• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Erlangen Centre for Astroparticle Physics
  • FAUTo the central FAU website
  • Department of Physics
  • Dr. Karl Remeis Observatory

Erlangen Centre for Astroparticle Physics

Navigation Navigation close
  • Institute
    • Organisation and Code of Conduct
    • Research groups
      • Astronomy (Prof. Heber, Prof. Sasaki, Prof. Wilms)
      • Astroparticle Physics (Prof. Katz, Prof. van Eldik)
      • High-Energy Astrophysics (Prof. Funk)
      • Experimental Astroparticle Physics – Radiodetection of Neutrinos (Prof. Nelles)
      • Experimental Astroparticle Physics (Prof. Kopper)
      • Quantum Gravity (Prof. Thiemann, Prof. Giesel, Prof. Sahlmann)
      • Statistical Physics (Prof. Mecke)
    • ECAP Members
    • Vacancies
    • Thesis Topics
    • Infrastructure
    • Contact
    Portal Institute
  • Research
    • Publications
      • Articles and Proceedings
      • Theses
    • Astronomy and Astrophysics
    • Gamma-Ray Astronomy
    • Technology Transfer
    • Neutrino Astronomy
    • Neutrino Physics
    • Theory
      • Mathematical and Statistical Physics
      • Quantum Gravity
    • Cross-boundary Research Projects
    • Additional Research Areas
    Portal Research
  • Teaching
    • Current Lectures
    • School for Astroparticle Physics (ext.)
    • Erlanger SchülerForschungsZentrum (ext.)
    • Particle Physics Masterclasses (ext.)
    Portal Teaching
  • News and Events
    • News
    • Events
    • Seminar
    • ECAP-Shop
    • Outreach
    Portal News and Events
  • Thesis Topics
  1. Home
  2. Research
  3. Neutrino Astronomy
  4. Radio Detection

Radio Detection

In page navigation: Research
  • Gamma-Ray Astronomy
    • CTA
    • Fermi-LAT
    • H.E.S.S.
  • Publications
    • Articles and Proceedings
    • Theses
  • Neutrino Astronomy
    • ANTARES | KM3NeT
    • IceCube
    • Radio Detection
  • Astronomy and Astrophysics
  • Neutrino Physics
    • KM3NeT – ORCA
  • Theory
    • Mathematical and Statistical Physics
    • Quantum Gravity
      • Research in Loop Quantum Gravity
  • Technology Transfer
    • Medical Physics
    • Materials Testing
    • Laboratory Astrophysics
  • Additional Research Areas
    • Acoustic Particle Detection
    • Hadron Physics
    • EXO-200
    • nEXO
  • Cross-boundary Research Projects
    • ECAP AI Laboratory

Radio Detection

Radio detection of Neutrinos

Neutrino induced particle showers in ice create a measurable radio pulse above PeV (10^15 eV) energies. At these energies our current knowledge of the astrophysical neutrino flux as detected with IceCube ends.
Larger detectors are needed in order to measure the small flux of neutrinos. Since radio waves have a much larger attenuation length than light in ice, one can build a radio detector with large spacing between antennas in the ice and thereby cover volumes of hundreds of cubic kilometers at reasonable instrumentation cost.

The Radio Neutrino Observatory Greenland (RNO-G) will show the first large scale implementation of this technology: 35 stations (see figure) will be constructed on roughly 40 km^2 at Summit Station on top of 3000 km of ice.

In Erlangen hardware for the amplification chain of RNO-G is constructed and there is a continuous development of software tools to reconstruct the elusive radio signals.

RNO-G will test technology that is of immediate relevance for the radio array of IceCube-Gen2, which is to be built at South Pole as successor to IceCube.

and other particles

The Erlangen radio neutrino group is also still involved in the radio detection of air showers with the large radio telescope LOFAR (and preparatory work for the Square Kilometer Array SKA) and the radio detection of lightning signals.

 

For more information see:

  • Group Research
  • Group Members
  • Publications
Erlangen Centre for Astroparticle Physics (ECAP)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Nikolaus-Fiebiger-Str. 2
91058 Erlangen
  • Contact
  • Imprint
  • Privacy
  • Accessibility
  • Internal
  • Facebook
  • Instagram
  • RSS Feed
Up