations of the respective scripts can be found
in the config.yaml file of [19]. The respective script parameter settings were
chosen to be as close as possible to the original muongun dataset 23260 [18].
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A.2.2. Appendix - section 4.2.1

Figure 64: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration obtained by training the BDT classifier during simulation
i) (see Table 14).

Figure 65: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration obtained by training the BDT classifier during simulation
ii) (see Table 14).
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Figure 66: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration obtained by training the BDT classifier during simulation
iv) (see Table 14).

Figure 67: Training loss (blue curves) and validation loss (orange curves) against the
boosting iteration obtained by training the BDT classifier during simulation
v) (see Table 14).
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Figure 68: Results of sub-workflow B of simulation i) (see Table 14). Sub-events are
excluded from the plots as explained in this section. Top row: Classi-
fication rates of the prediction categories (see Table 3) normalized with
respect to the total number of events generated in sub-workflow B (left)
and with respect to the total number of positive or negative predictions
(right). Bottom row: Distribution of the predicted probabilities by the
BDT classifier for actually positive (blue) and actually negative (orange)
events before rejection sampling (left). Distribution of predicted probabil-
ities for fully simulated (green) and excluded (black) events according to
rejection sampling (right). Within the left or right column of the figure, the
colour of each distribution indicates the associated prediction categories.
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Figure 69: Results of sub-workflow B of simulation ii) (see Table 14). Sub-events are
excluded from the plots as explained in this section. Top row: Classi-
fication rates of the prediction categories (see Table 3) normalized with
respect to the total number of events generated in sub-workflow B (left)
and with respect to the total number of positive or negative predictions
(right). Bottom row: Distribution of the predicted probabilities by the
BDT classifier for actually positive (blue) and actually negative (orange)
events before rejection sampling (left). Distribution of predicted probabil-
ities for fully simulated (green) and excluded (black) events according to
rejection sampling (right). Within the left or right column of the figure, the
colour of each distribution indicates the associated prediction categories.
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Figure 70: Results of sub-workflow B of simulation iv) (see Table 14). Sub-events
are excluded from the plots as explained in this section. Top row: Clas-
sification rates of the prediction categories (see Table 3) normalized with
respect to the total number of events generated in sub-workflow B (left)
and with respect to the total number of positive or negative predictions
(right). Bottom row: Distribution of the predicted probabilities by the
BDT classifier for actually positive (blue) and actually negative (orange)
events before rejection sampling (left). Distribution of predicted probabil-
ities for fully simulated (green) and excluded (black) events according to
rejection sampling (right). Within the left or right column of the figure, the
colour of each distribution indicates the associated prediction categories.
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Figure 71: Results of sub-workflow B of simulation v) (see Table 14). Sub-events are
excluded from the plots as explained in this section. Top row: Classi-
fication rates of the prediction categories (see Table 3) normalized with
respect to the total number of events generated in sub-workflow B (left)
and with respect to the total number of positive or negative predictions
(right). Bottom row: Distribution of the predicted probabilities by the
BDT classifier for actually positive (blue) and actually negative (orange)
events before rejection sampling (left). Distribution of predicted probabil-
ities for fully simulated (green) and excluded (black) events according to
rejection sampling (right). Within the left or right column of the figure, the
colour of each distribution indicates the associated prediction categories.
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